
THE HONG KONG POLYTECHNIC UNIVERSITY

DEPARTMENT OF INDUSTRIAL AND SYSTEMS

ENGINEERING

A SUBOPTIMUM- AND PROPORTION-BASED

HEURISTIC GENERATION METHOD FOR

COMBINATORIAL OPTIMIZATION

PROBLEMS

Fan XUE

A Thesis Submitted in Partial Fulfilment of

the Requirements for the Degree of

Doctor of Philosophy

September 2012

CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of

my knowledge and belief, it reproduces no material previously published

or written, nor material that has been accepted for the award of any other

degree or diploma, except where due acknowledgement has been made in

the text.

XUE Fan

ii

Abstract

Automated heuristic selection and heuristic generation have increas-

ingly attracted attention in solving combinatorial optimization problems

emerging from both theory and practice. This thesis presents a heuristic

generation algorithm, called Suboptimum- and Proportion-based On-the-

fly Training (SPOT), which can enhance existing heuristics with the aid of

instance-specific information.

By making use of the proposed “sample-learn-generate” framework,

SPOT samples small-scale subproblems, initially. Then, it collects the instance-

specific information from the suboptima of the subproblems by the means of

machine learning. Lastly, it generates new heuristics by modifying existing

heuristics and data structures.

In the development of SPOT, two standards were incorporated to regulate

the problem input and the machine learning data. The software implementa-

tion was done in Java, with two external development libraries, the HyFlex

and the Weka. In terms of testing, two well-known NP-Complete combinato-

rial optimization problem domains were employed: the Traveling Salesman

Problem (TSP) and the permutation Flow-Shop scheduling Problem (FSP).

Each generated heuristic was tested with the TSP and the FSP domains.

iii

iv

To verify the result of using SPOT, one of the winners of the international

hyper-heuristic competition CHeSC 2011, named PHunter, was tested with

the generated heuristics by SPOT. In the TSP, adapting SPOT gave little

betterment, but in FSP, the improvements were significant. It increased

the overall score of the PHunter from 20.5 to 43 (out of 50). Indeed, it also

outperformed the best records in CHeSC 2011: 32 by AdaptHH, 29.5 by ML

and 26 by VNS-TW.

Publications

Journal Papers

Published

1. Xue, F., Chan, C. Y., Ip, W. H., & Cheung, C. F. (2011). A learning-

based variable assignment weighting scheme for heuristic and exact

searching in Euclidean traveling salesman problems. NETNOMICS:

Economic Research and Electronic Networking, 12, 183õ207.

doi:10.1007/s11066-011-9064-7

2. Chan, C. Y., Xue, F., Ip, W. H., & Cheung, C. F. (2012) A Hyper-heuristic

inspired by Pearl Hunting. In Y. Hamadi & M. Schoenauer (Eds.),

Learning and intelligent optimization (pp. 349–353). Lecture Notes in

Computer Science. Springer-Verlag. doi: 10.1007/978-3-642-34413-8 26

Ready for submission

1. Xue, F., Chan, C. Y., Ip, W. H., & Cheung, C. F. A hybrid variable depth

search approach to personnel scheduling problems.

v

http://dx.doi.org/10.1007/s11066-011-9064-7
http://dx.doi.org/10.1007/978-3-642-34413-8_26

vi

Conference Presentations

1. Xue, F., Chan, C. Y., Ip, W. H., & Cheung, C. F. (2010) Towards a learning-

based heuristic searching reform scheme. 24th European Conference

on Operational Research (EURO2010), July 11–14, Lisbon, Portugal.

2. Xue, F., Chan, C. Y., Ip, W. H., & Cheung, C. F. (2010) A learning-

based variables assignment weighting scheme for heuristic and exact

searching. 1st International Conference on Computational Logistics

(ICCL2010), September 20–22, Shanghai, China.

3. Xue, F., Chan, C. Y., Ip, W. H., & Cheung, C. F. (2011) Pearl Hunter: a

cross-domain hyper-heuristic that compiles iterated local search algo-

rithms. The OR Society’s 53rd Annual Conference(OR53), September

6–8, Nottingham, United Kingdom.

4. Xue, F., Chan, C. Y., Ip, W. H., & Cheung, C. F. (2012) A Hyper-heuristic

inspired by Pearl Hunting. 6th Learning and Intelligent OptimizatioN

Conference (LION6), January 16–19, Paris, France.

Acknowledgements

My most sincere thanks go to my PhD supervisors and mentors, Dr.

Chan, Dr. Ip and Dr. Cheung, for supporting me in these past five years.

Dr. Chan is a very sincere man and devotes himself to both theoretical

and practical engineering. He gave me the freedom to pursue my interests

without restriction. I am grateful to Dr. Ip, too. He introduced me to this

research and inquired, discussed and enlightened me on the research very

often. Dr. Cheung is supportive on both research and daily life and also

provided many in-depth and insightful discussions about the research. I

hope that I could be as lively and liberal as Dr. Chan and be as enthusiastic

and energetic as Dr. Ip and Dr. Cheung someday. I also thank the members

of my PhD committee for their helpful questions and suggestions in general.

I would also like to thank Prof. Fan and Prof. Zhu at Civil Aviation

University of China. They inspired me in some related areas before the

research, and have been supporting me on my daily life up-to-date. I also

thank my colleagues Jackson Tang, Wang Lei, Qian Chen and Chen Qing for

many interesting and insightful discussions. I will forever be thankful to my

wife and my family for long-time and unconditional support, encouragement

and love.

vii

viii

I also thank the developers, contributors and maintainers of the algorithm

development libraries HyFlex and Weka, which provided stable and effec-

tive interfaces and functions on hyper-heuristic manipulation and stochastic

machine learning. I also appreciate the developers, contributors and main-

tainers of the open source projects Notepad++ and PSPP, which offered rich

and free functionality in the implementation and the data analysis of this

research.

The work described in this research project was substantially supported

by a grant from the Department of Industrial and Systems Engineering, The

Hong Kong Polytechnic University (Grant No. RP1Z).

