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Abstract

Compact building models are demanded by global smart city applications, while high-definition ur-

ban 3D data is increasingly accessible by dint of the advanced reality capture technologies. Yet, 

existing building reconstruction methods encounter crucial bottlenecks against high-definition data of 

large scales and high-level complexity, particularly in high-density urban scenes. This paper proposes 

a Building Section Skeleton (BSS) to reflect a rchitectural d esign p rinciples a bout p arallelism and 

symmetries. A BSS atom describes a pair of intrinsic parallel or symmetric points; a BSS segment 

clusters dense BSS atoms of a pair of symmetric surfaces; the polyhedra of all BSS segments fur-

ther echo the architectural forms and reconstructability. To prove the concepts of BSS for automatic 

compact reconstruction, this paper presents a BSS method for building reconstruction that consists 

of one stage of BSS segments hypothesizing and another stage of BSS segments merging. Experi-

ments and comparisons with four state-of-the-art methods have been conducted on 15 diverse scenes 

encompassing more than 60 buildings. Results confirmed t hat t he B SS m ethod a chieves frontiers 

in compactness, robustness, geometric accuracy, and efficiency, simultaneously, especially for high-

density urban scenes. On average, the BSS method reconstructed each scene into 623 triangles with 

a root-mean-square deviation (RMSD) of 0.82 m, completing the process in 110 seconds. First, the 

proposed BSS is an expressive 3D feature reflecting architectural designs in high-density cities, and 

can open new avenues to city modeling and other urban remote sensing and photogrammetry studies. 

Second, for practitioners in smart city development, the BSS method for building reconstruction of-

fers an accurate and efficient approach to compact building and city mo deling. The source code and 

tested scenes are available at https://github.com/eiiijiiiy/sobss.
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high-density urban scenes
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Highlights

• Building Section Skeleton (BSS) is proposed with novel definitions of BSS atoms and segments.

• BSS revamps traditional shape skeletons to reflect architectural design principles about paral-

lelism and symmetry.

• A BSS method consisting of two stages is developed for compact building reconstruction from

urban point clouds.

• The BSS method of reconstruction was confirmed compact, robust, geometrically accurate, and

efficient.



1. Introduction

The global smart and sustainable city development has given rise to a growing demand for 3D

building and city models with higher levels of details (LoD) in both geometry and semantics (Batty,

2013; Acuto, 2016). 3D building and city models enable novel environmental assessments (Rodrı́guez

et al., 2017; Li et al., 2022b), simulations (Malhotra et al., 2022; Stoter et al., 2020), and analy-

ses (Xue et al., 2020; Labetski et al., 2022) in the fields such as urban planning, sustainable energy

management, and urban resilience. Reality capture techniques, such as Light Detection And Ranging

(LiDAR) and photogrammetry, are popular urban remote sensing tools in acquiring the 3D data of

buildings and cities, by dint of their strong advantages in scanning speeds and densities (Colomina

and Molina, 2014; Bisheng et al., 2017). However, the acquired high-density point clouds or meshes

are usually of huge volume, have a variety of defects, and lack semantics (Berger et al., 2017). There-

fore, building reconstruction that processes the unstructured point clouds into accurate and compact

building and city models is critical to leverage the advanced data acquisitions for smart and sustain-

able city applications.

Automatic building reconstruction in the literature has evolved along with the advancement of re-

ality capture (Haala and Kada, 2010; Xia et al., 2020). When sparse airborne point clouds were avail-

able at the urban scale in 2000s, researchers paid more attention to reconstructing simple prismatic

building models approximately at LoD1 in CityGML (Zhang et al., 2006; Du et al., 2019). When

slightly denser airborne data of building rooftops was available in 2010s, great efforts were taken to

reconstruct major roof structures with the vertical extrusions of footprints as facades (Xiong et al.,

2015; Li and Shan, 2022). In recent years, realistic 3D building surfaces, in the form of dense point

clouds or meshes covering both building roofs and facades, become prevalent (Kölle et al., 2021). On

top of the higher-quality input, researchers began to reconstruct buildings with more detailed roofs,

facades, and projections (Li et al., 2016; Nan and Wonka, 2017).

The existing methods of detailed building reconstruction can generate compact building models

efficiently for small and simple urban scenes but still face crucial bottlenecks of accuracy, compact-

ness, and efficiency when applied in larger and more complex scenarios. Typically, these compact

reconstruction methods coordinate their pipeline based on a single type of geometric primitives,

which can be categorized into plane-based (Nan and Wonka, 2017; Bauchet and Lafarge, 2020),

edge-based (Langlois et al., 2019; He et al., 2021), contour-based (Song et al., 2015, 2020), and

triangle-based methods (Li and Nan, 2021; Salinas et al., 2015). These methods follow a similar

pipeline containing two steps. The first step detects the basic geometric primitives and partitions

them into candidates; and the other step selects and assembles the candidates into a compact mesh.
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The plane-based methods primarily depend on local planar structures, i.e., face intersection and ad-

jacency, to reconstruct watertight surfaces effectively (Nan and Wonka, 2017; Bauchet and Lafarge,

2020), though encountering limitations when handling missing and noisy planes. Meanwhile, global

features, such as parallelism and symmetry, are employed as regularities to refine the positions and

orientations of geometric primitives (Zhou and Neumann, 2012; Verdie et al., 2015). But other poten-

tial utility of parallelism and symmetry as global structures, encompassing the internal composition

and arrangement of geometric primitives to form volumes, remains largely untapped.

This paper aims to integrate the global structures, with a focus on the intrinsic symmetry of build-

ings and shape skeletons, in compact building reconstruction. A shape skeleton is a versatile and

compact representation (Li et al., 2015; Sun et al., 2015) that captures the intrinsic symmetry and

structure of a shape, encodes both adjacent and non-adjacent components, and serves as interme-

diations for compact reconstruction (Tagliasacchi et al., 2016; Saha et al., 2016). However, native

shape skeletons are mainly defined for the general shapes with curved surfaces and even tubular

shapes (Blum, 1967; Livny et al., 2010). Consequently, the perceived symmetry of rectangles, es-

pecially for corners and edges incident by orthogonal planar components, is poorly reflected by the

native skeletons (Giblin and Brassett, 1985).

This paper extends the definition of skeletons for reflecting buildings’ global structures in terms

of architectural symmetry and parallelism. A method of building reconstruction can then be further

developed based on this skeleton. The global structures enable our method to reconstruct buildings

from low-rise, low-density scenes, e.g., a bungalow, to high-rise, high-density scenes, e.g., a complex

city block. The global structures of individual buildings and city blocks can also lead the method to

the compactness and completeness in the results of reconstruction. The contributions of this paper

can be summarized into two aspects:

• A novel Building Section Skeleton (BSS) theory. BSS reflects the general global structures

of urban buildings using two new concepts at atom and segment levels. BSS atoms capture

the global structures at the point level, while BSS segments group BSS atoms and compactly

parameterize the symmetry, parallelism, and orthogonality at the plane level. As a result, the

proposed BSS theory equips the established plane-based building reconstruction in literature

with global structures, leading to higher robustness and compactness in complex urban scenes.

• A new BSS method for compact building reconstruction. The method consists of two stages.

Stage 1 extracts BSS atoms from the input point clouds and proposes a dense candidate set of

BSS segments. Stage 2 employs integer programming to merge the candidate BSS segments for

accuracy and compactness. Meanwhile, our implementation of the BSS method has also been
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released as open-source code to facilitate the research and practice of building reconstruction

and smart city development.

2. Literature review

2.1. Building reconstruction from reality capture data

Based on the geometric primitives driving the pipeline, existing building reconstruction methods

can be categorized into four categories: (i) plane-based, (ii) edge-based, (iii) contour-based, and (iv)

triangle-based.

