

THE UNIVERSITY OF HONG KONG 香港大學 faculty of architecture 建築學院

Efficient assessment of window views in high-rise, high-density urban areas using 3D color City Information Models

Maosu Li, Fan Xue, Anthony G.O. Yeh Faculty of Architecture, HKU

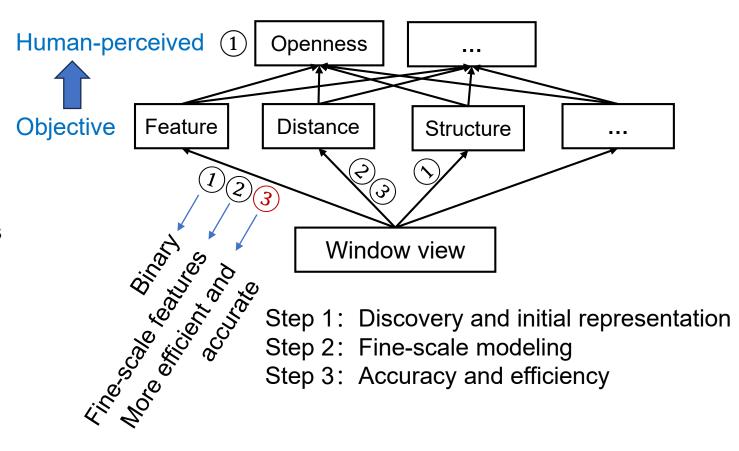
18th International Conference on Computational Urban Planning and Urban Management (CUPUM 2023), 20-22 June, Montreal, Canada

Maosu Li

Final-year PhD Candidate,

Depart of Urban Planning and Design,

The University of Hong Kong.


Scan me.

Prof. Anthony Gar On Yeh, Department of Urban Planning and Design; Dr. Fan Xue, Department of Real Estate and Construction.

Research interest:

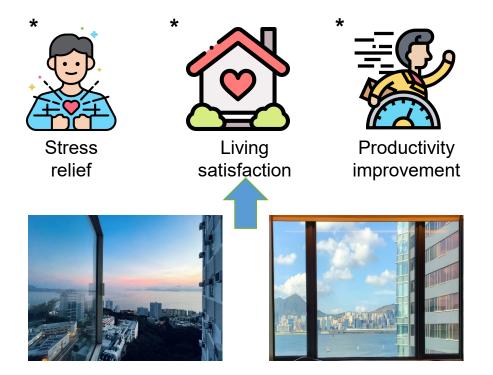
Create automatic decision support methods and tools \rightarrow quantify **urban semantics** through <u>3D City Information Modeling</u>, <u>Machine Learning</u>, and <u>Data Analytics</u> \rightarrow smarter urban planning and urban management.