Table of Contents

Dedication . i

Abstract . iii

Publications . v

Acknowledgements . vii

List of Tables . xx

List of Figures . xxiv

List of Symbols . xxv

List of Acronyms . xxxiii

1 Introduction to the SPOT Algorithm 1

1.1 Optimizations from Ancient to Modern Times 2

1.2 Combinatorial Optimization . 6

1.3 Research Motives and Background 15

1.4 Objectives and Achievements of Thesis 24

1.4.1 Objectives . 24

1.4.2 Achievements and contributions 25

ix

x

1.5 Outline of Thesis . 26

2 Literature Review . 29

2.1 Meta-Heuristics . 30

2.1.1 Well-known algorithms 31

2.1.2 Sampling in meta-heuristics 33

2.2 Hyper-Heuristics . 41

2.2.1 Heuristic selection approaches 43

2.2.2 Heuristic generation approaches 47

2.3 Supervised Learning . 49

2.3.1 Well-known classification techniques 50

2.3.2 Sampling and attribute selection for supervised learning 54

2.3.3 Meta-learning . 56

3 The SPOT Hyper-Heuristic . 59

3.1 An Overview of the SPOT Approach 60

3.2 Formal Definitions . 66

3.2.1 Combinatorial optimization problem 66

3.2.2 Hyper-heuristics . 68

3.2.3 The U/EA and the U/EA2 standards 70

3.2.4 The SPOT hyper-heuristic 72

3.2.5 Heuristic selection and heuristic generation 74

3.3 Methodology of Developing a SPOT Hyper-Heuristic 78

xi

3.3.1 The design phase . 78

3.3.2 The run phase . 85

3.4 Discussion . 86

4 Java Implementation of the SPOT Hyper-Heuristic 89

4.1 Supporting Libraries . 90

4.1.1 HyFlex . 90

4.1.2 Weka . 91

4.2 The Class Design . 92

4.3 Implementation in Java . 94

4.3.1 The class SPOT ML . 94

4.3.2 The class SPOT . 97

4.4 Discussion . 98

5 Application I: The Traveling Salesman Problem Domain 101

5.1 An Introduction to the TSP Domain 102

5.2 Implementation of the TSP Domain in HyFlex 103

5.3 Development of the SPOT for TSPs 105

5.3.1 P1: Transformations and sampling 106

5.3.2 P2: Parameter determination 110

5.3.3 P3: The generation of new LLHs 117

5.4 Experiments and Observations 117

5.4.1 On the individual LLHs 119

xii

5.4.2 Comparisons with other hyper-heuristics 123

5.5 Discussion . 127

6 Application II: The Permutation Flow-Shop Scheduling Problem

Domain . 129

6.1 An Introduction to the FSP Domain 130

6.2 Implementation of the FSP Domain in HyFlex 131

6.3 The Development of a SPOT for the FSP 133

6.3.1 P1: Transformations and sampling 133

6.3.2 P2: Parameter determination 138

6.3.3 P3: The generation of new LLHs 144

6.4 Experiments and Observations 146

6.4.1 On the individual LLHs 147

6.4.2 Comparisons with other hyper-heuristics 152

6.5 Discussion . 155

7 Discussion and Conclusions . 159

7.1 Discussion on the SPOT Methodology and Findings 160

7.1.1 Principal findings . 160

7.1.2 Interpretation and implications of findings 163

7.1.3 Interpretation in the context of the literature 166

7.1.4 Limitations . 167

7.2 Conclusions . 171

xiii

Appendix A Suboptima of Training Instances 175

Appendix B Examples of Data and Results of Learning 179

Appendix C Original Data of Figures 195

References . 203

xiv

List of Tables

1.1 Examples of the characteristic D on the map 16

2.1 Examples of records with known labels 50

2.2 References for further reading on the classification techniques

not selected in this thesis . 52

3.1 Main phases in the design phase in developing a SPOT hyper-

heuristic . 79

4.1 A list of generated attributes of the i-th assignment from one

raw attribute . 96

4.2 The default values of main parameters of the classification

and attribute selection methods in Weka 97

5.1 Ten benchmark instances used in the implementation of TSP

in HyFlex . 104

5.2 The LLHs in the implementation of TSP in HyFlex 105

xv

xvi

5.3 Three benchmark TSP instances used in the development of

the SPOT algorithm . 108

5.4 Average test results on different aspect ratios in the rectangular

selection sampling method, where n′ = 400 and the aspect

ratio of the minimum boundary rectangle is assumed as 1:1

(100 runs, best performance in bold) 115

5.5 Average results and significants of tests on different subprob-

lems sampled, where n′ = 400 (100 runs, significant p in bold) 116

5.6 Test results on the tour quality of the generated LLHs and

their base algorithms (100 runs, n = 400, Depth of search = 1,

improvements on average performance in bold) 120

5.7 Average time of generating new LLHs (100 runs, n = 400,

Depth of search = 1) . 122

5.8 Average run time of each LLHs (100 runs, n = 400, Depth of

search = 1, instrument error < 0.16 ms) 123

5.9 The top three hyper-heuristics in the TSP domain in CHeSC

2011 . 124

5.10 Median tour length of the PHunter, the SPOT-PHunter and

three other hyper-heuristics in the TSP domain in HyFlex (31

runs, best results in bold for each instance) 125

6.1 Twelve benchmark instances used in the implementation of

FSP in HyFlex . 132

6.2 The LLHs in the implementation of FSP in HyFlex 132

xvii

6.3 Four benchmark FSP instances used in the development of the

SPOT algorithm . 136

6.4 The 5m + 3 raw attributes designed for a job Ji against another

job J j in the FSP domain (i , j) 137

6.5 Average results and significants of r in tests on different sub-

problems sampled, where n′ = 30 (100 runs, significant values

of p in bold) . 143

6.6 Average results and significants of r in tests on different com-

bination of parallel subproblems sampled, where n′ = 30 (100

runs, significant values of p in bold) 143

6.7 Average results and significants of time of generation (timeoverall)

in tests on different combination of parallel subproblems sam-

pled, where n′ = 30 (100 runs, significant values of p in bold) . 144

6.8 The modified LLHs for FSPs and modifications by the SPOT

heuristic generation . 146

6.9 Test results on the makespan of the generated LLHs and their

base algorithms (10 runs, 100 iterations in each run, Depth

of search = 1, Intensity of mutation = 1, improvements on

average performance in bold, significant values of p in bold) . 149

6.10 Average overall time (timeoverall) of generating new LLHs (10

runs) . 150

6.11 Average run time of each LLHs (10 runs, 100 iterations in each

run, instrument error < 0.16 ms) 151

xviii

6.12 The top three hyper-heuristics in the FSP domain in CHeSC 2011152

6.13 Median makespan of the PHunter, the SPOT-PHunter and

three other hyper-heuristics in the FSP domain in HyFlex (31

runs, best results in bold for each instance) 153

6.14 A flawed transformation of FSPs that resulting in a very low

approximability . 155

A.1 Suboptima of the training instances in the FSP 178

B.1 The group and raw attributes of assignments in the 20-nearest-

neighbor-first candidate set of two subproblems of the TSP in-

stance rat783 (15840 rows× (1 column of group + 2 columns

of raw attributes), n′ = 400, sampled by a random selection

and a rectangular selection, respectively) 180

B.2 The full training table consisting of normalized attributes of

assignments and the label of suboptima of two subproblems

of the TSP instance rat783 (15840 rows × (86 columns of

attributes + 1 column of labels), attributes normalized from

Table B.1) . 181

B.3 Results of the attribute selection for the full training table of

Table B.2 (15840 rows × (8 columns of attributes + 1 column

of labels)) . 182

xix

B.4 Eight selected columns of test data and the summation of

predicted labels of the assignments in the 20-nearest-neighbor-

first candidate set of the TSP instance rat783 (15660 rows ×

(8 columns of selected attributes + 1 column of summations of

labels)) . 185

B.5 The group and raw attributes of assignments of the “following”

relationship in two subproblems of the FSP instance TA082

(3480 rows × (1 column of group + 103 columns of raw at-

tributes), n′ = 30, sampled by two random selections, respec-

tively) . 187

B.6 The full training table from two subproblems of the FSP in-

stance TA082 (3480 rows × (206 columns of attributes + 1

column of labels), attributes normalized from Table B.5) 188

B.7 The test data and the summation of predicted labels of the as-

signments of the “following” relationship in the FSP instance

TA082 (19800 rows × (206 columns of normalized attributes +

1 column of summations of labels)) 192

B.8 The weights (or summations of Σ label) according to Table B.7

(which generated the figure (i) in Figure 6.2) 193

B.9 An example of adding the weights of a predicted permutation

and an NEH permutation (where the three columns of weights

present the figures (i), (ii) and (iii) in Figure 6.2, respectively) . 194

C.1 Original data of Figure 1.4 (D. S. Johnson & McGeoch, 2002,

p. 376) . 195

xx

C.2 Original data of Figure 5.1 . 196

C.3 Original data of Table 5.10 . 197

C.4 Original data of Figure 5.3 . 198

C.5 Original data of Figure 6.3 . 199

C.6 Original data of Figure 6.4 (Significant values of p in bold) . . 200

C.7 Original data of Table 6.13 (Significant values of p in bold) . . 201

C.8 Original data of Figure 6.5 . 202

List of Figures

1.1 Sun’s placement for T’ien Chi’s horses racing 5

1.2 The brachistochrone problem 6

1.3 Euler diagram for classes of P, NP, NP-Complete and NP-hard 8

1.4 Examples of non-dominated and dominated heuristics for

solving the 10000-city Random Uniform Euclidean Instances

in the DIMACS TSP Challenge (D. S. Johnson & McGeoch,

2002, p. 376) . 14

1.5 Britain fractal coastline . 17

1.6 TSP Examples from different data sets 19

1.7 Euler diagram of instance-specific adjustments of algorithms,

hyper-heuristics and meta-heuristics 20

2.1 A tree taxonomy of some well-known classification techniques

(Hilario, Kalousis, Nguyen, & Woznica, 2009) 51

2.2 Pseudo codes of the C4.5 classifier 53

xxi

xxii

3.1 A comparison between the conceptual diagram of the SPOT

methodology and that of the conventional hyper-heuristic

framework . 62

3.2 The mapping from feasible solutions to objective function

values in a combinatorial optimization problem 67

3.3 Schematic diagram of a hyper-heuristic 69

3.4 The mapping of U/EA transformation from the search space

of a combinatorial optimization problem 71

3.5 Schematic diagram of SPOT hyper-heuristics 73

4.1 The class diagram of the SPOT hyper-heuristic 93

4.2 The pseudo codes of function SPOT.run() 98

5.1 Average test results for determining n’ in the development of

the SPOT algorithm, on the three TSP test instances (100 runs) 113

5.2 A comparison of two candidate sets of the TSP instance rat783118

5.3 Scores of the PHunter, the SPOT-PHunter and three other

hyper-heuristics in the TSP domain in HyFlex 126

6.1 An example of an FSP schedule with a permutation (J1, J2, J3) 130

6.2 Examples of a predicted permutation, an NEH permutation

and a weighted permutation for the FSP instance TA082 . . . 139

xxiii

6.3 Average test results for determining n’ in the development of

the SPOT algorithm, on the four FSP training instances (100

runs) . 141

6.4 Comparisons between the new LLHs and their base algo-

rithms for solving the 100 × 20 FSP instances TA81, TA82,

TA83, TA84 and TA85 . 151

6.5 Scores of the PHunter, the SPOT-PHunter and three other

hyper-heuristics in the FSP domain in HyFlex 154

A.1 Suboptima of the training instance rat783 in the TSP 175

A.2 Suboptima of the training instance pcb1173 in the TSP 176

A.3 Suboptima of the training instance d1291 in the TSP 177

B.1 Instance-specific result of the J48 classifier for the TSP instance

rat783, training data shown in Table B.3 183

B.2 Instance-specific result of the JRip classifier for the TSP in-

stance rat783, training data shown in Table B.3 183

B.3 Instance-specific result of the NaiveBayes classifier for the TSP

instance rat783, training data shown in Table B.3 184

B.4 A set of promising edges selected from the 20-nearest-neighbor-

first candidate set of the training instance rat783 in the TSP,

according to the Σ label column in Table B.4 (where black

edges in the second figure were the assignments with Σ label

≥ 2 and the gray edges were those with Σ label = 1) 186

xxiv

B.5 Instance-specific result of the J48 classifier for the FSP instance

TA082, training data shown in Table B.6 189

B.6 Instance-specific result of the JRip classifier for the FSP in-

stance TA082, training data shown in Table B.6 190

B.7 Instance-specific result of the NaiveBayes classifier for the FSP

instance TA082, training data shown in Table B.6 191

List of Symbols

Notation Description

~A as the set of all the possible attribute vectors

of solutions to a combinatorial optimization

problem. 68, 69, 71–74

a

as an attribute in supervised learning. 52

as the cardinal number of a set of a limit num-

ber of paramters. 77

~a

as a vector of the attributes in supervised

learning. 52, 55

as a vector of attributes of a solution to a

combinatorial optimization problem. 68, 69,

71, 72, 74

ag as an attribute generation for a hyper-

heuristic. 68, 69, 72, 73

ℵ0 as the cardinality of the natural numbers. 75–

77, 87, 88

xxv

xxvi

Notation Description

C as the set of all countable numbers. 76, 77

C

as the number of cities in a TSP. 7, 37, 106

as the class in supervised learning. 52

c as a city in a TSP. 7, 36, 37, 106, 108, 109, 111

cov as the percentage of the edge candidate sets

covering the edges in a known suboptimum.

111–117, 121, 127, 196

D

as a constant of “characteristic of a frontier”.

15, 16

as a discrete domain of a variable in a combi-

natorial optimization problem. 66, 72

d̄ as the average depth of optimal assignments

in a set of predicted priority lists of assign-

ments. 112–117, 121, 196

d as the distance between two cities in a TSP. 7,

36, 106, 109, 111

F as the F value of one-way ANOVA. 115, 116,

120, 143, 144, 148, 149, 197, 200, 201

xxvii

Notation Description

f as the objective function in a combinatorial

optimization problem. 66, 67

f l as the relationship of following between two

jobs in an FSP. 134, 135, 137, 138, 140

G as a variable of the measurement scale of frac-

tal coastline. 15, 16

Γ as the set of possible values of confidence

levels of predicting a assignment. 74, 77

γ as the predicted value (confidence) of appear-

ing in the optimum for an assignment. 74,

111

H as the set of low-level heuristics for a hyper-

heuristic. 68, 69, 73–77

h as a low-level heuristic for a hyper-heuristic.