Plane-based methods. A typical pipeline of plane-based methods (Li et al., 2016; Nan and Wonka,

2017; Bouzas et al., 2020; Wang et al., 2020; Xie et al., 2021; Yang et al., 2022; Chen et al., 2022;

Bauchet and Lafarge, 2020) takes the initial planes detected by RANSAC (Schnabel et al., 2007)

or region growing (Gatzke and Grimm, 2006; Lafarge and Mallet, 2012) as inputs first. Then, the

pipeline assembles the input planes through two key steps: (1) candidate plane or 3D cell partitioning,

and (2) candidate selection. With a complete set of accurate initial planes, plane-based methods can

further fairly hypothesize and select the candidates (Li et al., 2016; Nan and Wonka, 2017; Bauchet

and Lafarge, 2020).

However, the quality and completeness of initial planes can be compromised, particularly when

dealing with noisy or incomplete point clouds that disrupt the assumption of face adjacency. Users

need to carefully tune the parameters in the plane detection to reduce the missing and noisy planes.

This issue is particularly evident in the cases of pencil towers (tall buildings with small footprints),

podiums, and low-rise buildings situated between high-rise buildings when reconstructing high-rise,

high-density scenes. Their 3D point clouds could be noisy or sparse due to the severe occlusions.

Besides, their main structures are smaller and more likely to be ignored in plane detection. To resolve

this issue, one approach is to detect a greater number of initial planes to ensure the completeness

and accuracy, at the expense of reconstruction time and model complexity. Another approach was

presented in the work by Yu and Lafarge (2022), where an efficient exploration mechanism was

designed based on an energy function to refine the input planes. However, a significant amount of

additional computational time is still a downside of this refinement.

Edge-based methods. In edge-based methods (Langlois et al., 2019; He et al., 2021), 3D segments are

first extracted from images. Planes or cuboids are then detected from the segments and optimized into

the final models. However, edge-based reconstruction still struggles with its efficiency bottleneck.
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Contour-based methods. Furthermore, contour-based methods (Song et al., 2015, 2020) extract hor-

izontal contours from point clouds and then cluster and connect the contours based on their locations

and 2D shapes. The contour clusters are then fitted with planar and non-planar primitives to assemble

the whole building model. The methods were mainly designed for buildings with irregular shapes.

Triangle-based methods. These methods (Li and Nan, 2021; Salinas et al., 2015), usually termed

mesh simplification, smooth the planar regions of meshes and collapse the triangular edges to re-

duce the primitive numbers of a model while preserving shape corners and edges. However, the

computational complexity of the region refinement is the square of the number of segmented regions.

Therefore, the computation may grow fast when applied the methods to reconstruct large and complex

urban scenes. Moreover, there is no clear mechanism in the existing methods to recover or complete

the missing parts of the input data.

Motivation to integrate global structures in building reconstruction. Although the face adjacency

utilized by previous methods present effectiveness and generality in building reconstruction, methods

relying on face adjacency only can still suffer from crucial bottlenecks when applied to more complex

urban scenes. Global features, such as parallelism (Zhou and Neumann, 2012) and symmetry (Xue

et al., 2019; Wu et al., 2021), are dominating regularities in architecture and turn to be useful and gen-

eral assumptions. Parallel vertical planes serve as a fundamental form to organize space and distribute

the structural forces of architecture (Ching, 2023). In high-density cities, buildings are always ori-

ented to the streets or squares to maintain the harmony among their neighborhoods (TCC, 2013) or for

thermal comfort (PlanD, 2022), which also populates the presence of parallel facades. Meanwhile,

typical roof types, such as gable, hip, pyramid, and their combinations, are composed of inclined

planes that are symmetric (Henn et al., 2013; Xiong et al., 2015; Zhang et al., 2021; Li et al., 2022a).

In literature, parallelism and symmetry are mainly used as regularities to refine the positions and ori-

entations of primitives (Verdie et al., 2015; Nan and Wonka, 2017). The extensive potential utility of

parallelism and symmetry as global structures, specifically in terms of the internal composition and

arrangement of geometric primitives to form volumes, has yet to be fully explored. Therefore, this

paper aims to integrate global structures based on the intrinsic symmetry and parallelism into building

reconstruction with the concept of shape skeleton.

2.2. Skeletonization of shapes

A shape skeleton, referring to the shape’s intrinsic medial axes and surfaces, jointly describes the

geometry, topology, and symmetry (Tagliasacchi et al., 2016; Saha et al., 2016). In computer graphics,

skeletons with a range of desirable properties have been proven especially useful for many classic
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tasks, including reconstruction, segmentation, matching, and retrieval (Tagliasacchi et al., 2016; Saha

et al., 2016). Even in the context of urban reconstruction, skeletons have also served as effective

intermediate representations for tree modeling and synthesis (Bucksch and Lindenbergh, 2008; Livny

et al., 2010; Bremer et al., 2013; Xia et al., 2020).

Definitions of shape skeletons. Shape skeletons have been defined at the atom level from four well-

established perspectives, deriving various skeletonization methods (Tagliasacchi et al., 2016). A

skeleton can be defined as the centers and radii of all the maximal inscribed balls (MIBs) of a

shape (Blum, 1967). Corresponding skeletonization was implemented by searching or predicting

these MIBs (Ma et al., 2012; Jalba et al., 2012; Rebain et al., 2019). Another definition is Maxwell

set - for each point of a skeleton, there are at least two closest points on the shape boundary (Mather,

1983). This inspires methods (Dey and Zhao, 2002; Tagliasacchi et al., 2012; Li et al., 2015; Sun

et al., 2015; Yan et al., 2018; Dou et al., 2022) to take vertices of the Voronoi cells generated from

the sampled points of shape boundaries as initial skeleton points (Amenta and Bern, 1998). Skeletons

have also been defined as symmetry sets, in which each point is bi-tangent to the shape boundary (Gib-

lin and Brassett, 1985). Symmetry-based skeletonization was mainly implemented for tubular shapes

by estimating and connecting their rotational symmetry axes as skeletons (Tagliasacchi et al., 2009;

Livny et al., 2010). Another alternative definition is the so-called grassfire analogy, which shrinks the

shape boundary towards the interior of the shape to form the skeleton. The grassfire analogy defini-

tion led to the skeletonization via topology-preserving distance transform or shape thinning (Arcelli

et al., 2010).

Skeleton simplification and compact surface reconstruction. Nevertheless, skeletonizing noisy data

based on the exact definitions can result in redundant and unstable skeletons (Attali et al., 2009; Sun

et al., 2015). Therefore, skeleton simplification is required, in particular for compact building re-

construction focused on in this paper. Exact reconstruction from non-simplified skeletons through

reverse distance transform or MIB union produces too many voxels or mesh patches despite high ac-

curacy (Arcelli et al., 2010; Ma et al., 2012; Rebain et al., 2019; Jalba et al., 2012, 2015). While exact

reconstruction on reduced skeletons such as curved skeletons sacrifices too much accuracy (Arcelli

et al., 2010). So far, to the best of our knowledge, only approximate reconstruction from approxi-

mate skeletons simultaneously guarantees accuracy and compactness. The core idea is to represent

the subsets of a skeleton, so-called skeleton segments, as parametric curves or surface sheets and ap-

proximate shapes with geometric primitives estimated from the parameters of skeleton segments. The

primitives used in literature include general cylinders (Tagliasacchi et al., 2009; Livny et al., 2010),

cones, and slabs (Li et al., 2015; Sun et al., 2015; Lin et al., 2021; Dou et al., 2022). Furthermore, the
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approximation errors can in return guide skeleton simplification (Li et al., 2015; Sun et al., 2015; Lin

et al., 2021; Dou et al., 2022).

Problems to apply native skeletons in building reconstruction. The existing definitions and skele-

tonization of general shapes cannot reflect the shape structures of buildings effectively for accurate and

compact reconstruction. The theoretical issue underlying is that native skeleton definitions ‘poorly

reflect the perceived symmetry of rectangular shapes’ (Giblin and Brassett, 1985), while cuboid is the

most dominating geometric primitive of buildings. Skeletonization based on these definitions pro-

duces inclined curves or surfaces of skeletons for the corners or edges of rectangular/cuboid shapes.

