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Abstract: In the smart construction era, Heritage Digital Twin (HDT) is increasingly 
created as the digital replica of physical heritage buildings and relics. Extraction of the 
unique patterns and decorative elements on the HDTs is not only of academic interest 
to heritage conservation but also of business interest to fashion and design, such as the 
recent Hanfu fever. However, the patterns’ complex curvature surfaces and subtle 5 

protrusions make it challenging to extract and analyze them accurately and efficiently. 
This paper presents a Genetic Algorithm-based semi-automatic method for extracting 
decorative pattern texture from HDTs. This method has three steps: (i) extraction of 
cross-section contour as Non-uniform rational B-spline (NURBS) curves; (ii) Fitting of 
arcs and curvature projection based on Genetic Algorithm (GA); and (iii) clustering and 10 

extraction of patterns of interest. We tested the method on 3D data of a heritage building 
and a heritage bronze drum preliminarily. The high accuracy of the results, i.e., 𝐹𝐹1-value 
> 90% in all tasks, validated our automated extraction method for detailed patterns and 
decorations. The proposed GA-based method can enrich the literature of HDT in smart 
heritage and smart construction, whereas the extracted heritage’s patterns and 15 

decorations have the potential for cultural and business applications. 

Keywords: Heritage Digital Twin; Heritage decorative patterns; 3D point cloud; 
Genetic Algorithm; Smart Construction. 
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1 Introduction 

1.1 Background 

Smart construction implies the incorporation of automation and information 
technologies in the construction sector to tackle engineering challenges, such as cost, 
quality, safety, and sustainability[1, 2]. Benefiting from the rapid development of 25 

information technology, Digital Twin (DT), a network physical integration, has played 
a greater role in smart construction[3] since it enables interoperability, automation, and 
intelligent systems for whole-life-cycle buildings management. From the perspective 
of real-time geometric information (one of the DT objectives), 3D point clouds serve 
as a suitable data source because they can accurately depict the shape and texture of 30 

detected object surfaces. With expert handling, these point clouds can be transformed 
into digital documents such as Building Information Models (BIMs) and DT models[4]. 

The Heritage Digital Twin (HDT) is a digital representation of the intricate 
knowledge structure pertaining to heritage assets[5], in which both generating a high-
fidelity virtual model of physical objects and efficiently processing the gathered data 35 

and diagnosing the digital twin to facilitate decision-making are challenging[6]. One of 
the objectives of HDT is to create 3D models with semantically rich coverage[7]. 

More specifically, in heritage conservation, the preservation of texture, material, 
and decorative elements is essential for experts to evaluate the detailed status[8]. Besides, 
the decorative pattern found in cultural heritage possesses significant commercial value 40 

due to its extensive applicability in design and fashion industries, such as Hanfu. The 
feature of decorative pattern texture is slightly raised at the edges of the pattern. Current 
literature mainly focuses on presenting image level of texture information. For instance, 
[9] utilize a photogrammetry method to acquire masonry patterns as the texture for BIM 
objects, and [10] create a detailed restoration map for HBIM through photogrammetry. 45 

Furthermore, detail texture should not only be limited to image presentation but also 
provide the appearance with further information[11], such as performance assessment, 
texture detection, extraction, and classification. Hence, from the perspective of 
integrating texture semantic information, there is a need to extract pattern texture 
characterized by slight protrusions from point cloud data. 50 

1.2 Texture-related extraction method 

Ornamental pattern texture exhibits subtle elevations along the boundaries; thus, the 
extraction of pattern texture is often modeled as discontinuous characteristics extraction 
from input 3D point cloud. Such discontinuous characteristics extraction methods have 
been developed for two decades, e.g., in the field of rock surface[12]. Features that are 55 