Introduction

Research methods

Initial results

Summary



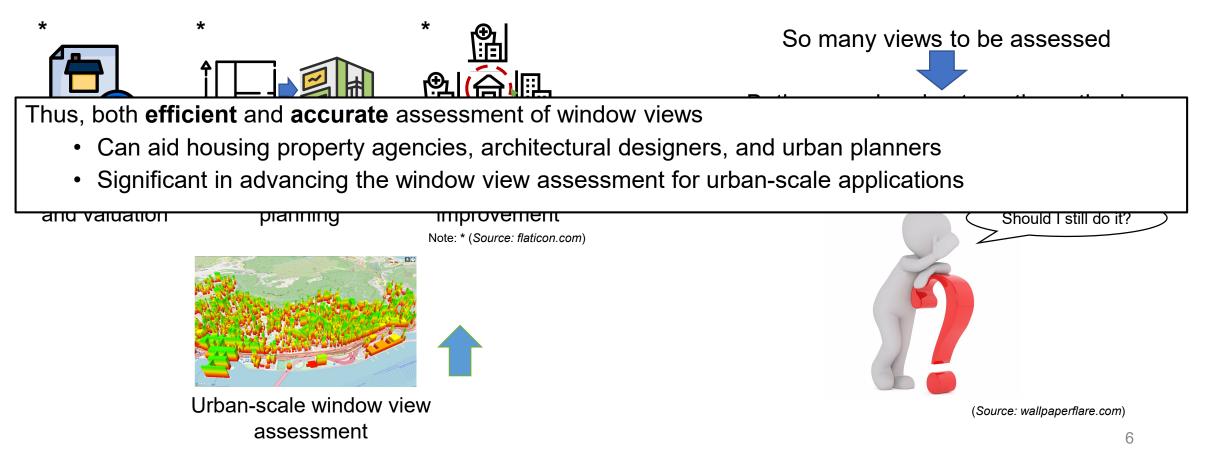
1.1 Background

A high-quality window view,

- with more greenery, sky, waterbody, and fewer construction elements
- treasured by urban dwellers especially in high-rise, high-density (HRHD) urban areas

Recognized benefits

Increasingly long-term indoor occupation


1.1 Background

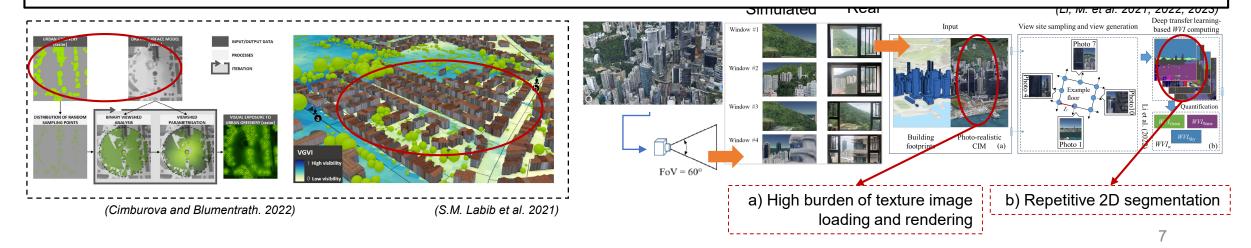
Assessment of window views,

→quantified evidence for multiple urban applications

□ However, window views are **numerous** especially in HRHD areas,

Change in large numbers with the vertical development of neighborhoods

1.2 Literature review


□ Window view assessment: Manual measurement and Simulation

Method type	Example	Field	Status	Problem
Manual measurement	Onsite photo collection	 Psychology Built environment Architectural design 	High cost and laborious	Unscalable to the urban scale
Simulation	Visibility analysis	Urban planning and design	Still shows "preference" for oversimplified models (Fig. 1)	Inaccurate

Thus, next generation of assessment methods

→ improve the processing efficiency for an accurate quantification,

 \rightarrow Supporting urban-scale assessment and update of window view indices.

Research methods

Initial results

Summary

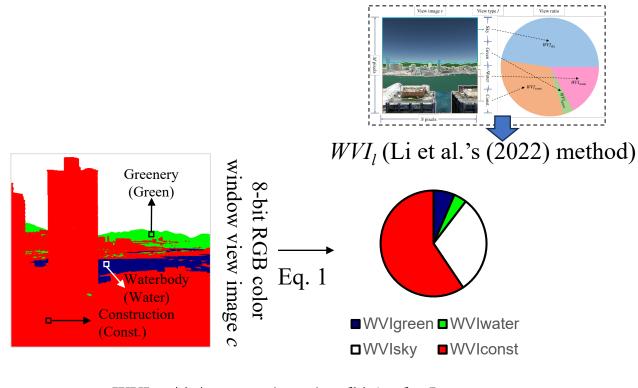
2.1 Workflow of the proposed method

□ Input: Four datasets

□ Methods: 3D semantic segmentation + model view photography + color pixel counting

□ Output: Four Window View Indices (WVIs)

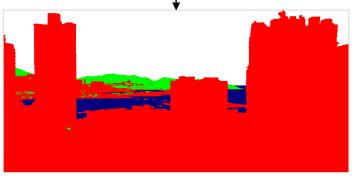
• greenery, waterbody, sky, and construction.