Except for pruning these parts of skeletons or approximating the corners and edges by curved surfaces,

compact representation of skeletons and corresponding shape approximation regarding the rectangu-

lar/cuboid shapes are still lacking. Therefore, this paper aims to extend the definition of skeletons to

reflect the intrinsic global symmetry, parallelism, and orthogonality of buildings to facilitate building

reconstruction.

3. The proposed Building Section Skeleton (BSS)

This section presents a novel BSS that revamps traditional shape skeletons to capture parallelism

and symmetry in architectural designs commonly seen in urban areas. BSS first introduces a defi-

nition at the atom level in Sect. 3.1. The set of closely related BSS atoms is further clustered into

BSS segments in Sect. 3.2 to form a compact skeleton representation, of which the corresponding

polyhedra and reconstructability drive the task of compact 3D reconstruction in Sect. 3.3.

3.1. Atoms of BSS

The definition of BSS atoms follows the logic of the classical definition by Blum (1967). Ac-

cording to Blum (1967), a skeleton can be defined as the centers and radii of all the shape’s maximal

inscribed balls (MIBs). Each ball, with its center and radius, is an atom of the skeleton. The first

column in Table 1 presents the corresponding skeletons and some MIBs. The corners and turns of 2D

shapes are reflected by the inclined or curved skeleton segments, which are inconsistent with the per-

ceived symmetry of rectangular shapes (Giblin and Brassett, 1985). However, such corners and turns

are everywhere in the buildings and urban blocks with rich rectangular, cuboid, and inclined shapes.

Meanwhile, the continuously changing radii along the skeleton segment are expensive to record in or-

der to recover or reconstruct buildings and urban blocks compactly. To resolve these issues, this paper

removes the inscription requirement of the ball and defines the BSS atoms to locate at the symmetric

planes of buildings, i.e., the straight symmetric axes of 2D footprints in Table 1.
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Table 1: Comparison between the MIB-based skeleton and Building Section Skeleton (BSS) of building footprints.

MIB-based skeleton BSS

Full skeleton Segment Full skeleton Segment

l ≈ 17.14 l = 13

l = 24 l = 12

l ≈ 21.169 l = 16

l ≈ 24.423 l = 20

l ≈ 27.314 l ≈ 17.657
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Figure 1: Illustration of 3D BSS. (a) Input shape; (b)-(d) The section graphs of BSS atoms in (a); (e)-(g) The BSS segments

of the cuboid, triangular prism, and trapezoidal prism in (a); (h)-(j) Corresponding polyhedra of the BSS segments in (e)-

(g); and (k) The shape segmentation and reconstruction based on BSS segments.
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Figure 2: Illustration of how BSS atoms preserve local shape convexity by Cond. 3 of Def. 3.1. (a) and (b) satisfy Cond. 3

while (c) doesn’t.
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Definition 3.1. Given a shape O bounded by O, a BSS atom a = (x, y, z, r) associates to a ball B

bounded by B. B is centered at (x, y, z) with a radius of r. ∃p1,p2 ∈ O ∩ B,p1 , p2, satisfy the

following conditions:

1. nB(p1) = nO(p1), nB(p2) = nO(p2);

2. nB(p1)v = nB(p2)v ≥ 0 , nB(p1)h = −nB(p2)h; and

3. Let l = {p′|p′ = p1 + λ
−−−→p1p2, 0 ≤ λ ≤ 1}. O ∩ l = {p1,p2} or l.

In Cond. 1, nB(p1) and nO(p1) represent the normals of p1 tangent at the boundary of B and O,

respectively. Note that the 3D normals in this paper are of unit lengths. In Cond. 2, nB(p1)v and

nB(p1)h are the vertical and horizontal components of nB(p1), respectively. We also constrain the

nB(p1)v to be non-negative, since negative nB(p1)v is rare in common building shapes. Note that the

vertical component is a real number, while the horizontal one is a 2D vector. In Cond. 3, l is a segment

connecting p1 and p2. This condition is defined to maintain the local convexity of shapes. The first

two conditions are illustrated in Fig. 1(a)-(d). Positive and negative examples of Cond. 3 are presented

in Fig. 2.

As shown in the last two columns of Table 1, BSS is more intuitive and simpler than MIB-based

skeletons for building footprints. BSS can also resolve the issues of complex polylines and curves in

MIB-based segments. Furthermore, BSS is much more efficient in terms of length, i.e., l in Table 1.

For example, the MIB-based skeletons of building footprints are considerable, i.e., 22-100%, longer

than the proposed BSS ones. This shows that fewer atoms are required for BSS than MIB-based

skeleton when we use the skeleton atoms at a given interval to represent or store a skeleton, indicating

that BSS is a more compact skeletal representation for buildings.

3.2. Segments of BSS

Generally, a BSS segment is a set of spatially connected BSS atoms located at the vertical sym-

metric planes of a pair of planar segments of buildings (Fig. 1(e) - (g)). On the 2D footprints, a BSS

segment is the straight symmetric axis of a pair of parallel segments on the building footprints, as

shown in the last two columns of Table 1. Table 1 also compares the segments of MIB-based skeleton

and BSS. The segments of MIB-based skeletons induce fragmented segmentation of building foot-

prints, while the segments of BSS partition the footprints into larger parts that reflect the perceived

global structures of buildings.

In the 3D cases, let one of the plane normals of a pair of symmetric planar segments be n, and its

horizontal and vertical component be nh and nv. The ball of a BSS atom locating on their symmetric

plane is tangent to the two planes with normals of (nh
,nv) and (−nh

,nv). The formal definition of a

BSS segment can be written as:
10



Definition 3.2. Given a pair of planar segments of the shape boundary, their symmetric plane is

vertical. The normals of the two planar segments are (nh
,nv) and (−nh

,nv). Assume any point on

either planar segments can be paired with one point on the other plane to form a BSS atom. The BSS

segment of the planar segments is a set of BSS atoms S′ = {a = (x, y, z, r)}.

1. The atoms are spatially connected; and

2. The balls of the atoms are tangent at the given planar segments with normals (nh
,nv) and

(−nh
,nv).

Based on Def. 3.2, when the two planar segments are vertical, the BSS atoms should share a

same radius r which is half of the distance between the two planes. However, when the symmetric

planar segments are inclined, the radii of BSS atoms decrease as the z-coordinates of the ball centers

increase. We suggest a new parameter zi shared by the BSS atoms in this case. That is the z-coordinate

of the line where the two planes intersect, named intersection elevation in the following. Given a BSS

atom (x, y, z, r) and nv, it could be easily calculated as z + r/nv. Visual illustrations of BSS segments

are shown in Fig. 1(e)-(g). A lemma about the shared parameters of BSS segments can be induced as:

Lemma 3.1. Given a BSS segment of a pair of planar segments,

1. If the two planar segments are vertical, i.e., nv
= 0, the atoms of the BSS segment share a same

radius r = d/2 where d is the distance between the two planar segments;

2. Otherwise, i.e., nv , 0, the atoms share a same intersection elevation zi = z + r/nv where z and

r are the average z-coordinate and radius of the BSS atoms.

If we use G to denote the polygon bounding the BSS atoms of a BSS segment, a BSS segment

can be further parameterized as b = (G,nh
,nv
, r) for vertical symmetric planes or b = (G,nh

,nv
, zi)

for non-vertical ones. As shown in Fig. 1(j), for a BSS segment of vertical planes, its G can be

extruded along n and −n respectively by r to construct a cuboid whose front and back faces are the

corresponding vertical planes of the shape boundary. Similarly, for a BSS segment of non-vertical

planes (Fig. 1(h) and (i)), the vertices of G can be back-projected along n and −n to recover the front

and back faces of its polyhedron. The other faces can be constructed by connecting the vertices of

the front and back faces. Therefore, the polyhedron of b = (G,nh
,nv
, zi) is a triangular or trapezoidal

prism. The polyhedron of a BSS segment will be denoted as P in the following.