68, 69, 73, 74

hc as a hard constraint in a combinatorial opti-

mization problem. 67

J as a job in an FSP. xvii, xxii, 130, 134, 137, 140

k

xxviii

Notation Description

as the number of maximum swaps for a tour

for a TSP. 33

as the size of k-quardrant candidate set. 103

L as the estimate of length of seacoast. 15

l as the learning in a hyper-heuristic. 68, 69,

72, 73

M as a positive constant prefactor of fractal

coastline. 15, 16

m as the number of machines in an FSP. xvii, 7,

132, 135–138, 150, 155

n

as the number of cities in a TSP. xvi, 7, 10–12,

22, 24, 35, 36, 38, 40, 57, 71, 106–110, 120, 122,

123

as the number of jobs in an FSP. 7, 130, 132,

134–137, 145, 150, 155

as the number of variables in a combinatorial

optimization problem. xvi–xix, xxii, xxiii, 10,

48, 63–67, 72–75, 77, 79, 81–83, 85, 87, 88, 94,

95, 104, 108, 110, 112–116, 119, 138, 140–144,

147, 156, 180, 187, 196, 199

xxix

Notation Description

as the size of a program in genetic program-

ming. 49

as the number of attributes. 52, 55

na as the number of attribute vectors for a hyper-

heuristic. 68, 72, 74, 77, 87, 88

nc as the number of hard constrains in a combi-

natorial optimization problem. 67

nh as the number of low-level heuristics in a

hyper-heuristic. 68

O as the big O notation, bounded above by an-

other function asymptotically. 10, 24, 67

Θ as the big Θ notation, bounded by another

function asymptotically. 48, 49, 77

P as all of the NP optimization problems. 9

P as the function of probability. 34, 36, 37, 52,

85

p

as the number of possible assignments in a

group of competitor. 94–96, 108, 109, 136

as the significance of one-way ANOVA. xvi,

xvii, xx, 115, 116, 120, 121, 125, 126, 143, 144,

148, 149, 153, 197, 200, 201

xxx

Notation Description

π as a performance measure for hyper-

heuristics. 68, 69, 73

R as the set of all real numbers. 67–69, 71, 73

ra as the number of raw attributes defined for

each assignment. 94–96, 109, 137

r

as the appriximation factor. 9, 10

as the function of resemblance between two

solutions. xvii, 25, 79, 80, 83, 107, 108, 111,

136, 140–144, 148, 155, 156, 161, 162, 199

S as the solution space (set of feasible solutions)

to a combinatorial optimization problem. 66–

69, 71–73, 79

s as a feasible solution to a combinatorial opti-

mization problem. 67, 69, 71, 73, 79

sam as the sampling procedure in the SPOT hyper-

heuristic. 72, 73

Σ as a set of U/EA2 solutions mapping from

the fesiable solutions to a combinatorial opti-

mization problem. 71–73

σ as a U/EA2 value of a fesiable solution to a

combinatorial optimization problem. 71, 73

xxxi

Notation Description

T as a bijection of transformation from a fesible

solution to a U/EA2 solution. 70–73

t as the processing time of a job on a machine

in an FSP. 7, 135, 137

τ as the quantity of pheromone on an edge in

ant colony approaches. 36, 38

V as the set of all possible solutions in a combi-

natorial optimization problem. 66, 67

ν as an assignment (valuation) for a variable in

a combinatorial optimization problem. 66

v as the set of all assignments for a variable in

a combinatorial optimization problem. 66

X as the set of variables in a combinatorial opti-

mization problem. 66, 70

x

as a variable in a combinatorial optimization

problem. 66, 70

as a value of raw attibute. 95, 96

as the x coordinate of a city in a TSP. 109

y as the y coordinate of a city in a TSP. 109

xxxii

Notation Description

Z as the set of all integers. 66, 76

List of Acronyms

Notation Description

APX Approximable. 9

BBO Black Box Optimization. 13, 43

CHeSC Cross-domain Heuristic Search Challenge. iv,

xvi, xviii, 21, 45, 90, 99, 103, 104, 118, 119,

123–125, 131, 132, 146, 147, 152, 153, 167–169,

172, 198, 202

DIMACS Center for Discrete Mathematics and Theo-

retical Computer Science. xxi, 14, 17, 33, 40

DSAFO Dynamic Scheduling Agents with Federation

Organization. 39

EDAs Estimation of Distribution Algorithms. 32–36,

39, 54, 61, 63, 166

xxxiii

xxxiv

Notation Description

EHBSA Edge Histogram Based Sampling Algorithm.

35

FSP permutation Flow-Shop scheduling Problem.

iii, iv, xvi–xix, xxii–xxiv, 7, 9, 25, 26, 88, 129–

139, 141, 145, 146, 151–155, 160–163, 167, 168,

171, 172, 178, 187–192

GCC GNU Compiler Collection. 98

GRASP Greedy Random Adaptive Search Procedure.

32, 34, 39, 40, 57

HK Held-Karp. 12, 14, 33, 102

HyFlex Hyper-heuristics Flexible framework. iii, viii,

xv, xvi, xviii, xxii, xxiii, 89–92, 97–99, 101, 103–

105, 109, 112, 114, 119, 122, 123, 125–127, 129,

131, 132, 135, 145, 147, 150, 152–154, 167, 169,

170, 172, 196

LKH Lin-Kernighan-Helsgaun. 33

xxxv

Notation Description

LLH low-level heuristic. xv–xvii, xxiii, 41, 42, 44–

46, 48, 49, 57, 61, 62, 65, 68, 69, 73–79, 83–86,

90–93, 98, 99, 104, 105, 108, 110–112, 117–125,

127, 128, 131–133, 138, 144–157, 165, 169, 173,

200

NFL No-Free-Lunch. 13, 15, 23, 43, 164, 173

NP Non-deterministic Polynomial time. 7–9

NP-Complete Non-deterministic Polynomial time-

Complete. iii, 7–10, 12, 21, 33, 35, 38,

41, 67, 68, 87, 88, 99, 102, 130, 159, 160, 164,

171, 172

NP-hard Non-deterministic Polynomial time-hard. 8,

9, 12, 23, 64, 102, 130, 164

P Polynomial-time. 7–9

PHunter Pearl Hunter. iv, xvi, xviii, xxii, xxiii, 21, 42,

45, 97, 99, 111, 118, 119, 123–126, 138, 139, 146,

147, 152–154, 157, 167, 172, 197, 198, 201, 202

SAT Boolean Satisfiability Problem. 44, 45, 49

xxxvi

Notation Description

SPOT Suboptimum- and Proportion-based On-the-

fly Training. iii, iv, xvi–xviii, xxii, xxiii, 15,

24–26, 29, 59–62, 65, 66, 70–74, 77–81, 83, 85–

87, 89, 92–94, 96–99, 101, 105–111, 113, 114,

117–119, 121–129, 133, 136–142, 144, 146–148,

151–157, 159–167, 169–173, 186, 193, 194, 196–

199, 201, 202

TSP Traveling Salesman Problem. iii, iv, xv, xvi,

xviii, xix, xxi–xxiii, 7, 9–12, 14, 17, 22–26, 33,

35, 36, 38, 40, 47, 49, 57, 60, 71, 80, 83, 84, 86,

87, 101–110, 113, 117, 118, 121–126, 128, 130,

131, 140, 145, 160–163, 165–169, 172, 175–177,

180, 181, 183–186

U/EA2 Unconstrained and with Equinumerous As-

signments and Equinumerous Attributes. 66,

71, 73, 78, 79, 81, 106, 107, 110, 133, 136, 137,

161

U/EA Unconstrained and with Equinumerous As-

signments. xxii, 61, 63, 66, 70–73, 78–80, 83,

87, 92, 106, 107, 133, 135, 155, 160–162, 164,

169

xxxvii

Notation Description

VLSI Very-Large-Scale Integration. 102

Weka Waikato Environment for Knowledge Analy-

sis. iii, viii, xv, 51–54, 82, 89–93, 95–97

xxxviii

Chapter 1

Introduction to the SPOT Algorithm

Many [geographical curves] are

statistically “self-similar,” meaning that

each portion can be considered a

reduced-scale image of the whole.

How Long is the Coast of Britain?

Benoı̂t B. Mandelbrot

Many — if not all — human activities involve searching for ways to

achieve particular goals. Individuals and organizations are called rational

if they maximize their benefits or minimize inconvenience in equivalent

measures. As a result, optimal decisions are highly demanded in many

practical as well as theoretical problems.

1

2 CHAPTER 1. INTRODUCTION TO THE SPOT ALGORITHM

1.1 Optimizations from Ancient to Modern Times

Since antiquity, many problems on decision making emerged from hu-

man social life, and were in the form maximizing benefits. Those successful

solvers became well-known representatives of human intelligence and ratio-

nality. The Roman poet Virgil (29-19B.C./1904, lines 1.365–1.368) recorded

a legendary story in the foundation of Carthage by Queen Elissa (Dido of

Carthage) around 800 B.C.:

Dēvēnēre Locōs, ubi nunc ingentia cernis

moenia surgentemque novae Karthāginis arcem,

mercātı̄ue solum, factı̄ dē nōmine Byrsam,

taurı̄nō quantum possent circumdare tergō.

[English (Virgil, 29-19B.C./1893, p. 14):

So to the place they came, where now thou spyest

The lofty walls and rising citadel

of new-built Carthage, and of land they bought —

Called Byrsa from their bargaining — so much

As with a bull’s hide they might compass round.]

This isoperimetric problem of enclosing the maximum area with a given perime-

ter is now also known as Dido’s problem (e.g., Merrill, 1919). The solution

for this case, with the Mediterranean coast as a given edge, is a semicircle

(Hackley, 1847, Appendix I, Theorem IV). Someone said that the cunning

Queen Elissa cut the bull hide into very narrow strips and circumscribed a

1.1. OPTIMIZATIONS FROM ANCIENT TO MODERN TIMES 3

maximized size of land in a semicircle1. Some others, such as R. B. Smith

(1913, p. 14), argued that the Greek legend was based on the superficial

resemblance of the Phoenician word “Bozra” (a fortress) to the Greek “Byrsa”

(an ox-hide). In addition, archaeological evidence shows that the city wall of

Carthage2 was not of circular arc shape. Although the authenticity of the ox-

hide legend is debatable, it is still clear that the idea of Dido’s maximization

appeared for more than two millennia.

Another historical story from the Kingdom Ch’i in the Warring States

Period, about 350 B.C., of ancient China was recorded by Sima (91B.C./2010,

pp. 01.761–01.762):

R���*úf9Å�"9fgÙ2vØ$�ì§2kþ!

¥!e�"ß´9f4XR�µ7�3�§�U-�Ò"8X

R&,�§��9*úfÅ�Z7"9��§9f�µ78±�

�ee�*þe§��þe�*¥e§��¥e�*ee"8Q

9n�ª§XR�ØÒ2Ò§w��Z7"

[English (Ssu-ma, 91B.C./1994, pp. 39–40): [Ch’i’s general] T’ien

ChiXR raced horses and gambled heavily with the Noble Scions

of Ch’i several times. [His guest] Sun Tzu [Sun Pin9�] noticed

that the horses’ speed was not much different and that the horses

fell into high, middle and low grades. After this, Sun Tzu told

T’ien Chi, “Just bet heavily, My Lord, and I can make you the

winner.”
1See Elissar, Dido, the Queen of Carthage and her city, http://www.phoenicia.org/

elissardidobio.html.
2See History Channel’s TV program Engineering an Empire: The Carthage.

http://www.phoenicia.org/elissardidobio.html
http://www.phoenicia.org/elissardidobio.html

4 CHAPTER 1. INTRODUCTION TO THE SPOT ALGORITHM

T’ien Chi confidently agreed and bet a thousand chin3 with King

[Wei%, r. *378–343 B.C.] and the Noble Scions [of Ch’i] on a race.

Just before the wager Sun Tzu said, “Now match their high-grade

horses with your low-grade horses, take your high-grade horses

to match their middle-grade horses and take your middle-grade

horses to match their low-grade horses.”

After they raced the three grades [of horses], T’ien lost once but

won twice and eventually gained the king’s thousand chin.]

The military strategist Sun Pin (or Bin), author of Sun Bin’s Art of War, sug-

gested to General T’ien Ch’i a discrete placement strategy for horse-racing,

as shown in Figure 1.1. Sun took advantage of the best combination4 of

matching and made T’ien the winner. After that, King Wei questioned Sun

on the arts of war and made him his counselor.

Minimization or maximization problems solved with modern mathemat-

ics can be traced back to the 17th century. One well known problem was

Bernoulli (1696)’s brachistochrone (Woodhouse, 1810/1964, p. 3), i.e. fastest

descent curve without friction, as shown in Figure 1.2:

Datis in plano verticali duobus punctis A et B, assignare mobili

M viam AMB, per quam gravitate sua descendens, et moveri

incipiens a puncto A, brevissimo tempore perveniat ad alterum

punctum B.