often used for classification are angles, normal vectors, curvatures, planar parameters 
(e.g., Random sample consensus, RANSAC), and density (e.g., density-based spatial 
clustering of applications with noise, DBSCAN). Current rocks discontinuities analysis 
contains two major groups of methods, i.e., K-means and region growing, while there 
existed other algorithms as well. 60 
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[13, 14]obtained the mesh vertices features from the point cloud and used K-means 
to cluster gentle and discontinuous regions semi-automatically. This approach exhibits 
high computational requirements, and its efficacy depends on the acquired mesh quality 
(e.g., a point cloud with high morphological complexity will result in incorrect and 
distorted polygonal surfaces) and easy-to- neglect small features[12]. The region 65 

growing methods choose seed points randomly and expand the region by including 
neighboring points that satisfy predetermined criteria[15]. It has significant advantages 
in reducing computation time compared to the K-means method but still requires 90% 
of time to calculate millions of vertices features. Besides, supervised deep learning 
method such as Artificial Neural Networks (ANN) is considered in extracting rock 70 

discontinuities[16], which is less effective for heritage due to the uniqueness of each 
pattern’s features (such as color, shape complexity, and curvature) across different cases. 

It should be noted that rock discontinuity identification and texture extraction are 
different in at least two aspects. Firstly, the subtle features along the pattern edges can 
be easily overlooked when dealing with complex global features. Secondly, in contrast 75 

with patterns, rocks are typically characterized by planar surfaces and sharp edges, 
resulting in relatively straightforward feature extraction. Whereas patterns in heritage 
are sometimes attached to curved surfaces, making it difficult to extract features 
accurately using methods such as RANSAC and resulting in the wrong discontinuity 
analysis output. To conclude, current discontinuity extraction methods are insufficient 80 

for achieving the semantic interpretation of the given pattern texture in heritage point 
cloud data. Therefore, inspired by[17], we introduce the Genetic Algorithm (GA) to 
address the above issues through global arc fitting. 

1.3 Research objectives 

This paper aims to present an automated method to extract heritage texture and 85 

decorative elements from HDTs, such as 3D high-resolution point clouds or mesh 
models. Three objectives are arranged:  

1. To detect cross-sectional contour nonuniform rational B-splines (NURBS) 
curves; 

2. To apply GA to arc-fitting of NURBS curves; and 90 

3. To extract features using the adapted K-means clustering method and 
DBSCAN method. 

As a result, the input point cloud is segmented into two parts: the continuous and 
smooth base regions (including planes and curved surfaces) and the raised regions that 
are extracted and clustered into object instances. 95 

The main theoretical novelty in the proposed method lies in the sectional-arc 
fitting formulation. The formulation transforms the traditional discontinuous pattern 
analysis into a novel optimization problem solvable by modern computational 
algorithms such as GA. The method proposed in this paper enables the detailed 
semantic interpretation for the semantic enrichment of HDTs. Additionally, the patterns 100 

and decorations extracted from heritage assets through this method hold promise for 



4 
 

further industrial applications in culture and business. 

2 Research methods 

Figure 1 shows the three steps of the proposed method and the required parameters. The 
input to this method is the original point cloud. Firstly, generate sectional contour 105 

NURBS curves. In Step 2, transform NURBS curves into arcs through fitting. And in 
Step 3, partition the unfitted regions and cluster pattern objects. Finally, the output is 
clustered pattern objects at different locations. 

 
Fig. 1. General workflow of the proposed three-step method. 110 

 

2.1 Cross-section contour NURBS curve extraction 

The first step aims to obtain the cross-section contour curves of the input 3D data. First, 
a series of reference planes are determined in the point cloud regarding the 
combinations of the bounding box of the point cloud, resolution (grid size) (e.g., 1 mm), 115 

and slicing directions (e.g., x, y, or z). The input point cloud is then separated into a 
series of point cloud cross-sections according to a threshold distance value (e.g., 1 mm) 
between each point and the given plane. Next, the unstructured points are sequenced 
for generating NURBS curves through the sort along curve plugin in Grasshopper (ver. 
1.0.0007, Rhino). The Nurbs Curve plugin then fits NURBS curves from the sequenced 120 

point lists. The outputs of this step are cross-sectional NURBS curves. 