3.3. Building reconstructibility of BSS

By reflecting the intrinsic symmetry, parallelism, and orthogonality of buildings, BSS segments

present promising potentials to motivate building reconstruction by equipping planar segments with
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global structures. According to Def. 3.2 and Lemma 3.1, a BSS segment captures a pair of planar

segments, corresponds to a polyhedron covered by the shape O, and approximates some parts of the

shape boundary (Fig. 1(k)).

BSS is applicable to the surface reconstruction of buildings that are dominated by parallel vertical

facades and symmetric inclined roofs discussed in Sect. 2.1. BSS equips the global structures to planes

based on parallelism and symmetry, which will enhance the robustness of building reconstruction

along with the effective face adjacency. Specifically, each BSS segment captures the two parallel or

symmetric planar segments that could be non-adjacent. A BSS segment also induces a polyhedron

occupying the interior of buildings, which can be used to validate and guarantee the completeness

of building reconstruction. Hence, the inclusion of global structures in the BSS method can serve

as a complement to face adjacency, thereby enhancing the robustness of building reconstruction and

offering a novel perspective for the advancement of compact building reconstruction.

4. A BSS method for compact building reconstruction

4.1. Overview

The BSS segment and its approximation of shape surfaces drive our method design for large-scale

compact building reconstruction, as shown in Fig. 3. The input is an oriented point cloud which can

be of different scales and complexity, i.e., covering one single building or a high-density street block,

and the output is a compact polygon mesh, which is composed of watertight 2D manifolds.

Our method adopts the hypothesizing strategy commonly used in the plane-based building recon-

struction (Li et al., 2016; Nan and Wonka, 2017) and frames the pipeline in Fig. 3 into two stages.

Stage 1 skeletonizes the point cloud into BSS atoms according to Def. 3.1. Then, the atoms are

projected onto 2D vertical planes and coarsely segmented into candidate BSS segments. The cor-

responding polyhedra of the candidate BSS segments fit the given point cloud densely and tightly.

To further reconstruct a compact mesh in Stage 2, an integer programming model is formulated and

solved to merge the candidate BSS segments while maintaining a minimal geometric deviation. The

final mesh is then generated as 2D manifolds by performing union operations on the volumes of BSS

segments.

4.2. Stage 1: Generating BSS segment candidates

4.2.1. Skeletonization

BSS atoms are extracted by pairing non-horizontal points with normals. To streamline the proof

of concept, the BSS method assumes that an input has only one pair of orthogonal horizontal orienta-

tions, and extracts the BSS atoms of one single primary orientation. Because orthogonal surfaces are
12
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Figure 3: Overview of the building reconstruction based on BSS. (a) Input point cloud; (b) BSS atoms of the primary

orientation; (c) and (d) Candidate and merged BSS segments with their corresponding polyhedra; and (e) Output compact

mesh.

(a) (b)

x y

z

Point with nh < 0

Point with nh > 0

BSS atoms

z

y

x

Figure 4: Skeletonization along the primary orientation. (a) Input point cloud; (b) Preserved points of the primary

orientation (in light and dark gray) and the skeletonized BSS atoms (in magenta), where the primary orientation is aligned

with the positive direction of y-axis.

covered with duplication by the induced shape boundary of orthogonal BSS segments, as illustrated

in Rows 1, 3, and 4 of Table 1. Horizontal points are filtered out from the input point cloud based

on the given threshold on the vertical angle of normals. Next, the primary orientation is voted as the

most frequent horizontal orientations among the normals of the remaining points. Note that all the

orientations are converted within the range [−π/2, π/2) and the opposite orientations are equivalent

in the voting. The method then preserves the points facing and opposite to the primary orientation

only for the following skeletonization. The remaining points are then rotated to align the primary

orientation to the positive direction of y-axis (Fig. 4(b)) and voxelized. After rotation, the horizontal

components of normals nh ∈ [−1, 1] are real numbers rather than 2D vectors, which are also attached

to each occupied voxel. For each occupied voxel with nh, our method searches along a ray pointing to

the opposite horizontal direction of nh to find the nearest voxel with −nh and computes the locations

and radii according to Def. 3.1.

13
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x

y
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Figure 5: Illustration of coarse BSS segmentation taking the BSS atoms in Fig. 4 as input. (a) Three atom groups after

binning, with labels (1) to (3); (b) Projected binary images of atom groups, and the binary image with label (2) is clipped

into two rectangles; (c) Corresponding polyhedra of four BSS segment candidates.

4.2.2. Coarse BSS segmentation

BSS segment candidates are proposed by grouping the spatially connected BSS atoms with close

parameters. Note that the shapes of BSS segments are not limited to rectangles in Def. 3.2. However,

for the sake of simplicity, this paper assumes the BSS atom groups can be decomposed into a set of

rectangles. As illustrated in Fig. 5 (a), we bin the BSS atoms based on their y-coordinates, normals’

horizontal components nh, radii r, and intersection elevations zi with certain intervals, resulting in

atom groups that resemble ‘3D sheets’. Atoms on each sheet are projected onto a vertical plane to

generate a binary image as shown in Fig. 5 (b), followed by morphological operations to fill in the

holes and smooth out the zigzag boundaries. Rectangles are segmented from the binary image by

iteratively clipping along the rows or columns with maximal average gradients. For each rectangle,

we then take the average nh and r (for vertical planes) or nh and zi (for inclined planes) to form a

BSS segment candidate and its corresponding polyhedron (Fig. 5 (c)). This step involves one major

parameter, the distance interval of segmentation δseg, to control the LoD of reconstruction and one

minor parameter, the angular interval θseg, to separate the BSS atoms with different inclined slopes.

4.3. Stage 2: Merging BSS segments

Stage 2 formulates an integer programming (IP) model to find out the optimum pairs of BSS

segments and their polyhedra to merge. Given a set of BSS segment candidates B = {bi|1 ≤ i ≤ N}

of size N, the Boolean variables of all the possible pairs areM = {mi j|1 ≤ i, j ≤ N, i , j}, where mi j

denotes whether bi is merged into b j (i.e., mi j = 1) or not (i.e., mi j = 0). Inspired by Li et al. (2016);

Nan and Wonka (2017), the objective function is composed of (1) a fitting term D to minimize the

deviations and (2) a complexity term C to reduce the number of BSS segments after merging. The
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formulation is:

arg min
M

D + λcomC (1)

s.t.∀i,
∑

1≤ j≤N, j,i

mi j + m ji/N ≤ 1, (2)

where λcom is the key weighting parameter that balances the two terms D and C. The constraint

requires that each BSS segment bi should be merged into at most one other BSS segment so that∑
1≤ j≤N, j,i mi j ≤ 1. Meanwhile, if bi is merged to b j, i.e.

∑
1≤ j≤N, j,i mi j = 1, then other BSS segments

cannot be merged into bi so that
∑

1≤ j≤N, j,i mi j/N = 0. Otherwise, i.e.,
∑

1≤ j≤N, j,i mi j = 0, there could

be some other BSS segments merged into bi, which means 0 ≤
∑

1≤ j≤N, j,i mi j/N < 1. For smoothing

out excess geometric details and noise, the removal of BSS segments can be integrated into the IP

model by adding a null BSS segment as b∅ into B. A BSS segment bi is deleted if it is merged into b∅.

4.3.1. Formulation of the fitting and complexity terms

The fitting term decomposes the geometric deviations into the residual volume ∆V(i, j) caused by

each merging operation:

D =
N∑

i=1

N∑
j=1, j,i

mi j · |∆V(i, j)|/v. (3)

P j

Pi

P′j(a) (b)

P j

Pi

P′j

Figure 6: Illustration of merging BSS segments. (a) Updating cuboid P j to merge Pi; (b) Updating trapezoidal prism P j

to merge Pi. The space of ∆V(i, j) is filled in red.