[English (D. E. Smith, 1929, p. 645): If two points A and B are

3Note: Weight unit, 1 chin = 256.26 g.
4It should be noted that this matching plan is not an equilibrium.

1.1. OPTIMIZATIONS FROM ANCIENT TO MODERN TIMES 5

Grade

High

Middle

Low

T’ien’s T’ien’s King’sKing’s

Sl
ow

er
Fa

st
er

N

N

N

n

n

n

N

N

N

n

n

n

(i) common matching:
T’ien lost (0/3 scores)

(ii) Sun’s placement:
T’ien won (2/3 scores)

$

$

$

$

"

"

Figure 1.1: Sun’s placement for T’ien Chi’s horses racing

given in a vertical plane, to assign to a mobile particle M the path

AMB along which, descending under its own weight, it passes

from the point A to the point B in the briefest time.]

The name brachistochrone was derived from Greek βράχıστoς (brachistos, the

shortest) and χρóνoς (chronos, time or delay). Six mathematicians, Newton,

Leibniz, Von Tschirnhaus, L’Hôpital, his elder brother Jacob Bernoulli and

Bernoulli himself (Gerdts, 2012, p. 1; Stillwell, 2010, p. 259), (independently)

found a solution — the cycloid5. Stillwell (2010, p. 259) regarded Jacob

Bernoulli’s solution as the most profound and the first major step in the

development of the calculus of variations.

During the last decades, the widespread use of computers enabled a lot

of optimization methods to be used that otherwise would be too tedious and

5Galileo proved a circular arc is better than strait line for brachistochrone in 1638, but
failed to recognize a cycloid (Babb & Currie, 2008).

6 CHAPTER 1. INTRODUCTION TO THE SPOT ALGORITHM

A

B

M

Figure 1.2: The brachistochrone problem

time-consuming for human planners. With a steadily developing computer

technology nowadays, the increasing machine power becomes an indispens-

able tool (Kleunen, 1976) and makes the optimization process more and more

efficient. In the contemporary world, almost all branches of engineering

have been increasingly dependent on computerized techniques (Kassim &

Cadbury, 1996).

1.2 Combinatorial Optimization: Problems and Algorithms

This thesis focuses on a class of problems encoded in discrete values

called combinatorial optimization problems. In a combinatorial optimization

problem, the aim is to look for an object from a finite (or possibly countably

infinite) set (Papadimitriou & Steiglitz, 1982, p. 2). A typical object can be an

integer number, a subset, a permutation or a graph structure (C. Blum & Roli,

2003). The best object is called the optimal solution or optimum, and the objects

very close to the optimal solution are called suboptimal solutions or suboptima.

1.2. COMBINATORIAL OPTIMIZATION 7

Examples of combinatorial optimization problems are the Traveling Salesman

Problem (TSP) and the permutation Flow-Shop scheduling Problem (FSP). The

definitions of the TSP and the FSP are quoted as follows, respectively.

In the traveling salesman problem, a set C = {c1, c2, . . . , cn} of

cities is given, and for each pair (ci, cj) of distinct cities, a distance

d(ci, cj). The target is to find a Hamiltonian cycle (also known

as a Hamiltonian circuit) of all the cities that minimizes the tour

length (D. S. Johnson & McGeoch, 1997).

Given n jobs to be processed on m machines in the same order,

the process time of job i on machine j being ti,j (i = 1, 2, . . . , n;

j = 1, 2, . . . , m), find the sequence of jobs such that the total

elapsed time (makespan) is minimized (Nawaz, Enscore, & Ham,

1983).

The TSP and the FSP seem easy to describe and validate, but they have

been proved to be in the NP-Complete (Non-deterministic Polynomial time-

Complete) class — a very difficult class of problems (Papadimitriou, 1977;

Garey, D. S. Johnson, & Sethi, 1976). In computational complexity theory, NP6

(Non-deterministic Polynomial time) is the set of decision problems solvable

in polynomial time on a non-deterministic Turing machine. P (Polynomial-

time) is the complexity class containing decision problems which can be

solved by a deterministic Turing machine using a polynomial amount of

computation time. Equivalently, solutions to NP problems can be verified

6See http://qwiki.stanford.edu/index.php/Complexity Zoo:N.

http://qwiki.stanford.edu/index.php/Complexity_Zoo:N

8 CHAPTER 1. INTRODUCTION TO THE SPOT ALGORITHM

NP P = NP = NP-Complete

P

NP-Complete

NP-hard NP-hard

(i) P = NP(ii) P , NP C
om

pl
ex

it
y

Figure 1.3: Euler diagram for classes of P, NP, NP-Complete and NP-hard

by a deterministic Turing machine in polynomial time. A problem is NP-

Complete, if and only if every other NP problem is reducible to this problem

(Garey & D. S. Johnson, 1979, p. 13). Another common term, NP-hard (Non-

deterministic Polynomial time-hard), represents the class of problems that

are at least as hard as problems in NP-Complete, as shown in Figure 1.3

(Wikipedia, 2012b). If any one NP-Complete problem can be generally solved

in polynomial-time on a deterministic Turing machine, so can every NP

problem.

The relationship “P versus NP?” is still unsolved, and the Clay Mathemat-

ics Institute is offering7 a US$ one million prize for the first correct proof or

disproof. However, most researchers believe P , NP. For example, in Aaron-

son (2005)’s poll, 61 out of 100 theorists thought P , NP, 9 thought P = NP,

7As one of the seven Clay Mathematics Institute’s Millennium Prize Problems, “P versus
NP?” problem was announced on May 24, 2000 at Collège de France and is still open in 2012.
See http://www.claymath.org/millennium/.

http://www.claymath.org/millennium/

1.2. COMBINATORIAL OPTIMIZATION 9

22 offered no opinion and 8 offered other opinions. In this thesis, P , NP

is assumed. As a result, no polynomial-time (A. L. Blum & Rivest, 1992) or

sub-exponential time (Woeginger, 2003) algorithm can exactly solve any NP-

Complete problem, in the worst case. In other words, for an NP-Complete

problem, the solution process will typically face either

• an explosive running time for an optimal solution, or

• suboptimal solutions for a reasonable running time.

In fact, to guarantee finding a suboptimum for an NP-Complete problem is

also very difficult. Ausiello et al. (1999, p. 93) defined APX (Approximable) as

the class of all NP optimization problems P such that, for some factor r ≥ 1,

there exists a polynomial-time r-approximation algorithm for P . Ausiello et

al. (1999, p. 94) proved that a TSP holding triangular inequality does not belong

to APX unless P = NP, and Papadimitriou and Vempala (2006) proved such

a TSP is NP-hard to approximate, if the ratio is less than 220/219. Williamson

et al. (1997) proved that an FSP is NP-hard to approximate with a factor less

than 5/4.

Exact algorithms for solving combinatorial optimization are those which

guarantee finding an optimal solution in a finite amount of time. Examples

of exact algorithms include:

branch-and-bound which systematically enumerates all feasible solutions

in a tree and drops subtrees on-the-fly by lower and upper bounds

(Lawler & Wood, 1966),

Lagrangian relaxation based methods such as Held and Karp (1970)’s 1-

10 CHAPTER 1. INTRODUCTION TO THE SPOT ALGORITHM

tree for TSP,

integer (linear) programming based methods 8 such as the cutting-plane

algorithm (Nemhauser & Wolsey, 1988, pp. 367–378) and the branch-

and-price (Barnhart, Johnson, Nemhauser, Savelsbergh, & Vance, 1998),

based on branch-and-bound and column generation,

exponential neighborhood search with an exponential setup time followed

by a polynomial (e.g., in O(n3)) time local search (Ahuja, Ergun, Orlin,

& Punnen, 2002; Gutin & Glover, 2005),

recursive exhaustive search which enumerates all possible combinations

and is not the best option usually.

The exact approaches mainly encounter the first difficulty. However, when

the number of variables is limited, most exact algorithms — sometimes

even exhaustive search algorithms — can be very effective and efficient for

problem solving, see Applegate, Bixby, Chvátal, and Cook (2001)’s branch-

and-cut for small-scale TSPs (n < 103).

Heuristic (also known as approximate9 and incomplete) optimization algo-

rithms only concentrate on a (small) subset of the solution space, usually

by experience-based techniques, and cannot guarantee the optimality of the

results. However, many heuristic optimization algorithms can find “good

enough” solutions in a “small enough” computation time. Examples of

heuristic optimization algorithms are:

8Modeling or transforming a combinatorial optimization problem into integer program-
ming does not help on the complexity. The integer programming itself is NP-Complete in
the strong sense (Karp, 1972), even each integer belonging to the set {0,1} (Sahni, 1974).

9It should be noted that an approximate algorithm is called r-approximation if and only
if it guarantees its results are no more than r times the optimum.

1.2. COMBINATORIAL OPTIMIZATION 11

first-come, first-served (or first-in-first-out): always selects the first available

component or assignment for the eventual result,

greedy construction: a step-by-step incremental construction, with a greedy

rule in each step, such as the multiple-fragment merge for TSPs (Bentley,

1992),

alpha-beta pruning: an approximate version of branch-and-bound with in-

exact branch reduction, see (Knuth & R. W. Moore, 1975),

meta-heuristics: high-level strategies for guiding a search (Glover, 1986)

according to feedback from the objective function, previous decisions

and prior performance (Stützle, 1998). More details can be found in

Section 2.1,

random: a return of a randomly generated solution, not the best option

usually.

The computations of heuristic optimization algorithms are usually in polynomial-

time. However, there might possibly exist some exponential heuristic op-

timization algorithms, such as an impractical local search for the best 0.5n-

edge-swap solution in a TSP.

Integrations of exact and heuristic optimization algorithms (Puchinger &

Raidl, 2005) can be either exact or heuristic. An example of exact integrations

was given by French, Robinson, and Wilson (2001)’s branch-and-bound for

maximum satisfiability. They employed a steady-state meta-heuristic (evolu-

tionary algorithm) to repeatedly suggest the fittest solutions from hanging

nodes in order to guide branching. The new integration still guaranteed to

12 CHAPTER 1. INTRODUCTION TO THE SPOT ALGORITHM

find an optimal solution and was reported to be better than a single branch-

and-bound or an evolutionary algorithm. A heuristic example by Cotta

and Troya (2003) also integrated the branch-and-bound and evolutionary

algorithm, though in a different way. They embedded branch-and-bound

as a low-level operator in the evolutionary algorithm. Their approach was

heuristic, because its main framework was a heuristic and did not guarantee

an optimal result.

In large-scale NP-Complete optimization, exact and heuristic optimiza-

tion algorithms are two indispensable forces for solving problems. The

optimum of a problem can be found by the squeeze theorem, if the greatest

lower bound by exact algorithms and the least upper bound by heuristic opti-

mization algorithms become equal. For example, Applegate, Bixby, Chvátal,

Cook, et al. (2009) improved the lower bound to a known feasible solution

found by heuristics and thus certificated an optimum for a large-scale TSP

instance (n = 85, 900) in 286.2 CPU-days for a 2.4 GHz CPU.