2.2 Arc fitting using Genetic Algorithm 

The second step targets fitting arcs to the cross-sectional NURBS curves. The arc-fitting 
process is divided into two steps. Firstly, split the NURBS curve into curve segments 
according to the given value n, then generate arc segments based on the endpoints and 125 

midpoints of the curve segments. Secondly, use the Galápagos plugin in Grasshopper 
to complete arc-fitting optimization. The basic principle of Galápagos is GA, which is 
a method that utilizes natural selection to address both constrained and unconstrained 
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optimization problems[18]. The constrained optimization objective is to minimize the 
sum of the mid-point distances between the arcs and the corresponding curve segments, 130 

as shown in Eq. 1. The output of this stage is the fitted arc lists of cross-sections. 
 min Σ𝑖𝑖=0𝑛𝑛 𝐷𝐷𝑖𝑖𝑘𝑘 (1) 

D is the distance between i-th curve segment and i-th arc of cross-section k. After 
optimization, obtained the arc lists of cross-sections. 

2.3 Clustering and classification of extracted patterns 

The objective of the third step is to separate unfitted arcs and cluster unstructured points 135 

into pattern objects. Combined with the given filter criteria (usually the mean or median 
number of D), we separate the imperfect fitting regions (i.e., the slightly raised areas) 
from the cross-section groups, the remaining regions are smooth planes or curved 
surfaces. 

For clustering pattern objects, it is insufficient to obtain only the raised regions 140 

point clouds, as various patterns may exist in different locations within a region, and 
non-pattern sharp edges may become intertwined with the pattern point clouds, leading 
to mixed extraction results among different patterns and non-pattern results. Therefore, 
we utilize K-means, an unsupervised machine learning method, to semi-automatically 
perform secondary classification according to the specific K value = 3, with the 145 

clustering objective as the point surrounding points count. For the 3 clusters, we further 
segment the clusters based on density using DBSCAN to calculate the number of 
clusters that can be formed. The least number of DBSCAN clusters represents the noise 
point group, which is less dense than pattern clusters. To better partition the noise point 
groups, we maintain a consistent searching radius for K-means and eps for DBSCAN. 150 

Next, we apply a second DBSCAN clustering to the filtered point clouds, setting 
the 𝑒𝑒 𝑝𝑝𝑝𝑝 as the fourth neighboring point distanced mean value plus two standard 
deviations[19], and min points as 10. The final result of the third step is well-clustered 
pattern objects. 

2.4 Validation and evaluation 155 

We introduced quantitative validation to evaluate the performance of the algorithm. The 
validation compared the output with manually labeled ground truth at two levels, i.e., 
the point level and the object level. We adopted three evaluation metrics, precision (the 
proportion of points correctly detected by the proposed method), recall (the proportion 
of points identified as edges in the ground truth), and F1-value (the harmonic mean of 160 

the precision and recall, to reflect the algorithm’s accuracy) [20], as shown in Eqs. 2, 3, 
and 4. 

 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =

𝑇𝑇𝑇𝑇
(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹) 

(2) 

 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =

𝑇𝑇𝑇𝑇
(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹) 

(3) 
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𝐹𝐹1 = 2 ×

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ×  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 +  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

 
(4) 

The value TP denotes the number of correctly detected points, while FP represents 
the number of wrongly detected points. FN indicates the false rejections, i.e., points 
belonging to the ground truth but not detected by the edge extraction technique. 165 

3 Case study and results 

3.1 Case selection 

This paper employed two cases, as shown in Fig 2, to preliminarily validate the efficacy 
of the method. The first case was the commemorative plaque texture of Guangtong 
Association Hall, of which the input was a high-resolution 3D point cloud. The other 170 

case was the No. 0158 bronze drum’s deformed feathered human pattern, which was a 
high-resolution mesh model from the Anthropology Museum of Guangxi, Nanning, 
China. These two cases are representative of their respective scales and exhibit different 
pattern characteristics (i.e., one is discretely distributed and the other arranged 
centripetally). Therefore, they are suitable for exploring the feasibility of the algorithm 175 

in scenarios with different pattern distributions. 
In Fig 2a, Guangtong Association Hall in Lechang, Guangdong, China consists of 

various building sections, including a porch, foyer, main hall, wing rooms, corridors, a 
theater building, and a courtyard. The hall’s doors, windows, beams, and pillars are 
decorated with intricate and detailed patterns that hold significant symbolic meanings. 180 

We selected the hall’s commemorative plaque as the experimental example since it 
contains the title of Guangtong Association Hall. The point cloud includes 142,953 
points, with bounding box size x: 3955mm, y: 202mm, z: 918mm. 