For each merging operation mi j = 1, the polygon G and parameters of b j should be updated so that

its polyhedron can be enlarged exactly to cover all the vertices of the original polyhedra Pi and P j, as

shown in Fig. 6(a) and (b). However, the enlarged P′j also causes some geometric deviations which

are quantified as the residual volume ∆V(i, j) (filled in red in Fig. 6). To compute the ∆V(i, j), a union

operation is performed on all the corresponding polyhedra of the candidate BSS segments, resulting

in overall polyhedra denoted as Pall. The ∆V(i, j) is then computed as the volume of P′j − Pall. To

normalize the fitting term, the total residual volume is then divided by the volume of Pall, i.e., v in

Eqn. (3).

One key dimensional parameter in this step is the threshold of truncation δtrun. Only BSS segments

close to bi can be merged into bi. An extremely large value is assigned to ∆V(i, j) if the distance
15



between Pi and P j is greater than δtrun. Besides, as only a fraction of Pall is involved in the difference

operation of P′j − Pall, we also approximate this polyhedral difference as P′j − n(P j), where n(P j) only

consists of P j itself and other polyhedra whose distances to P j are less than the threshold of truncation

δtrun.

The complexity term counts the amount of remaining BSS segments after merging and encourages

more merging operations. The formulation is as follows:∑
1≤i≤N

keep(i)/N (4)

keep(i) =


1,
∑

1≤ j≤N, j,i mi j = 0

0, otherwise,
(5)

where keep(i) = 1 indicates the i-th BSS segment candidate bi is not merged. Note that in an optimal

solution M of Eqn. (1), there can be multiple candidates to merged with one target candidate b j,

i.e.,
∑

1≤i≤N,i, j mi j > 1. The post-merging polyhedron P′j should exactly cover P j and all the other

candidates’ polyhedra.

5. Experiments

5.1. Test data

We tested the BSS method on 15 point clouds from a variety of datasets collected by ground-borne

LiDAR scanning and air-borne photogrammetry. Five scenes exhibit low-rise, low-density buildings

with inclined roof structures, as shown in Samples (1) to (5) of Fig. 7. The first one is in-house

data while the remaining four are from two open datasets, Hessigheim3D (Kölle et al., 2021) and

Open Heritage 3D (CHEI, 2023). The other 10 point clouds, Samples (6) to (15) in Fig. 7, are high-

rise, high-density and Manhattan-world scenes of Hong Kong from the public 3D visualization maps

released by HKSAR government (LandsD, 2022). In total, there are more than 60 buildings in the 15

test samples. Despite the original data being of different forms, i.e., triangular mesh and point clouds,

and in different densities, we resampled all the scenes into point clouds with a point distance at 0.1 m.

The size of resampled point clouds and the number of buildings, i.e., #pt and #b in Fig. 7, reflect the

reconstruction complexity of each sample.

5.2. Implementation details

Our BSS method of reconstruction was implemented in C++ and Python. The coarse BSS seg-

mentation (Sect. 4.2.2) is implemented in Python. The other steps were written in C++. We solved

the IP model of BSS segment merging (Sect. 4.3) by Gurobi (ver. 10.0), and performed the union and
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difference operations on polyhedra through the 3D boolean operations in Package Nef Polyhedra of

CGAL (ver. 5.5). Besides, paralleling computing was integrated in the skeletonization and merging.

All experiments were conducted on a workstation with an Intel Core i7 CPU (2.9 GHz, 8 cores) and

128 GB of RAM.

The three key parameters of the BSS method were set up according to the two groups of scenes.

For high-rise, high-density scenes, we set δseg=2 m, δtrun=1 m, and λcom=1. For low-rise, low-density

scenes, the parameters were δseg=2 m, δtrun=0.25 m, and λcom=0.125, where the values δtrun and λcom

were smaller for reflecting the smaller dimensions and lower complexity, respectively. The remaining

two parameters were consistent for all experiments. The voxel size of the skeletonization was 0.25 m,

which should not be less than δseg; the angular interval θseg was set to π/9, while modifying this

parameter within the range of [π/18, π/6] did not noticeably affect the reconstruction.

5.3. Results

Fig. 7 shows the results of the BSS method on all the 15 samples. Overall, the BSS method

demonstrated its effectiveness in reconstructing both simple and complex scenes, capturing essential

structures with relatively small deviations, and providing compact meshes within reasonable process-

ing time. The results can be further elaborated in terms of three complexity levels as follows.

For the low-rise, low-density buildings shown in Fig. 7(1) to (5), the reconstruction of the BSS

method captured the essential structures, including the symmetric roofs and parallel facades, of all

the five scenes into tens of faces with a small RMSD from the input point clouds to the reconstructed

meshes ranging from 0.4 to 0.95 m. The BSS method only took around 2-8 seconds to reconstruct

these simple low-rise, low-density scenes.

Meanwhile, the BSS method also reconstructed high-rise buildings with complex structures faith-

fully, as shown in Fig. 7(6), (7), (8), (12), and (15). Although there are only one or two buildings in

each scene, the structures of buildings are complex, which could be decomposed into multiple com-

ponents, including projections on the roofs and facades. The BSS method robustly reconstruct all the

main components of each building, along with the major projections, achieving an RMSD from 0.6 to

1.5 m within 0.5 to 2.5 minutes. Meanwhile, the results of these buildings were compact, using 100

to 820 triangles to approximate the entire scene.

Furthermore, in the case of high-rise, high-density scenes with a few to a dozen buildings, as

depicted in Fig. 7(9), (10), (11), (13), and (14), the BSS method consistently outlined all the buildings

and their significant projections, even when confronted with highly complex and noisy input data. The

reconstruction of these scenarios compressed the entire scenes from millions of points into several

hundreds to over a thousand faces, simultaneously achieving an RMSD ranging from 0.9 to 1.1 m,
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with a computational time ranging from approximately 1.5 to 7 minutes.

5.4. Comparisons

We compared the BSS method with other four baseline building reconstruction methods, i.e.,

DualCont (Zhou and Neumann, 2010), ManBox (Li et al., 2016), PolyFit (Nan and Wonka, 2017),

and KSR (Bauchet and Lafarge, 2020). The overall evaluation on the 15 test samples was plotted

in Fig. 8. Detailed metrics (Table A.1) and visualization of the comparisons (Figs. A.1 to A.6) are

attached in Appendix. Note that both the number of triangles and planar regions are reported to as-

sess the compactness. The BSS method achieved the fair balance between accuracy and compactness

and reconstructed all the 15 samples. DualCont was also validated robust as achieving 100% suc-

cess rate and a small overall deviation. But the numbers of faces reconstructed by DualCont were

the second largest. In contrast, KSR and PolyFit presented an effective balance between accuracy

and compactness. Their scatters were the two closest to the BSS method’s. Besides, as confined to

Manhattan-World assumption, ManBox were excluded in the test of five low-rise, low-density scenes

with inclined roof planes. Despite targeting at compact reconstruction, ManBox were unstable in

reconstructing highly complex scenes, resulting in the most faces and largest deviations in our exper-

iments.

Fig. 9 highlights four samples in the comparison to showcase the reconstruction details of the five

methods for understanding the overall evaluation summarized above. As shown in the second column

of Fig. 9, DualCont reconstructed all the four samples into very dense triangles. Though accurate,

the surfaces looks rough. ManBox eliminated this roughness by approximating buildings with planar

primitives, as shown in the third column of Fig. 9. Yet, its accuracy and generality were both declined

as it cannot reconstruct inclined roof planes and missed some major structures in Samples (14) and

(15). PolyFit and KSR achieved much better compactness and accuracy yet still encountered some re-

construction issues as their input planes detected by RANSAC could be incomplete or noisy. Fig. A.7

shows the inputs of PolyFit and KSR on these four samples. The reconstruction defects caused by the

missing plane issue are highlighted by the red circles in Samples (3) and (11). Besides, PolyFit was

sensitive to the missing or noisy planes near the groud. Fig. 9 shows the missing bottom parts in its

results of Samples (14) and (15) to illustrate this issue. Note that the missing planes can be reduced by

increasing the minimum support point number and distance tolerance in RANSAC plane detection.