One algorithm is said to be dominated by another if it generally returns

a worse (or the same) solution while costs more computation time, and

vice versa for non-dominated. Only a few non-dominated exact algorithms

exist for a problem, at the most, because every exact algorithm guarantees

the same optimum. On the other hand, there are a lot of non-dominated

heuristic algorithms for each NP-hard combinatorial optimization problem.

For example, Figure 1.4 shows some non-dominated heuristic optimization

algorithms for the 10000-city random Euclidean TSP, where the Held-Karp

(HK) bound is a lower bound. In practice, the economic importance of many

combinatorial optimization problems stimulates increasing demands for

1.2. COMBINATORIAL OPTIMIZATION 13

more non-dominated algorithms. This is also a cause leading to the thriving

of heuristics studies.

Although many heuristics aim at being cross-domain, besides being non-

dominated, there is a deadly pitfall from the No-Free-Lunch (NFL) theorems

(Wolpert & Macready, 1997). There are two NFL theorems relating to the set

of all possible problems and the set of all possible algorithms, respectively:

Theorem 1 (No-Free-Lunch Theorem 1). Over all possible problems, no search

algorithm is better than any other algorithm, on average.

Theorem 2 (No-Free-Lunch Theorem 2). Over all possible search algorithms, no

search problem is harder than any other problem, on average.

The NFL theorems have been proved in different ways, such as in Wolpert

and Macready (1997) and Culberson (1998). Though the theorems can be

criticized as too ideal, such as the condition of “all possible problems”. The

NFL theorems mean that no algorithm can perform statistically better than

a random search of possible solutions on average, if no problem-specific

information is considered (also known as the Black Box Optimization, or

BBO).

In fact, handling the problem-specific characteristics is important for a

general-purpose optimization algorithm to stay away from the pitfall of

NFLs (Smith-Miles, 2008a). There are at least two options for an optimization

algorithm, theoretically, to keep a safe distance from the pitfall of the NFLs:

• To become a well-designed problem domain-specific (ad-hoc) algorithm

(Burke, Kendall, et al., 2003, pp. 459–460), and

14 CHAPTER 1. INTRODUCTION TO THE SPOT ALGORITHM
Ex

ce
ss

ov
er

th
e

H
K

bo
un

d
(%

)

Normalized computation time (s)

0.01 0.1 1 10 100 1000 10000
0

5

10

15

20

25

30

35
Non-dominated algorithms
Dominated algorithms

Pareto frontier

Spacefill

Strip

Karp

NI

NN

CHCI

Greedy

FI
Savings CCAAppChristo

Christo

GENI
2-Opt

3-Opt
LK TabuMLLK CLK Helsgaun

Figure 1.4: Examples of non-dominated and dominated heuristics for solving
the 10000-city Random Uniform Euclidean Instances in the DIMACS TSP
Challenge (D. S. Johnson & McGeoch, 2002, p. 376)

1.3. RESEARCH MOTIVES AND BACKGROUND 15

• To discover and to make use of domain-specific, problem data set-

specific and/or instance-specific characteristics dynamically, from case

to case,

where most of the successful cross-domain heuristics as well as exact methods

belong to the latter class (e.g., Poli & Graff, 2009).

In this study, the SPOT methodology is proposed for cross-domain com-

binatorial optimization problems. The SPOT methodology obtains instance-

specific information by machine learning to generate new heuristics or to

modify existing heuristics towards a non-dominated direction. Meanwhile,

the instance-specific information keeps the SPOT method safe from the pitfall

of the NFL theorems.

1.3 Research Motives and Background

Some extremely difficult real-world problems can be successfully approx-

imated to the best results very efficiently by investigating instance-specific

information in a portion of the whole problem. One example is the self-

similarity in fractals (Hutchinson, 1981). A self-similar object is exactly or

approximately similar to a part of itself. Mandelbrot (1967) presented such a

well-known approach to measure the length of the coastline of Great Britain,

see Figure 1.5 (Wikipedia, 2012a). Mandelbrot cited Richardson (1961)’s esti-

mate of length

L(G) = MG1−D, (1.1)

16 CHAPTER 1. INTRODUCTION TO THE SPOT ALGORITHM

Table 1.1: Examples of the characteristic D on the map
D Geographic boundary

1.00 An extreme value, a frontier that looks straight on the map
1.25 The west coast of Great Britain, which looks like one of the

most irregular seacoasts in the world
1.15 The land frontier of Germany in about 1899 A.D.
1.14 The land frontier between Spain and Portugal
1.13 The Australian coast
1.02 The coast of South Africa, a coast selected as looking one of

the smoothest in the atlas.

where M is a positive constant prefactor, G is a variable of the measurement

scale and D ≥ 1 is an instance-specific constant of the fractal dimension or a

“characteristic of a frontier, may be expected to have some positive correlation

with one’s immediate visual perception of the irregularity of the frontier”.

Hutchinson (1981) listed the characteristics of some geographic boundaries,

as shown in Table 1.1. Geographic curves in the real world are so involved in

their detail that their lengths are often infinite (or indefinable). Now, however,

the whole coastline can be estimated by measuring the “characteristic” D

through investigation of a small portion of the whole seacoast.

Another example is the sampling. In statistics and survey methodology,

sampling consists of selecting some part of a population to observe so that

one may estimate something about the whole population (Thompson, 2002,

p. 1). For example, the mean and the standard deviation of a population of

real numbers following an unknown normal distribution can be unbiased

estimatedly through the mean and the standard deviation of a random sam-

ple, respectively. A sample is representative only when the sampling process

is both accurate (with a mean of errors no more than a given threshold) and

reproducible (with a variance of errors no more than another given threshold)

1.3. RESEARCH MOTIVES AND BACKGROUND 17

G = 200km G = 100km G = 50km
L(G) ≈ 2, 400km L(G) ≈ 2, 800km L(G) ≈ 3, 400km

Figure 1.5: Britain fractal coastline

(Petersen, Minkkinen, & Esbensen, 2005). The success of the estimations lies

in the representativeness, which relies on the characteristics of the population.

Some well-known applications of sampling include census and production

testing (e.g., Milor & Sangiovanni-Vincentelli, 1994).

What attracts interest in this thesis are the instance-specific characteristics

(usually) hidden in combinatorial optimization problems and the methods

of finding them from a proportion of a large-scale problem. Take two bench-

mark instances of TSP as an illustration: P1 (the E100.0 from the DIMACS

TSP Challange10) with randomly generated cities and P2 (the xqf131 from

10The eighth DIMACS (Center for Discrete Mathematics and Theoretical Computer Sci-
ence) Implementation Challenge (2001), see http://dimacs.rutgers.edu/Challenges/ and
http://www2.research.att.com/∼dsj/chtsp/.

http://dimacs.rutgers.edu/Challenges/
http://www2.research.att.com/~dsj/chtsp/

18 CHAPTER 1. INTRODUCTION TO THE SPOT ALGORITHM

the VLSI data set11) from the print circuit industry with visually regular

cities, as shown in Figure 1.6. Since the visual difference in Figure 1.6 is clear,

one can hope that the instance-specific characteristics can probably unveil

more information than common knowledge, such as the triangular inequal-

ity. Another question is how to find the characteristics from a proportion, if

possible.

In the literature, various approaches have employed instance-specific in-

formation as “characteristics” to adjust both exact and heuristic optimization

algorithms for better performances for decades. There are three typical ways

of adjustment, including:

algorithm selection: returns a preferred subset of ready-to-use heuristics,

parameter optimization: (also known as parameter tuning and algorithm con-

figuration) returns numerical parameters for heuristics,

algorithm generation: returns interesting12 (most likely unknown previ-

ously, potentially useful) heuristics.

According to the nature of the object algorithm, the three typical ways can

be further divided, as shown in Figure 1.7. Figure 1.7 also shows the rela-

tionships between the adjustments and two popular concepts of heuristics,

meta-heuristics and hyper-heuristics13.

Typical algorithm selection for exact algorithms are: Lobjois and Lemaı̂tre

(1998)’s branch-and-bound approach which determines branching from a

11See http://www.tsp.gatech.edu/vlsi/.
12Nevertheless, some interesting results could be dominated by existing research, such as

Kotsiantis, Zaharakis, and Pintelas (2006).
13See Section 2.2 and Section 3.2.5.

http://www.tsp.gatech.edu/vlsi/

1.3. RESEARCH MOTIVES AND BACKGROUND 19

(i) A 2D TSP P1 with 100 randomly generated cities

(ii) A 2D TSP P2 with 131 cities from print circuit industry

Figure 1.6: TSP Examples from different data sets

20 CHAPTER 1. INTRODUCTION TO THE SPOT ALGORITHM

Instance-specific selection

Instance-specific
parameter optimization

for exact methods

for exact methods

for heuristics

for heuristics

Instance-specific
heuristic generation

Generation
of exact methods?

Heuristic
selection

Heuristic
generation

C
om

pl
ex

it
y

of
co

nt
ro

l

Hyper-heuristics

Meta-heuristics

Figure 1.7: Euler diagram of instance-specific adjustments of algorithms,
hyper-heuristics and meta-heuristics

number of (heuristic) options by performance prediction for each particular

problem instance, and Leyton-Brown, Nudelman, Andrew, McFadden, and

Shoham (2003)’s algorithm portfolios. Examples of parameter optimization

for exact algorithms are Kadioglu, Malitsky, Sellmann, and Tierney (2010)’s

instance-specific algorithm configuration for CPLEX, the best known mixed inte-

ger programming solver and Hutter, Hoos, Leyton-Brown, and Stützle (2009)’s

local search-based method named ParamILS. As far as is known, no approach

has been directly developed for exact algorithm generation. However, there

may be some possible indirect ways, such as Ibaraki and Muroga (1970)’s

linear programming for discovery of classifiers, and later works such as Brown,

Pittard, and Park (1996)’s optimum split on tree nodes. Such an indirect

approach can be called an “exact generation” if:

1.3. RESEARCH MOTIVES AND BACKGROUND 21

• there exists a one-to-one transformation between instances in an opti-

mization problem domain to a set of classification problems; and

• the results of linear programming can guarantee no error (optimum)

for any instance of classification.

Furthermore, it must cost at least exponential time (Woeginger, 2003) in

general for any exact generation, if it exists, in solving an NP-Complete

optimization problem. In fact, if there is a non-zero error between the training

labels (from the optimum) and the predicted values of the labels (usually

represented as a solution), the generation can be considered as heuristic

generation in practice.

Heuristic selection, including instance-specific algorithm selection and

parameter optimization for heuristics, has received increasing attention in

recent years. For example, there were twenty heuristic selection algorithms

submitted to the hyper-heuristic competition CHeSC (Cross-domain Heuris-

tic Search Challenge) 201114 from all over the world. Each competitor had a

particular strategy of making use of instance-specific and domain-specific in-

formation. Some cross-domain heuristic selection methods proved their non-

dominance in certain domains, such as Chan, Xue, Ip, and Cheung (2012)’s

Pearl Hunter (PHunter) hyper-heuristic which found new best-known solu-

tions (upper bounds) for six benchmark instances in the Employee Schedul-

ing Benchmark Data Sets15. The space of results of a heuristic selection is far

smaller than that of heuristic generation, as discussed in Section 3.2.5.