Bronze drums are significant archaeological artifacts found in southern China and 
Southeast Asia, with scattered discoveries from the Yangtze River of China to the 185 

Indonesian islands[21]. The decorative elements of bronze drums reflected the 
manufacturer’s purpose, era, affiliated ethnic groups, and artistic expression of the 
drums[8], which are thought to be linked to the totemic worship traditions of various 
ethnic groups, such as the Karen, Zhuang, Wa, and others, which developed over time. 
We chose bronze drum No. 0158 for testing and performed point sampling (999,900 190 

points, with bounding box size x: 619mm, y: 647mm, z: 25mm) of the face mesh. Fig 
2b illustrates the selected example. 

3.2 Experimental settings 

The proposed method was tested using an AMD Ryzen 9 5900HS computer with 
Radeon Graphics 3.30 GHz and 32 GB RAM. The slicing direction of the experimental 195 

object was determined based on its geometric shape. For instance, for the 
commemorative plaque, the slicing direction and grid sizes were set as XY, XZ planes, 
and 500 planes in each direction; while for the drum, they were set as XZ, YZ planes, 
and 500 planes in each direction. We selected parallel lines on the corresponding section 
planes as reference curves to sort the section point cloud. In addition, the generated 200 
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cross-sectional NURBS curves were curves with sharp changes in curvature instead of 
smooth curves. This was because the given surface of the point cloud produced slight 
undulations on the smooth surface due to the unavoidable quality problem of the 
collected data, which would not influence the texture extraction results since we 
introduced the arc-fitting procedure. 205 

Following the establishment of the objective and automatic value range for 
Galápagos (0-100 curve segments number), 100 iterations were performed to obtain 
the final convergent solution arc-curve lists for all cross-sections. For the drum, the 
most appropriate segment number was 100, while for the commemorative plaque, it 
was 98. The progress of GA effectively separated the imperfect fitting surfaces, i.e., the 210 

slightly undulating point cloud regions. Thereafter, we filtered the noise points using 
K-means and DBSCAN; the search radius was set as 90mm for the commemorative 
plaque and 7mm for the drum. 

 

Fig. 2. The original point cloud and mesh model of two test cases. (a) The commemorative plaque of 215 

Guangtong Association Hall; (b) No. 0158 bronze drum’s deformed feathered human pattern. 
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Fig. 3. The pattern extraction results of two experiment objects. (a) The commemorative plaque texture of 

Guangtong Association Hall; (b) No. 0158 bronze drum’s face texture. 

3.3 Results of extracted patterns 220 

Fig 3 shows the pattern extraction results from the two cases. The upper sub-charts 
display the cross-sectional NURBS curves, with one example curve highlighted in each 
sub-chart. The bottom sub-charts demonstrate the clustered pattern objects of two 
example cases. One can distinguish the object-level clusters with colors in the bottom 
charts from the points and curves at lower levels during the processing. 225 

Fig 3a presents the commemorative plaque texture of Guangtong Association Hall; 
the word pattern clustering was well obtained. Whereas drum circular patterns in Fig 
3b were fragmented, except for the sunburst at the center. The clustering result of the 
drum was slightly inferior compared to the commemorative plaque. This is related to 
the production age, excavation from underground, and lack of maintenance, resulting 230 

in excessive noise (e.g., drum face broken and rusted) and the circular and centripetal 
distribution of the drum pattern. 

Overall, the extraction of point-level patterns was satisfactory, and the clustering 
results of object- level patterns were good in the case of discrete patterns. However, 
noise and variations in pattern distribution probably impacted the accuracy of pattern 235 

cluster results. 