2.2 Definition of WVIs

□ WVIs: Defined as a ratio ranging from 0 to 1 on an 8-bit RGB color view image

• Extension of definition defined on a 3D photorealistic scene (Li et al. 2022).

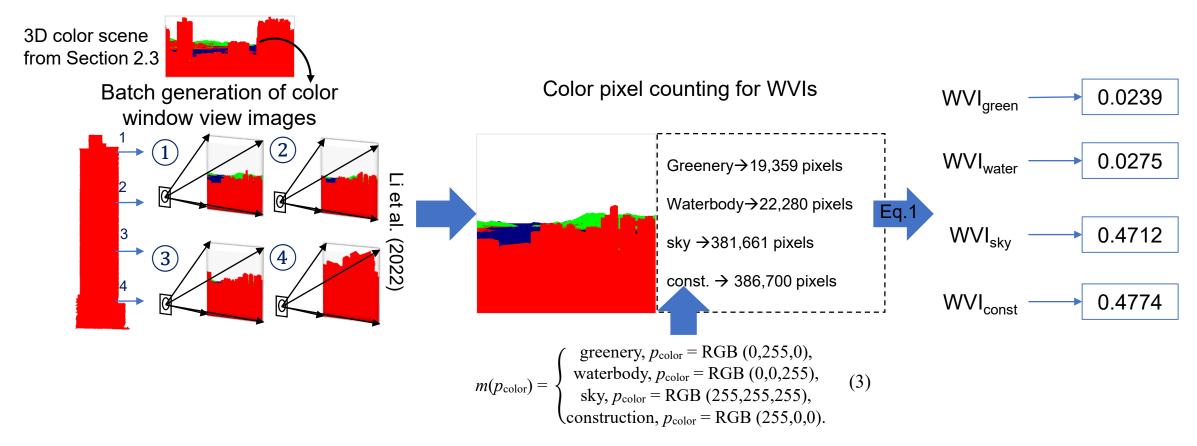

(1)

 $WVI_{l} = |\{p | p \in c, m(p_{color}) = l\}| / n, l \in L,$ L= {'greenery', 'waterbody', 'sky', 'const.'}, 3D photorealistic scene