However, the number of input planes will subsequently grow significantly, resulting in much longer

processing time and undermining compactness in the reconstructed meshes.

In contrast, the BSS method presented superior robustness against missing and noisy planes. Be-

cause the BSS method only relies on a pair of parallel or symmetric planes to reconstruct one volume
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(#f=636, #s=310/32, σ=1.0, t=105) (#f=1,180, #s=455/50, σ=0.9, t=153)

(#f=2,182, #s=1,054/91, σ=0.9, t=432) (#f=2,406, #s=1,056/109, σ=0.9, t=372)

(#f=820, #s=345/37, σ=0.8, t=148) (#f=744, #s=287/37, σ=1.0, t=118)
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Figure 7: Results of the BSS methods on the 15 test samples containing more than 60 buildings in total. Left to right:

input point cloud, output mesh, and geometric deviation from the input to the output. #pt, #b, #f, #s, σ, and t refer to the

number of input points, the number of input buildings, the number of output faces (triangles), the number of output BSS

segments before / after merging, RMSD (m), and processing time (sec.), respectively.
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Figure 8: Comparisons between the BSS and baseline methods in terms of accuracy and compactness.

Input DualCont ManBox PolyFit KSR BSS

(#pt=1.6M, #b=7) (#f=8,582, σ=0.7) (#f=708, σ=5.9) (#f=388, σ=3.2) (#f=378, σ=1.1) (#f=534, σ=1.1)

(14)

(#pt=1.9M, #b=1) (#f=10,035, σ=0.8) (#f=1,128, σ=4.8) (#f=408, σ=4.7) (#f=362, σ=1.1) (#f=184, σ=1.4)

(15)

(#pt=16.9K, #b=2) (#f=244, σ=1.6) (#f=58, σ=0.5) (#f=52, σ=0.5) (#f=40, σ=0.4)

No result

(3)

(#pt=4.7M, #b=15) (#f=25,749, σ=0.8) (#f=25,056, σ=1.1)(#f=3,178, σ=1.4) (#f=2,120, σ=1.7) (#f=2,406, σ=0.9)

(11)

Figure 9: Comparison between the BSS and four baseline methods on Samples (3), (11), (14), and (15). #pt, #b, #f, and

σ refer to the number of input points, the number of input buildings, the number of output faces (triangles), and RMSD

(m), respectively. Detailed input planes to PolyFit and KSR are also shown in Fig. A.7.
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of building interior. Missing planes that are not orienting to the primary orientation would not affect

the reconstruction. Besides, different from the well-established mechanism of candidate selection by

ManBox, PolyFit, and KSR, the polyhedra of BSS segment candidates already outline the building

interior and the following merging is designed to reduce the number of BSS segments without remov-

ing the volumes supposed to be in the building interior. To sum up, the comparisons demonstrated the

enhanced robustness contributed by the global structures integrated in the BSS method of compact

reconstruction, despite room for further improve discussed in Sect. 6.2.

5.5. Parameter analysis

Fig. 10 shows the sensitivity tests of BSS parameters defined in Sect. 4.2.2 and Sect. 4.3 against

the three performance metrics. The three parameters largely regulate BSS method’s reconstructions.

The first two parameters δseg and δtrun were correlated and tested together, while the λcom is relatively

independent. We tuned the parameters in an exponential order around the given parameter settings.

Figure 10: Parameter analysis against the segmentation interval δseg of coarse BSS segmentation as well as the threshold

of truncation δtrun and λcom of BSS segment merging. λcom was set as 1 for the experiments of (a) to (c), while δseg and

δtrun were set as 2 m and 0.5 m for (d) to (f), respectively.

Segmentation interval δseg in coarse BSS segmentation. The δseg was tuned as 0.5, 1, 2, and 4 m.

Note that δseg should be greater than the voxel size 0.25 m. A δseg larger than 4 m will result in over-

smoothing. As shown in the first row of Fig. 10, with a larger δseg, the number of faces is smaller
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while the RMSD increases. Meanwhile, the reconstruction time grows if the coarse segmentation

produces more candidate BSS segments. We observed that there were sufficient candidate set of BSS

segments with a lower RMSD when δseg=2 m, as shown in Fig. 11. The test results revealed that

candidate BSS segments captured with δseg=2 m achieved appropriate coverage for the test building

scenes. δseg can be set to smaller values for denser and cleaner point clouds. For example, the result

of σn=0 m with a density of 100 pts/m2 in Fig. 13 is reconstructed with δseg=0.5 m.

Input

δseg=0.5 m δseg=2 m δseg=4 m

(σ=2.47, #seg=395) (σ=0.74, #seg=455) (σ=0.88, #seg=214)

Figure 11: Corresponding polyhedra produced by coarse BSS segmentation with different segmentation intervals (δseg).

σ refers to the RMSD (m) from input point clouds to reconstructed surfaces after polyhedra union. #seg is the number of

candidate BSS segments.

Threshold of truncation δtrun in merging BSS segments. The δtrun was tuned as 0.25, 0.5, 1, 2, and 4 m.

As shown in Fig. 10(c), a larger δtrun led to longer processing time, which was especially long when

the coarse segmentation also produced more candidate BSS segments. Meanwhile, a larger δtrun can

also slightly reduce the number of reconstructed faces.

Weighting factor λcom in merging BSS segments. We tested the factor λcom of Eqn. (1) as 0.125, 0.25,

0.5, 1, 2, 4, and 8. It impacted accuracy and compactness mainly, as shown in Fig. 10(d) to (f)

where δseg=2 m and δtrun=0.5 m. Corresponding examples are shown in Fig. 12. With a smaller λcom,

the BSS segment merging encourages a higher fitting accuracy and tends to merge fewer candidate

BSS segments and keep more faces. With a larger λcom, the merging smoothed more details and

preserved only large polyhedra representing the main building structures of the input, as shown in the

last column in Fig. 12. Besides, the time cost did not change significantly as shown in Fig. 10(f).

5.6. Robustness against noise and density

Fig. 13 shows the robustness of the BSS method against increasing noise levels on synthetic point

clouds. As the level of Gaussian noise (standard deviation, std) increases, the geometric deviations

between the reconstructed meshes and the input point clouds also increase. This effect is particularly

pronounced on the faces that are orthogonal to the primary orientations, as shown in σn=0.1 and
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Input λcom = 0.125

(σ=0.73, #f=138) (σ=1.19, #f=90)

λcom = 1

(σ=1.19 , #f=30)

λcom = 8

Figure 12: Reconstructed meshes with different complexity factors λcom of merging BSS segments. σ refers to the RMSD

(m) from input point clouds to reconstructed meshes, while #f is the number of faces.

std = 0 m std = 0.1 m std = 0.2 m std = 0.4 m

Failed

Failed

60m

x y

z

0 m 1 m
models

Synthetic

40 m

Figure 13: Results of synthetic point clouds with increasing levels of Gaussian noises from std=0 m to std=0.4 m. Primary

orientations are facing to the positive directions of y-axes (shown in green).

0.2 m of Fig. 13. When σn = 0.4 m, the skeletonized BSS atoms were noisy and the BSS segment

candidates failed to adequately cover the entire interior of buildings.

Fig. 14 displays the reconstruction of the BSS method on two real-world noisy samples where

there are unevenly distributed noises. The BSS atoms of small structures or around missing parts

could not form reasonable BSS segments, resulting in the final meshes disregarding or overestimating

such small structures and incomplete scans.