14The first Cross-domain Heuristic Search Challenge, see http://www.asap.cs.nott.ac.uk/
external/chesc2011/.

15See http://www.cs.nott.ac.uk/∼tec/NRP/.

http://www.asap.cs.nott.ac.uk/external/chesc2011/
http://www.asap.cs.nott.ac.uk/external/chesc2011/
http://www.cs.nott.ac.uk/~tec/NRP/

22 CHAPTER 1. INTRODUCTION TO THE SPOT ALGORITHM

In the literature, many heuristic generation methods are based on stochas-

tic learning techniques. Conventional stochastic learning methods belong

to supervised learning, which builds a concise model of the distribution of

class labels in terms of decision attributes (or predictor features) (Kotsiantis

et al., 2006). Typical examples include genetic programming and decision

tree (or rules) learning. Genetic programming constructs a heuristic in an

online evolutionary way (Koza, 1992, pp. 79–120). The latter method typi-

cally builds a heuristic in a hierarchical structure of rules that recursively

classify the class labels by construction and pruning (Murthy, 1998). Genetic

programming has been the most common (Burke, Hyde, Kendall, Ochoa,

Ozcan, & Qu, 2010) heuristic generation methodology.

However, many heuristic generation approaches could not generate non-

dominated new heuristics in comparison to existing ones. For example, as

“the best over all genetic programming work done on TSP”, Keller and Poli

(2007)’s genetic programming hyper-heuristic was limited to very small-scale

(n ≤ 102) TSP instances. In comparison, a meta-heuristic (e.g., Helsgaun,

2000) could almost guarantee to find an optimal solution for n ≤ 103 in a few

seconds. There are two main problems that make the feasibilities of many

heuristic generation methods very low:

Computation time: The time cost is, in fact, always crucial for non-dominance

and practicability of any algorithm. (See Figure 1.4)

Generalization: The high cross-domain capability was “the biggest chal-

lenge” (Burke, Hyde, Kendall, Ochoa, Ozcan, & Qu, 2010).

The main reason for the first difficulty is probably related to the explosive

1.3. RESEARCH MOTIVES AND BACKGROUND 23

search space of heuristics to generate, especially in large-scale NP-hard

combinatorial optimization problems, see Section 3.2.5. Other reasons for

the first difficulty depend on the learning methods, such as the (probably

possible) non-convergence of the canonical evolution (Rudolph, 1994) for a

genetic programming and the very expensive time for preparing a number of

training examples for a decision tree or rule learning. Reasons for the latter

difficulty also depend on the learning, such as the encoding in some problem

domains (Burke, Hyde, Kendall, Ochoa, Ozcan, & Qu, 2010) for a genetic

programming and the definitions of attributes and mutually exclusive classes

(Bose & Mahapatra, 2001) for a decision tree or rule learning. It should be

noted that the NFL theorems would be included in the second difficulty,

when all the domains were claimed by an algorithm.

Xue, Chan, Ip, and Cheung (2011) presented some ideas for handling

the first difficulty. They proposed a novel sampling method to resolve the

first problem. The supervised class association rules learning was employed

to discover the probability of assignments of being “promising” for each

decision making in choosing two edges starting from a known city. It was

found that the rules learned from a sampled subproblem were generally

consistent with those from the master problem in the Euclidean TSP. The

approach consists of four main steps:

• sampling a proportion (subset of variables with corresponding con-

straints) with a bounded size as a subproblem,

• solving the subproblem,

• finding new stochastic heuristic rules for the portion, and

24 CHAPTER 1. INTRODUCTION TO THE SPOT ALGORITHM

• applying new heuristic rules back to the given problem.

The sampling stood for selecting a subset of variables from all the given

variables, as well as the corresponding constraints. The bounded size on

the proportion dramatically reduced the time complexity (to O(n log n)).

The experimental results of the effectiveness of the approximate method in

Euclidean TSPs (3.16× 103 . n ≤ 106) seemed very satisfactory. The time

cost of the method was less than a typical iteration of the resulting heuristic

when n ≥ 3.16× 104. However, the second problem was not mentioned

in Xue, Chan, et al. (2011). The decision attributes were experience-based,

specific for the Euclidean TSP, and fixed. The limited attributes and finite

values for each attribute made the method a heuristic selection, though

stochastic learning was involved. See Section 3.2.5 for the definitions.

1.4 Objectives and Achievements of Thesis

This study aims at presenting the SPOT method, which is expected to

be a practicable, instance-specific and cross-domain heuristic generation

methodology. Therefore, the difficulties on time cost and generalization

addressed in Section 1.3 would inevitably be encountered. The objectives

are given in Section 1.4.1 in order to try to tackle the two difficulties. Section

1.4.2 presents major achievements of the thesis.

1.4.1 Objectives

The primary objective of this research is

1.4. OBJECTIVES AND ACHIEVEMENTS OF THESIS 25

• To develop an efficient and instance-specific methodology that carries

out on-the-fly supervised learning.

There are four particular supporting objectives to fulfill the primary objective,

including:

• To standardize the input combinatorial optimization problem in the

methodology,

• To regulate a systematic way of compiling decision attributes for vari-

ous measures in different domains,

• To define an indicator to guide the development procedure and to

predict the effectiveness approximately, and

• To explore effective ways of making use of learned instance-specific

information to generate new heuristics.

1.4.2 Achievements and contributions

All the objectives listed in Section 1.4.1 were achieved in this thesis.

Chapter 3 presents the instance-specific heuristic generation approach SPOT

(Suboptimum- and Proportion-based On-the-fly Training) as an extension of

Xue, Chan, et al. (2011). The standard of the input problem and an indicator

r of “resemblance” are given in Section 3.2.3 and examined in the two do-

mains of the TSP and the FSP. A set of equations for generating new decision

attributes based on domain-specific measures are designed to normalize the

data for learning, as shown in Section 4.3. Applications and experiments on

the TSP and the FSP domains are represented in Chapter 5 and Chapter 6.

26 CHAPTER 1. INTRODUCTION TO THE SPOT ALGORITHM

Some plans for modifying existing heuristics, including mutations and local

search, are also illustrated in Chapter 5 and Chapter 6.

Besides the SPOT methodology, another important theoretical contribu-

tion is the formulation of hyper-heuristics in Section 3.2.4 and the formal

definitions of heuristic selection and heuristic generation in Section 3.2.5. In

this thesis, the boundary between the two subclasses of hyper-heuristics is

defined on the basis of the countability of the maximum number of possibly

generated heuristics. The formulations, especially the formal distinction

between heuristic selection and heuristic generation, are proposed for the

first time, as far as is known.

1.5 Outline of Thesis

Besides this chapter, there are six more chapters in this thesis. As a con-

tinuation of the research background, state-of-the-art of hyper-heuristics,

related meta-heuristics and other approaches are reviewed in Chapter 2.

Among all the approaches, heuristic generation methods are the focus. Chap-

ter 3 proposes the concept of the SPOT method and the supporting standards

and indicators for it. Formal definitions of the combinatorial optimization

problem, hyper-heuristics, the two subclasses of hyper-heuristics and the

SPOT algorithm are also introduced in Chapter 3. An implementation is intro-

duced on the basis of two well-known algorithm development frameworks

in Chapter 4. Two test domains, the TSP and the FSP, are involved in Chapter

5 and Chapter 6, respectively. The whole methodology of developing the

SPOT hyper-heuristic to the two typical combinatorial optimization prob-

1.5. OUTLINE OF THESIS 27

lems can be found in Chapter 5 and Chapter 6. Discussion and concluding

remarks are given in Chapter 7.

28 CHAPTER 1. INTRODUCTION TO THE SPOT ALGORITHM

Chapter 2

Literature Review

Zij die wensen dat de toekomst anders is dan

het verleden, moeten het verleden bestuderen.

If you want the present to be different

from the past, study the past.

Ethica (Ethics)

Baruch Spinoza

Important approaches related to the SPOT algorithm, such as heuristic

generation, sampling and machine learning, are recalled in this chapter. The

families of typical meta-heuristics are reviewed in Section 2.1. Some meta-

heuristic methods involving sampling techniques are introduced in detail.

Section 2.2 surveys hyper-heuristic approaches, including heuristic selection

and heuristic generation methods. The supervised machine learning, or

classification, and related techniques in machine learning are reviewed in

Section 2.3.

29

30 CHAPTER 2. LITERATURE REVIEW

2.1 Meta-Heuristics

The term meta-heuristic, introduced by Glover (1986), derives from the

composition of Greek εὺρίσκω (heuriskō, to find) and a suffix µετά (meta,

behind or in an upper level). Although this term has been widely adopted,

there is still not an extensively accepted definition. Some definitions from

previous researchers are quoted as follows. It can be synthesized that a meta-

heuristic usually combines the basic heuristics (such as first-come, first-served)

and dynamically controls searching by feedback in a problem solving.

A meta-heuristic is a heuristic method within which another

heuristic local search procedure can be used at each step. (de

Werra & Hertz, 1989)

A meta-heuristic is a high-level and problem-independent defini-

tion of a search strategy that can then be specialized to the specific

optimization problem at hand. (Birattari, 2009, p. 28)

Meta-heuristics are typically high-level strategies which guide

an underlying, more problem specific heuristics, to increase their

performance. . . . Many of the methods can be interpreted as in-

troducing a bias such that high quality solutions are produced

quickly. This bias can be of various forms and can be cast as de-

scent bias (based on the objective function), memory bias (based

on previously made decisions) or experience bias (based on prior

performance). (Stützle, 1998)

2.1. META-HEURISTICS 31

2.1.1 Well-known algorithms

As a subclass of heuristics, meta-heuristics cannot guarantee finding the

optimal solutions. However, various meta-heuristic approaches have been

widely adopted and can be found in thousands16 of published works. Some

early meta-heuristics were developed decades before the proposal of the

term itself, such as the local search (Croes, 1958; Lin, 1965). Comprehensive

surveys of meta-heuristics can be found in C. Blum and Roli (2003) and Gen-

dreau and Potvin (2010). Some well-known meta-heuristics (in chronological

order) are listed as follows.

Local search (or hill-climbing) starts from a feasible solution and repeatedly

replaces it with a better neighbor, until no better neighboring solutions

can be found (Croes, 1958; Lin, 1965). Successors of local search include

iterated local search (Lourenço, Martin, & Stützle, 2003), variable-depth

search (van der Bruggen, Lenstra, & Schuur, 1993) and variable neighbor-

hood search (Mladenović & Hansen, 1997).

Simulated annealing solves problems in a way similar to annealing used by

metallurgists (Kirkpatrick, Gelatt, & Vecchi, 1983; Černý, 1985).

Genetic algorithm is a population-based meta-heuristic with repeated muta-

tion, crossover, and selection (Holland, 1992). The genetic algorithm and

closely related genetic programming (Koza, 1992, pp. 79–120), artificial

immune system (Hunt & Cooke, 1996) and Memetic algorithm (Moscato &

16Google ScholarTM(http://scholar.google.com/) returned 1,200 results with “metaheuris-
tics” in title, 1,130 for “metaheuristic”, 400 for “meta-heuristics” and 587 for “meta-heuristic”,
on April 23rd, 2012.

http://scholar.google.com/

32 CHAPTER 2. LITERATURE REVIEW

Cotta, 2003) are also called evolutionary algorithms (Eiben & J. E. Smith,

2003, pp. 15–35).