3D color scene

3D scene colored by L

2.3 3D semantic segmentation of CIM for a 3D color scene

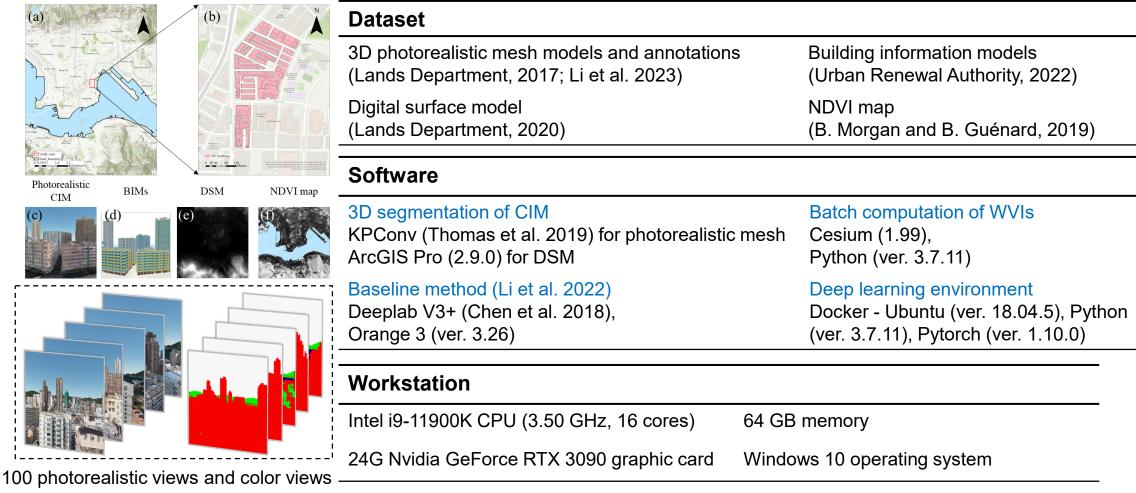

3D semantic segmentation: KPConv (Thomas et al. 2019) and A priori-based rules
 3D scene color setting

3D semantic segmentation of photorealistic mesh models 3D semantic segmentation of DSM using NDVI Eq. 2 **KPConv** Greenery Waterbody Waterbody Greenery | Const. Const. Eq. 3 Eq. 3 Eq. 2 RGB (0,255,0), l = greenery, greenery, $NDVI_{pg} \ge 0.1$, RGB (0,0,255), l = waterbody, $color(v_l) =$ $l_{pg} = \begin{cases} \text{construction, } 0 \le NDVI_{pg} \le 0.1, \\ \text{waterbody, } NDVI_{pg} = \text{no data,} \end{cases}$ RGB (255,255,255), *l* = sky, RGB (255,0,0), l =construction, Const. Greenery Waterbody Sky

2.4 Batch computation of WVIs using color view images

□ Two-step computation process

- Window view generation in the 3D color scene
- Color pixel counting for WVIs



3.1 Experimental settings

CIM

Using 100 random window views from 207 buildings in To Kwa Wan, Kowloon Peninsula of Hong Kong

To test the feasibility of the proposed method.

3.2 Accuracy and efficiency

Comparison with Li et al.'s (2022) 2D segmentation method, the proposed 3D segmentation method:

- Accuracy \rightarrow RMSE < 0.01; Improvement: 76.26%;
- Efficiency \rightarrow Total < 0.6 s; Improvement: 73%.

Table 1. Comparison of assessment accuracy of two methods on 100 test windows

	RMSE			
	Li et al.'s 2D method	Our 3D method	Improvement	
WVIgreen	0.0283	0.0059	79.15%	
WVI _{water}	0.0243	0.0048	80.25%	
WVI _{sky}	0.0098	0.0044	55.10%	
WVI _{const.}	0.0405	0.0092	77.28%	
Average	0.0257	0.0061	76.26%	

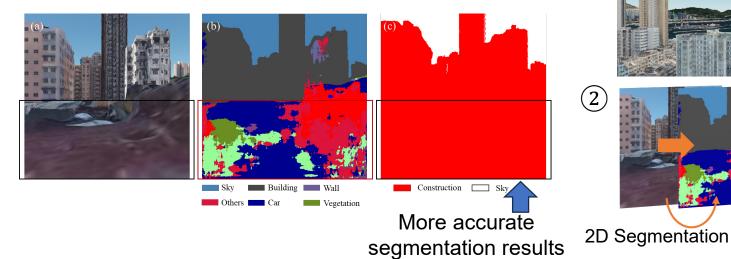
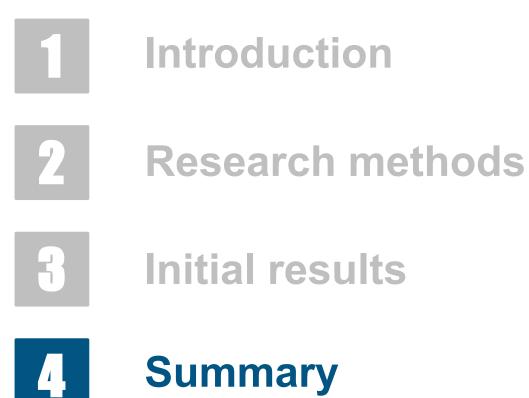