Fig 15 showcases the reconstruction of the BSS method against decreasing density levels from 50

to 0.1 pts/m2. With a density no less than 1 pts/m2, the BSS method can faithfully reconstruct the

building. When the density decreases to 0.5 pts/m2, there could be missing parts and larger geometric

deviations in the reconstructed mesh. And if the density is as low as 0.1 pts/m2, the reconstruction

failed due to the insufficient BSS atoms, making it impossible to propose reasonable BSS segment
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(d)

(b)(a)

(c) backside

σ = 0.49

σ = 0.62

σ = 0.33

σ = 0.85

1m0m

Figure 14: Missing parts and overestimation in the reconstruction of two noisy samples from Li et al. (2016) and Nan and

Wonka (2017). (a) and (b) are results of PolyFit; (c) and (d) are results of BSS. σ refers to RMSD (m).

50 pts/m2 10 pts/m2 5 pts/m2 1 pts/m2 0.5 pts/m2 0.1 pts/m2

1 m

0 m
z

yxFailed

Figure 15: Results of synthetic point clouds with increasing densities from 50 to 0.1 pts/m2. Primary orientations are

facing to the positive directions of y-axes (shown in green).

candidates.

Moreover, in Fig. 13 and Fig. 15, the axes of coordinate systems are drawn to demonstrate the

robustness of the primary orientation estimation in Sect. 4.2.1. Even at a high noise level (σn = 0.4

m) or low point cloud density (0.1 pts/m2), the primary orientations were still estimated consistently.

5.7. Performance Analysis

Fig. 16(a) shows the total computational time and the duration of three steps, i.e., skeletonization,

coarse BSS segmentation, and BSS segment merging. On average, the three steps took 12%, 6%,

and 82% of the total time, respectively. The processing time for both skeletonization and coarse

segmentation increases linearly with the number of input points. The time for merging presents a

quadratic growth and so does the total time. Despite the quadratic growth, the BSS method can

stably reconstruct compact building models from millions of input points in several minutes in our

test environment. Fig. 16(b) shows that the BSS method and KSR took a comparable amount of time
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Figure 16: Processing time of the BSS and baseline methods, where #pt (M) refers to the number of input points in million.

(a) Time costs of the BSS method’s overall procedure and three crucial steps, skeletonization, coarse segmentation, and

merging; (b) Comparison between the PolyFit, KSR, and BSS methods.

to reconstruct the 15 test samples. Yet, the projection indicates a linear growth of KSR which exhibits

higher scalability for inputs containing a larger number of points. Note that both KSR and PolyFit

require planes detected by RANSAC as inputs, whereas the BSS method takes oriented point clouds

only as inputs. Therefore, the BSS method relies on its own to detect the planar BSS atom groups,

which contributes to the processing time.

6. Discussion

6.1. Implications

The BSS defined in this paper is an expressive 3D feature reflecting architectural designs in high-

density cities. BSS atoms accurately represent the 3D point pairs, including the pairs of noisy points.

The BSS segment and associated polyhedra cancel the noisy BSS atoms and collectively mitigate the

random errors along the normal direction in the aggregation from atom level to segment level. Fur-

thermore, BSS graphs or feature vectors can open new avenues to volumetric city modeling and other

urban remote sensing and photogrammetry studies, such as unsupervised urban pattern clustering,

relational query using BSS map of a city block (Xue et al., 2021a), and semantic enrichment of city

models using BSS-enhanced podiums or balcony (Xue et al., 2021b).

For practitioners in smart city development, the BSS method of reconstruction offers a robust,

accurate, and efficient approach to compact building and city modeling. To demonstrate the ability of

reconstructing larger-scale and more general urban scenes, we tested the BSS method on two areas

of UrbanBIS (Yang et al., 2023), i.e., Qingdao (2.31 km2) and Yingrenshi (0.08 km2). As shown in
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Fig. 17, the BSS method reconstructed most of the building points, i.e., 242.0M/269.6M points (89.8

%) of Qingdao and 14.6M/15.0M (97.3 %) points of Yingrenshi, into only 57.9K and 2.9K faces with

average RMSD as 1.39 m and 1.12 m, respectively. The BSS-generated compact building models can

further facilitate smart and sustainable city applications. Examples include automatic window view

content and depth assessment (Li et al., 2022b), BSS building volumes for urban material stocks (Yuan

et al., 2023), and digital urban governance (Deng et al., 2021).

6.2. Limitations

Nevertheless, given the assumption that buildings are composed of parallel vertical or symmetric

inclined planes, the BSS method cannot reconstruct buildings with highly curved surfaces (the closeup

of Fig. 17(f)) and shapes that lack both parallel vertical and symmetric inclined planes (Fig. 18(a)).

Meanwhile, the following limitations of the proposed BSS theory and the reconstruction method

should be addressed in future studies:

1. Single-orientation BSS segments. By assuming the orthogonality of the input data, we only

extract the BSS atoms facing to the primary orientation of inputs. Therefore, the current re-

construction based on BSS segments is constrained to buildings composed of cuboid shapes

and equally slanted roofs. In our future work, we will explore the extraction of multiple-

orientation BSS atoms and segments, as demonstrated in Rows 2 and 5 of Table 1. This will

allow generalization to symmetric buildings with non-orthogonal surfaces, which could further

eliminate the zigzag shapes in the reconstruction of slightly curved buildings (the closeup in

Fig. 17(e)). Meanwhile, multi-orientation BSS segments will enhance the robustness in recon-

structing buildings with parallel vertical faces that deviate from the single primary orientation

(Fig. 18(b)) and buildings whose primary-oriented faces are missing (the closeup in Fig. 17(b)).

2. No explicit relations between BSS segments and their polyhedra. There are different types of

topological relations between BSS segments and their polyhedra, such as overlapping, covering,

and touching. These relations reveal the arrangement of BSS segments and imply rich geomet-

ric constraints of the polygons and parameters of different BSS segments, which include the

face adjacency prevalent in the previous building reconstruction. In our future work, we would

like to formally define the arrangement of BSS segments and utilize the topology between BSS

segments to facilitate building reconstruction. This will eliminate the deviation heterogeneity

of faces with different orientations (Fig. 13) and fix the unwanted gaps between BSS segments

(Fig. 19) that caused a larger number of planar regions as reported in Fig. 8(b) and Table A.1.
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(a) (b) (c)

(d) (e) (f)

Figure 17: Large-scale reconstruction of Yingrenshi (0.08 km2) and Qingdao (2.31 km2) in UrbanBIS dataset. (a) and (d)

Input point clouds of Yingrenshi and Qingdao, respectively. The points of buildings are colorized as brown. (b), (c), (e),

and (f) are the side views of reconstructed results overlapped with the input point clouds. The closeup of (b), (e), and

(f) highlights the limitations of the BSS methods in handling incompleteness, moderate curved surfaces, and significant

curved surfaces, respectively.

(a) (b)

x y

z

Figure 18: Shapes that BSS method failed to reconstruct.

(a) (b)

0m

2m

Figure 19: Examples of the gaps between reconstructed surfaces.
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7. Conclusion

This paper defines a Building Section Skeleton (BSS) by revamping traditional shape skeletons

to describe common architectural designs of buildings using urban point clouds. Based on BSS, a

compact building reconstruction method is proposed as a two-stage pipeline. The first stage skele-

tonizes the input point cloud and proposes a set of candidate BSS segments; The second stage merges

the candidate BSS segments via an integer programming model to minimize the geometric devia-

tions and complexity of reconstruction. Experimental results and comparisons conducted on both

low-rise, low-density and high-rise, high-density scenes confirmed that the BSS method for building

reconstruction is compact, accurate, and efficient.