Tabu search employs a short-term memory to prevent recent moves, an in-

tensification mechanism for focused explorations, and a diversification

mechanism for search balance (Glover, 1986; Glover & Laguna, 1997).

Greedy randomized adaptive search procedures (GRASP) begin with mul-

tiple heuristic (greedy random) initializations (Feo & Resende, 1989,

1995).

Ant colony optimization holds a positive feedback mechanism based on the

density of “pheromone” and a “random proportional transition rule”

(Colorni, Dorigo, & Maniezzo, 1992; Bonabeau, Dorigo, & Theraulaz,

1999).

Particle swarm optimization evolves from the collective behavior of an an-

imal school (Kennedy & Eberhart, 1995; Kennedy, Eberhart, & Shi,

2001).

Estimation of distribution algorithms (EDAs) estimate the relations from

the preceding population and manipulating population evolution ac-

cording to the relations involved (Mühlenbein & Paaß, 1996; Mühlen-

bein, Bendisch, & Voigt, 1996).

Cross entropy method is a general Monte Carlo approach initially developed

by Rubinstein (1997) for estimating the probability of rare events in

complex stochastic networks, and adopted for solving combinatorial

optimization problems later (Rubinstein, 1999).

2.1. META-HEURISTICS 33

As two well-known meta-heuristics which are closely related to the al-

gorithm in this thesis, EDAs and ant colony optimization usually intends

to model the variables as independent values or values with very low cor-

relations. Some neighborhoods of local search consist of a certain amount

of neighboring solutions with a limited number of variables to be flipped

(for binary ones) or changed. The neighborhoods in this form implicitly

refer to low correlations between variables. In fact, local search methods on

such neighborhoods can be highly competitive in many problem domains.

For example, the Lin-Kernighan-Helsgaun (LKH) (Helsgaun, 2000, 2009)

which is an iterated k-Opt (k ≤ 8 usually) local search kept most of the

records of open benchmark instances17 for TSPs. At the same time, the

greedy heuristics, such as Bentley (1992)’s multiple fragment merging greedy,

could find a solution within about 15% over HK bound very quickly for a

TSP, see DIMACS TSP Challenge. The idea of greedy construction heuristics,

i.e., solving a problem by assigning each variable with a limited number

of values greedily and independently, is also based on the hypothesis of

the independency of variables. The effectiveness of such neighborhoods

(and greedy heuristics) seems to undermine, at least in certain NP-Complete

problems, the hypothesis of high correlations among variables.

2.1.2 Sampling in meta-heuristics

There are a lot of explicit or implicit sampling methods in many meta-

heuristic approaches, such as the evolutionary algorithms, ant colony op-

17See http://www.tsp.gatech.edu/vlsi/summary.html for VLSI TSP Data Set. See http://
www.akira.ruc.dk/∼keld/research/LKH/DIMACS results.html for random and clustered
instances in DIMACS TSP Challenge.

http://www.tsp.gatech.edu/vlsi/summary.html
http://www.akira.ruc.dk/~keld/research/LKH/DIMACS_results.html
http://www.akira.ruc.dk/~keld/research/LKH/DIMACS_results.html

34 CHAPTER 2. LITERATURE REVIEW

timization, particle swarm optimization, GRASP, EDAs and cross entropy

method. A typical example is the EDAs, also known as probabilistic model-

building genetic algorithms. EDAs were originally designed as an alterna-

tive for evolutionary algorithms (Mühlenbein & Paaß, 1996; Mühlenbein,

Bendisch, & Voigt, 1996). However, EDAs inherit neither crossover nor mu-

tation operators. Instead, the essence of the method is in estimating the

relations from the preceding sample and manipulating sample evolution.

Take the OneMax problem (maximizing the Manhattan norm of a binary

vector ~x) as an example:

max ‖~x‖1 =
n

∑
i=1
|xi| (2.1)

s.t. xi ∈ {0, 1} 1 ≤ i ≤ n (2.2)

The first stage consists in generating an initial sample S0 of a number (non-

zero) of individuals by the probability distribution:

P0(~x) =
n

∏
i=1

P0(xi), (2.3)

where P0(xi) is the initial probability of xi = 1. The second stage consists

in selecting “good” (with higher objective values) individuals to form a

new sample Sgood
0 ⊆ S0. In the third stage, the probability distribution is

re-estimated:

P1(~x) =
n

∏
i=1

P(xi|S
good
0). (2.4)

The three steps can loop until a stop criterion is met. Products in Equations

2.3 and 2.4, an implicit local search-like diversification, require that each

2.1. META-HEURISTICS 35

variable is independent of the others. For those cases in which variables are

dependent on others, Mühlenbein and Mahnig (1999) proposed the factorized

distribution algorithm and Pelikan, Goldberg, and Cantú-Paz (1999) developed

the Bayesian optimization algorithm driven by Bayesian networks. Both of these

two algorithms and their successors inherited the probability-assignments

sampling essence of EDAs.

However, the impact of EDAs in solving NP-Complete combinatorial

optimization problems seemed limited. For example, Ceberio, Irurozki,

Mendiburu, and Lozano (2012) showed that the Edge Histogram Based Sam-

pling Algorithm (EHBSA), one of the best EDAs, could find satisfactory

solutions (0.37% above optima on average) for very small (n < 150) bench-

mark instances of TSP in 100n iterations. Tsutsui, Pelikan, and Goldberg

(2003) incorporated a 2-Opt local search to EHBSA and showed a very high

chance to return an optimal solution in tens of thousands of iterations for a

TSP with n = 439 cities, under certain configurations of parameters. Nev-

ertheless, the state-of-the-art EDAs seemed not able to compete with other

non-dominated heuristics. The main difficulty when applying the EDAs is

the estimation of the probability distribution. EDAs also have at least four

parameters to be determined: population size, selection size, offspring size

and selection method.

In the ant colony optimization, Colorni et al. (1992)’s roaming ant was

another algorithmic concept close to the individual in EDAs. Ant colony

algorithms employ similar probability-assignments sampling, and some

different probability updating rules as their main mechanisms. A basic ant

colony algorithm called ant system was proposed by Colorni et al. (1992) for

36 CHAPTER 2. LITERATURE REVIEW

solving TSPs. In each iteration, a number of ants traverse the graph and

build complete paths of n edges. For an ant at a city ci, the probability of

choosing a path (ci, cj), where i , j, is according to the “random proportional

transition rule” (Bonabeau et al., 1999, pp. 42–43):

Pij =

(
τij
)α ·

(
d(ci, cj)

)−β

∑l not visited (τil)
α · (d(ci, cl))

−β
if cj was not visited (2.5a)

0 otherwise, (2.5b)

where α and −β are two parameters controlling the importance of the trail

intensity (τij, quantity of pheromone) and the distance18, respectively. It can

be found that the intensity τ bears a resemblance to the probability P in

EDAs. The difference is that the nearness is also considered in the sampling.

Hence the sampling is closer to the nearness-based neighborhoods of a local

search. A selected ant leaves a certain amount of pheromone ∆τij on its entire

course after each iteration, the quantity of which depends on the quality of

the solution found by the ant:

∆τij =

Q

Tour length found by the ant
if the ant chose (ci, cj) (2.6a)

0 otherwise, (2.6b)

where Q a fixed parameter. A “forgetting-bad-solution” mechanism, evapora-

tion with a factor ρ, was also introduced to update the τij to:

(1− ρ)τij + ∑
all ants

∆τij. (2.7)

There were also a number of derivations of ant colony approaches. The

18(d(ci, cj)
)−1 is also known as the visibility.

2.1. META-HEURISTICS 37

ant system in Dorigo, Maniezzo, and Colorni (1991) employed an elitist

ants mechanism, in which the best ant (that which traversed the shortest

path) deposits a large quantity of pheromone, with a view to increase the

probability of the other ants of exploring the most promising solution. In

Gambardella and Dorigo (1995)’s Ant-Q, the rule of local update was the

Q-learning, a reinforced learning. However, no improvement compared with

the ant system could be demonstrated. Besides, even in the opinion of the

authors, this algorithm is not more than a pre-version of the ant colony system.

Dorigo and Gambardella (1997a, 1997b) presented the ant colony system,

and later with a 3-Opt local search, to improve the performance for problems

of higher dimensions, by introducing a few mechanisms:

• A parameter q0 ∈ (0, 1) for a balance between diversification and

intensification for each ant at a city ci:

cnext =

arg max
cj∈C,i,j

(
Pij by Equation 2.5a

)
if q ≤ q0 (2.8a)

the city chosen in the usual way otherwise (2.8b)

where q ∈ [0, 1] is a uniformly distributed random variable,

• A global update procedure, in which only the best ant would do a

pheromone update in the global update,

• A list of candidates of the closest cities, which was partly inherited

from local search.

In fact, the first mechanism within the ant colony system brought more inten-

sification (focusing on the most “promising” candidate) into the sampling.

38 CHAPTER 2. LITERATURE REVIEW

Stützle and Hoos (1997) proposed a MAX-MIN ant system based on the ant

system and presented some notable differences:

• The values of the trails are limited by τmin and τmax;

• Only the best ant updates a trail of pheromone;

• The trails are initialized with the maximum value τmax;

• The updating of the trails is made in a proportional manner, the

strongest trails being less reinforced than the weakest;

• A re-initialization of the trails can be carried out.

The final results are obtained by updating the best-so-far solution with an

increasingly strong frequency, during the running of the algorithm. The first

mechanism within the MAX-MIN ant system, compared to that of the ant

system, made more diversifications in the sampling.

However, the experiments of ant colony optimization approaches only

showed a limited impact in solving NP-Complete combinatorial optimiza-

tion problems. Early approaches without local search could be easily domi-

nated (Dorigo, Maniezzo, & Colorni, 1991), even in small-scale benchmark

instances. For example, the results of ant colony methods for TSPs were usu-

ally around 0.3-2% (Stützle & Hoos, 1997) and were limited within n < 103

due to (relatively) expensive tour construction and a great number of iter-

ations. Some later ant colony approaches employing local search methods

could improve and solve TSP instances beyond 103 cities, such as in Dorigo

and Gambardella (1997a) and L. Li, Ju, and Zhang (2008).

2.1. META-HEURISTICS 39

Another typical example was GRASP. The multi-start of GRASP, usu-

ally greedy randomized solutions, can be regarded as a biased Monte Carlo

sampling. One difference between the multi-start of GRASP and the prob-

abilistic selection in EDAs and ant colony approaches is that there is no

learning or evolving for the sampling. Feo and Resende (1995) presented

an example of GRASP with random selection on greedy subsets of assign-

ments. A restricted candidate list was defined for each variable to exclude

the unpromising candidates and a component-by-component construction

heuristic chose solution components randomly from the restricted candidate

lists to form a solution.