Table 2. Comparison of computational time of the two methods (average of 100 windows)


Step	Processing	Li et al.'s 2D method	Our 3D method	Improvement	
1	Window view generation	1.94 s	0.54 s	72%	
2	Quantification of WVIs	0.16 s	0.03 s	81%	
	Total	2.10 s	0.57 s	73%	
Li e	t al.'s (2022) 2D me	thod Our 3	D segmentati	on method	
Models with textures Models without preparation and rendering of textures					
ALL PARTY		VVIs	W	VIs	

Pixel counting

Only pixel counting

15

4 Summary

□ This study proposes a both efficient and accurate window view assessment method

• Using 3D semantic segmentation and 3D color CIM

□ Significance

- Improvement of the accuracy and efficiency
 - For urban-scale quantification and update of four WVIs
 - RMSE < 0.01 and 3.68 times faster
- Advancing urban-scale planning, design, and real estate applications to use quantified WVIs
 - Urban planners and architectural designers in urban planning and design
 - Housing purchasers, renters, property agencies in real estate market

Limitation

- A full 3D color scene needed for assessing four WVIs
 - Small-scale quantification may not afford the large-scale but one-off preprocessing cost
- Batch quantification of window views regardless of the similarity
 - Window view pattern mining for a more efficient assessment

References

- Chen, L. C., Zhu, Y., Papandreou, G., Schroff, F., & Adam, H. (2018). Encoder-decoder with atrous separable convolution for semantic image segmentation. In *Proceedings of the European conference on computer vision (ECCV)* (pp. 801-818).
- Cimburova, Z., & Blumentrath, S. (2022). Viewshed-based modelling of visual exposure to urban greenery–An efficient GIS tool for practical planning applications. Landscape and Urban Planning, 222, 104395.
- □ HKLandsD. (2017). 3D Visualization Map. Hong Kong: Lands Department, Government of Hong Kong SAR.
- HKLandsD. (2020). Digital Surface Model from 2020 LiDAR Survey. Hong Kong: Lands Department, Government of Hong Kong SAR.
- HKURA. (2022). 3D Intelligent Map of an area in To Kwa Wan. Hong Kong: Urban Renewal Authority.
- Labib, S. M., Huck, J. J., & Lindley, S. (2021). Modelling and mapping eye-level greenness visibility exposure using multi-source data at high spatial resolutions. *Science of the Total Environment*, 755, 143050.
- Li, M., Xue, F., Yeh, A. G., & Lu, W. (2021). Classification of photo-realistic 3D window views in a high-density city: The case of Hong Kong. In Proceedings of the 25th International Symposium on Advancement of Construction Management and Real Estate (pp. 1339-1350). Springer Singapore.
- Li, M., Xue, F., Wu, Y. & Yeh, A. G. (2022). A room with a view: Automated assessment of window views for high-rise high-density areas using City Information Models and transfer deep learning. *Landscape and Urban Planning*, 226, 104505. doi:10.1016/j.landurbplan.2022.104505
- Li, M., Xue, F., & Yeh, A. G. (2023). Bi-objective analytics of 3D visual-physical nature exposures in high-rise high-density cities for landscape and urban planning. *Landscape and Urban Planning*, 233, 104714.
- Morgan, B., & Guénard, B. (2019). New 30 m resolution Hong Kong climate, vegetation, and topography rasters indicate greater spatial variation than global grids within an urban mosaic. *Earth System Science Data*, 11(3), 1083-1098.
- Thomas, H., Qi, C. R., Deschaud, J. E., Marcotegui, B., Goulette, F., & Guibas, L. J. (2019). Kpconv: Flexible and deformable convolution for point clouds. In *Proceedings of the IEEE/CVF international conference on computer vision* (pp. 6411-6420).

Thank you for your attention!

Li Maosu, PhD. Candidate Dept. of Urban Planning and Design, HKU maosulee@connect.hku.hk