The proposed BSS is novel and expressive for processing urban point clouds, and the BSS method

of reconstruction has great potential for studies and applications in the fields of city modeling and

other urban remote sensing and photogrammetry. Nevertheless, we also identified some limitations of

the current BSS theory and BSS method of reconstruction. Recommended future research directions

include (1) developing multiple-orientation BSS method for reconstructing more general buildings

and (2) defining explicit relations between BSS segments for higher reconstruction quality and induc-

ing BSS graphs.
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Appendix A. Supplementary table and figures of experiments

Table A.1: Comparison of DualCont, ManBox, PolyFit, KSR, and the BSS method in terms of compactness, accuracy,

and processing time (best values in bold).

#triangles/#planar regions# RMSD (m) Time (sec.)

DualCont ManBox PolyFit KSR Ours DualCont ManBox PolyFit KSR Ours DualCont ManBox PolyFit KSR Ours

1 513 / 114 −⋆ 80 / 35 68 / 49 136 / 38 1.47 −⋆ 0.47 0.37 0.40 0.05 −⋆ 2.26 3.00 2.46

2 830 / 589 −⋆ 16 / 7 20 / 8 44 / 15 0.67 −⋆ 0.387 0.386 0.45 0.09 −⋆ 4.73 4.69 4.62

3 244 / 49 −⋆ 58 / 10 52 / 15 40 / 14 1.64 −⋆ 0.454 0.51 0.449 0.05 −⋆ 1.03 1.63 3.89

4 843 / 131 −⋆ 36 / 8 36 / 8 20 / 11 1.03 −⋆ 0.425 0.426 0.51 0.1 −⋆ 3.45 4.22 5.71

5 379 / 300 −⋆ 16 / 7 16 / 7 68 / 22 0.94 −⋆ 0.9305 0.931 0.95 0.05 −⋆ 3.08 3.33 7.48

6 3,846 / 2038 1,836 / 648 446 / 45 266 / 48 252 / 71 0.91 1.05 1.08 0.91 0.61 57 4 85 81 30

7 8,763 / 5370 684 / 239 488 / 22 302 / 34 100 / 29 0.76 1.02 0.80 0.86 0.87 79 5 122 120 46

8 18,719 / 10349 12,156 / 3506 1,528 / 65 690 / 102 636 / 176 1.19 2.25 1.00 1.11 1.04 265 16 278 238 105

9 19,396 / 11758 52,248 / 15073 2,810 / 146 1,308 / 169 1,180 / 300 0.81 1.62 1.30 1.56 0.91 219 20 389 207 153

10 26,746 / 15307 44,184 / 12608 5,044 / 100 1,936 / 189 2,182 / 500 1.08 0.98 1.52 1.20 0.94 1,263 43 681 408 432

11 25,749 / 15877 25,056 / 7564 3,178 / 111 2,120 / 188 2,406 / 587 0.79 1.08 1.36 1.69 0.90 504 28 1,731 312 372

12 10,126 / 5437 −† 1,940 / 125 1,204 / 161 820 / 222 0.85 −† 0.91 0.67 0.82 522 −† 314 229 148

13 22,358 / 11630 63,408 / 16667 1,160 / 152 934 / 200 744 / 209 1.10 1.64 0.96 0.94 0.96 300 54 347 278 118

14 8,582 / 5168 708 / 270 388 / 32 378 / 39 534 / 140 0.73 5.93 3.21 1.09 1.05 55 5 108 108 117

15 10,035 / 5746 1,128 / 410 408 / 32 362 / 39 184 / 54 0.75 4.78 4.74 1.14 1.41 62 9 139 140 101

Avg. 10,475 / 5991 22,379 / 6332 1,173 / 60 646 / 84 623 / 159 0.98 2.26 1.30 0.92 0.82 222 20 281 143 110

⋆: Manhattan-World assumption not met, no experiments conducted; †: RMSD > 10m.
#: Planar regions are extracted by region growing with a distance threshold of 0.01 m, an angle threshold of 5◦, and a minimum region size of 1 m2.
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(a)

(b)

(c)

(d)

(e)

(1) (2) (3) (4) (5)
(#pt=39.4K, #bdlg=3) (#pt=72.4K, #bdlg=1) (#pt=16.9K, #bdlg=1) (#pt=63.4K, #bdlg=1) (#pt=48.5K, #bdlg=1)

Figure A.1: Results of Samples (1) to (5). The corresponding distance deviations are plotted in Fig. A.4. (a) Inputs (#pt

and #bdlg refer to the number of input points and buildings, respectively); (b) Results of DualCont; (c) Results of PolyFit;

(d) Results of KSR; and (e) Results of our BSS method.
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(a)

(b)

(c)

(d)

(e)

(f)

(6) (7) (8) (9) (10)
(#pt=1.3M #bdlg=2) (#pt=1.9M #bdlg=1) (#pt=3.7M #bdlg=1) (#pt=3.2M #bdlg=9) (#pt=6.1M, #bdlg=6)

Figure A.2: Results of Samples (6) to (10). The corresponding distance deviations are plotted in Fig. A.5. (a) Inputs

(#pt and #bdlg refer to the number of input points and buildings, respectively); (b) Results of DualCont; (c) Results of

ManBox; (d) Results of PolyFit; (e) Results of KSR; and (f) Results of our BSS method.
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(a)

(b)

(c)

(d)

(e)

(f)

(11) (12) (13) (14) (15)
(#pt=4.7M, #bdlg=15) (#pt=3.4M, #bdlg=2) (#pt=4.1M, #bdlg=10) (#pt=1.6M, #bdlg=7) (#pt=1.9M, #bdlg=1)

Figure A.3: Results of Samples (11) to (15). The corresponding distance deviations are plotted in Fig. A.6. (a) Inputs

(#pt and #bdlg refer to the number of input points and buildings, respectively); (b) Results of DualCont; (c) Results of

ManBox; (d) Results of PolyFit; (e) Results of KSR; and (f) Results of our BSS method.
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0 m 1 m

Figure A.4: Distance deviations from the input point clouds to the reconstructed meshes of Samples (1) to (5). The

corresponding reconstructed meshes are shown in Fig. A.1. (a) Inputs (#pt and #bdlg refer to the number of input points

and buildings, respectively); (b) Deviations of DualCont; (c) Deviations of PolyFit; (d) Deviations of KSR; and (e)

Deviations of our BSS method.
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Figure A.5: Distance deviations from the input point clouds to the reconstructed meshes of Samples (6) to (10). The cor-

responding reconstructed meshes are shown in Fig. A.2. (a) Inputs (#pt and #bdlg refer to the number of input points and

buildings, respectively); (b) Deviations of DualCont; (c) Deviations of ManBox; (d) Deviations of PolyFit; (e) Deviations

of KSR; and (f) Deviations of our BSS method.
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(#pt=4.7M, #bdlg=15) (#pt=3.4M, #bdlg=2) (#pt=4.1M, #bdlg=10) (#pt=1.6M, #bdlg=7) (#pt=1.9M, #bdlg=1)
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Figure A.6: Distance deviations from the input point clouds to the reconstructed meshes of Samples (11) to (15). The cor-

responding reconstructed meshes are shown in Fig. A.3. (a) Inputs (#pt and #bdlg refer to the number of input points and

buildings, respectively); (b) Deviations of DualCont; (c) Deviations of ManBox; (d) Deviations of PolyFit; (e) Deviations

of KSR; and (f) Deviations of our BSS method.
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No ground planes detected

(#pt=16.9K, #pl=10)
(3)

(#pt=4.7M, #pl=64)
(11)

(#pt=1.6M, #pl=28)
(14)

(#pt=1.9M, #pl=25)
(15)

Figure A.7: The inputs to PolyFit and KSR for the four samples (3, 11, 14, and 15) shown in Fig. 9. The planar segments

were detected by RANSAC (Schnabel et al., 2007). #pt and #pl refer to the number of points and detected planar segments,

respectively. Points are colorized in terms of planar segments; Points belong to no planar segments are in black. The red

circles highlight the missing planes that affected the reconstruction.
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