3.4 Evaluation using error metrics 

Table 3.4. The validation results at Point-level and Object-level 

 Point-level accuracy  Object-level accuracy 

 Precision Recall F1  Precision Recall F1 

Guangtong 93.05% 97.91% 95.42%  91.70% 98.90% 95.16% 

0158 Drum 83.00% 99.79% 90.62%  82.26% 100.00% 90.27% 
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Table 3.4 lists the evaluation results of two cases in Fig 3. The mean precision at the 240 

point level for the experimental participants was 87.88%, while the recall was 98.85%, 
and F1 was 92.99%. The instance level precision was 86.85%, with a recall = 99.45%, 
F1 = 92.68%. According to the values of unbiased metric F1, the proposed GA-based 
method was highly effective. In addition, the method was shown feasible and stable in 
extracting taller objects like words as well as insignificant patterns on the drum. Yet, 245 

the precision values of extracting insignificant patterns were considerably lower (for 
about 10%), according to Table 3.4. 

4 Discussion and Conclusion 

Heritage Digital Twins (HDT) as a method of documenting and preserving heritage 
under new technological developments, complements the digital information of smart 250 

construction. The detection of decorative patterns is a necessary complement to HDT, 
as these patterns serve as a link to confirm the conservation status of heritage objects 
and possess significant academic, artistic, and commercial value. Pattern texture 
extraction from point clouds can be regarded as discontinuity detection of point clouds. 
However, current point cloud discontinuity methods tend to ignore small undulating 255 

edges when encountering complex point cloud shapes and have difficulty extracting 
textures on curved building shapes. Therefore, the proposed method in this paper aims 
to extract cross-sectional contour lines of the point cloud at the given directions, uses 
GA to fit the NURBS curve into arcs, separates imperfectly fitted regions, and 
reclassifies them to find slightly undulating pattern edges in the point cloud. Two 260 

examples are given in this paper to quantitatively evaluate the feasibility of our method 
for finding pattern texture edges in point clouds based on accuracy and recall. Our 
contributions can be summarized in three aspects: (1) the proposed Genetic Algorithm-
based contour edge extraction; (2) edge extraction applicable to small edges and corners, 
and (3) avoiding geometric feature calculation for point clouds. The results can provide 265 

object-level patterns semantic interpretation for fields such as HDT, BIM, HBIM, 
heritage protection, and Scan-to-BIM. 

There are limitations in the method presented in this paper. First, the current 
method can only be applied to the raised patterns on a single plane. The reference curve 
obtained from the bounding box of the point cloud cannot be utilized for determining 270 

the point order of cross-sections in cases of complex geometric shapes (i.e., exhibit 
varied orientations and edges), resulting in confusing NURBS curves and inaccurate 
fitting results. A possible solution is using the Alpha shape, often used to generalize 
bounding polygons containing sets of points according to a given alpha value. Thus, it 
can adjust the point order of complex geometric point cloud cross-sections. Besides, 275 

the current method mainly considers the geometric features of the point cloud; for point 
clouds with color (R, G, and B) attributes, the color difference can also be exploited to 
improve the accuracy of pattern extraction. Finally, the computational tests exhibited a 
slow computational performance due to the single-threaded computing and inefficient 
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data structure in Grasshopper (Galápagos) for handling 3D point cloud data. The GA 280 

itself consumes an ignorable portion of the computer resources. Therefore, Grasshopper 
is unsuitable for processing large-scale points, though it is sufficient for proof-of-
concept of extracting patterns within a given local range in this paper. 

For future research directions, we suggest improving the extraction method of the 
contour curve first. It is also interesting to incorporate other features, such as colors and 285 

normals, into GA’s multiple objectives to formulate a multi-objective optimization, 
which might improve the performance of the algorithm. To enhance the computational 
efficiency of the proposed method, a program incorporating advanced point clouds data 
structures (e.g., k-d tree, voxel, and supervoxel), along with CPU concurrency and GPU 
computation, will be implemented in Python and C++ to replace the existing 290 

Grasshopper-based program. 
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