Another example was a probabilistic greedy in a multi-agent implemen-

tation of GRASP called Dynamic Scheduling Agents with Federation Organi-

zation (DSAFO) for an airport ground service scheduling problem at Beijing

Capital International Airport (Fan & Xue, 2006; Xue & Fan, 2007). In DSAFO,

resources such as baggage trucks were divided into groups. A representative

agent was designed to manage a group of resources, to query tasks from

the blackboard and to try to assign the published task with its own resource

according to the earliest finish time heuristic. The tasks were listed one by

one on the “blackboard” according to an earliest due date heuristic. The only

randomness was a priority of communication for each representative agent.

Some researchers also embedded a local search in the GRASP to improve

the results further (Feo & Resende, 1995; Marinakis, Migdalas, & Pardalos,

2005b).

GRASP is flexible and easy to implement. The results of GRASP can be

generally competitive with basic heuristics, such as the DSAFO outperformed

40 CHAPTER 2. LITERATURE REVIEW

the earliest due date heuristic, the earliest ready time heuristic and a MAX-

MIN ant system in the bi-objective optimization of airport ground service

scheduling. However, the non-dominance was not always guaranteed. For

example, Marinakis et al. (2005b) showed a comparison on solution quality

between an iterated local search, involving GRASP and a 3-Opt local search,

and other fifty four algorithms submitted in the DIMACS TSP Challenge

in some benchmark TSP instances (103 ≤ n ≤ 2.4× 103). Marinakis et al.

(2005b)’s method generally returned an average 1.181% excess over optima

and was ranked as the thirteenth. However, their result was still not able

to be competitive with other iterated 3-Opt local search methods such as

D. S. Johnson and McGeoch (1997)’s (with an average 0.413% excess). In

addition, the time cost was not reported in Marinakis et al. (2005b). Marinakis,

Migdalas, and Pardalos, 2005a presented another GRASP approach and

showed a twelfth rank.

Differing from the methods mentioned above, many other meta-heuristics

that employ sampling treat one solution as an individual and the whole

search space, or a promising part of it, as the population for a given problem.

Different methods were developed to estimate the promising (hopefully

suboptimal) solutions by investigating the promising subset in the sample.

A number of new algorithms have been developed, and a lot of interesting

findings have been achieved to guide and to control the heuristic search

procedure. The resulting meta-heuristics returned, in general, more satis-

factory results than conventional simple heuristics. However, for a certain

problem domain, the ad-hoc methods such as a local search algorithm with

a sophisticated and well-designed neighborhood usually were more com-

2.2. HYPER-HEURISTICS 41

petitive with the sampling-based methods, especially in large-scale problem

instances. A possible reason was the distributions of suboptima (or local

minima/maxima) in an NP-Complete problem were extremely irregular and

difficult to estimate. In addition, the decision procedure of the optimal sam-

pling plan is, ironically, another problem to optimize, for example, Raschke,

Krishen, Kachroo, and Maheshwari (2012) discussed a combinatorial opti-

mization model for identification and optimization of sampling in certain

conditions.

2.2 Hyper-Heuristics

A hyper-heuristic is a search method or learning mechanism for selecting or

generating heuristics to solve computational search problems (Burke, Hyde,

Kendall, Ochoa, Ozcan, & Qu, 2010). The term itself was introduced by

Denzinger, Fuchs, and Fuchs (1997) and the definition became well-accepted

by Burke, Kendall, et al. (2003). The prefix was from ὺπέ% (hyper, above or

with many dimensions). In fact, the relation between hyper-heuristics and

meta-heuristics, i.e. “hyper-heuristics versus meta-heuristics”, is not very

clear due to the different definitions of meta-heuristics. For example, hyper-

heuristics * meta-heuristics could be held in de Werra and Hertz (1989)’s

definition, as quoted in Section 2.1. However, hyper-heuristics ⊆ meta-

heuristics, which could be held in other definitions such as Stützle (1998)’s,

is assumed in this thesis, as shown in Figure 1.7. What distinguishes hyper-

heuristics from the meta-heuristics is the search space. A hyper-heuristic

generally solves a problem by calling given or generated heuristics, which

are called low-level heuristics (LLHs), and does not directly manipulate the

42 CHAPTER 2. LITERATURE REVIEW

assignments of variables within a solution. Therefore, the search space of

a hyper-heuristic is a space of combinations of LLHs. On the other hand,

a meta-heuristic can directly manipulate the meta-data in a solution. The

search space of a meta-heuristic can be a space of solutions.

Because of the “off-the-peg” (Burke, Hyde, Kendall, Ochoa, Ozcan, & Qu,

2010) nature, hyper-heuristics are generally easier to be adapted to different

problem domains than meta-heuristics. As a side effect accompanying the

high adaptability, the resulting selected (and some generated) heuristics, in

many cases, were dominated by those meta-heuristics carefully fine-tuned

for a problem domain. However, some hyper-heuristics (mostly heuristic

generation) could be non-dominated and outperformed existing heuristics

such as Chan et al. (2012)’s PHunter hyper-heuristic, as mentioned in Section

1.3. It was believed that one of the main contributors to the new upper

bounds found by the PHunter was a newly introduced LLH which had not

been implemented before or carefully fine-tuned in any other approaches.

If it was proved true, a heuristic generation methodology which improved

existing LLHs could notably increase the competitiveness of a general hyper-

heuristic.

Burke, Hyde, Kendall, Ochoa, Ozcan, and Qu (2010) surveyed compre-

hensive hyper-heuristic approaches and classified all the hyper-heuristics

into two categories: heuristic selection and heuristic generation. In this thesis,

the two categories are formally redefined according to the countability of

the maximum space of LLHs, as shown in Section 3.2.5. As a result, both

extensions of heuristic selection and heuristic generation are extended. Be-

cause Burke, Hyde, Kendall, Ochoa, Ozcan, and Qu (2010)’s review was so

2.2. HYPER-HEURISTICS 43

general and comprehensive, it is not necessary to repeat every well-known

hyper-heuristic approach in this thesis. The approaches that are critically

important, newly developed or missed in Burke, Hyde, Kendall, Ochoa,

Ozcan, and Qu (2010) are introduced in the following.

2.2.1 Heuristic selection approaches

The algorithm selection problem was first formalized by Rice (1976). The

question in an algorithm selection problem (Xu, Hutter, Hoos, & Leyton-

Brown, 2008) is: “which algorithm(s) should run now in order to minimize

some performance objective, such as the expected runtime?” Although the

resulting selected algorithm seems more effective than an arbitrary algo-

rithm on average, the algorithm selection problem, itself, is still governed by

Theorem 1 of NFL if it is regarded as a BBO, which means that no specific in-

formation is considered. In fact, determination of the best algorithm to solve

one algorithm selection problem is, ironically, another algorithm selection

problem (Smith-Miles, 2008a).

Early hyper-heuristic approaches, similar to the early meta-heuristics,

were proposed far earlier than the term. For example, Crowston, Glover,

Thompson, and Trawick (1963) sampled a set of decision rules and updated

the probabilities of the rules to learn (or converge) to improve the search

process. Crowston et al. (1963) showed the quality of the solution found

by learning was more satisfactory than those by single isolated rules or by

random sampling among the rules. That was also one of the early heuristic

selection applications.

Burke, Hyde, Kendall, Ochoa, Ozcan, and Qu (2010)’s heuristic selection

44 CHAPTER 2. LITERATURE REVIEW

concept referred to the methodologies for choosing or selecting existing

heuristics. In this thesis, heuristic selection is defined as the hyper-heuristics

of which the possible results (space) of LLHs are countable for any problem,

including those with countably infinite variables. Therefore, some research

areas used to be “close” to but outside the heuristic selection in Burke, Hyde,

Kendall, Ochoa, Ozcan, and Qu (2010) are regarded as heuristic selection

methods in this thesis, such as the parameter optimization approaches for

heuristics and the (heuristic) algorithm portfolios. See Section 3.2.5 for more

details.

Tuning parameter set automatically for heuristics could be considered as

early practice in hyper-heuristics. An early example was the use of Rechen-

berg’s 1/5 success rule for changing the mutation rate by evolution strate-

gies in an evolutionary algorithm presented in 1973 (Burke, Hyde, Kendall,

Ochoa, Ozcan, & Qu, 2010). Some simple heuristics as well as many meta-

heuristics have a number of parameters to be determined in each problem

domain. Population-based meta-heuristics received much attention, such

as Grefenstette (1986), Eiben, Hinterding, and Michalewicz (1999) and Lobo

and Goldberg (2004)’s different methods of controlling parameters for evolu-

tionary algorithms, respectively. For local search heuristics, an example was

Boyan (1998) and later Boyan and A. Moore (2000)’s parameter optimization

method “STAGE” in seven problem domains, including bin-packing and

the Boolean Satisfiability Problem (SAT). STAGE employed a fixed number

of experience-based attributes of the current solution to estimate the per-

formance of each given local search heuristics by some linear, quadratic,

cubic and other regression methods. The best dynamically estimated local

2.2. HYPER-HEURISTICS 45

search won the turn to run. STAGE was proven effective and efficient and

could be compared to up-to-date heuristics, such as Kim and Wy (2010)’s

results in 1D bin packing. Many recent advances of hyper-heuristics, such as

Mısır, Verbeeck, Causmaecker, and Vanden Berghe (2012)’s approach, which

won the CHeSC 2011 competition, had involved parameter optimization for

manipulating LLHs.

A portfolio of algorithms is a collection of different algorithms and/or dif-

ferent copies of the same algorithm running on different processors (Gomes

& Selman, 1997; Huberman, Lukose, & Hogg, 1997), or equivalently on frac-

tions of CPU cycles on a single CPU. The first solution (for satisfiability-style

problems) or the best solution (for minimization or maximization problems)

is chosen as the result of the portfolio. Xu, Hutter, et al. (2008)’s portfo-

lio of solvers, SATzilla, which won three gold medals, one silver medal

and one bronze medal in the 2007 SAT competition19, is a typical example.

SATzilla predicts performances (such as computation time) of solvers by tens

of features (or attributes) and determines the best subset of solvers to run.

Chan et al. (2012)’s PHunter was another example. Given a specific problem,

PHunter tests all given LLHs in crossover, mutation and ruin-and-recreate

diversification classes, and constructs three portfolios with the best three

LLHs in each class, respectively. The iterations of the three LLHs are 3, 2

and 1, respectively, for each portfolio. The final combination of portfolios

was determined by pre-trained decision tree prediction according to tens of

attributes. In addition, parallel execution of heuristic and exact algorithms

are also closely related to heuristic algorithm portfolios, such as Denzinger

19See http://www.satcompetition.org/2007/.

http://www.satcompetition.org/2007/

46 CHAPTER 2. LITERATURE REVIEW

and Offermann (1999)’s multi-agent based approach for achieving coopera-

tion between different search-systems and Talukdar, Baerentzen, Gove, and

De Souza (1998)’s asynchronous team of cooperative agents.

Some hyper-heuristics returned previously unknown heuristics, and

hence might look like heuristic generation methods. However, many of

them are actually heuristic selection methods, when the spaces of LLHs

are countable or even finite for an input problem with countably infinite

variables. Even though the result may seem to be new, powerful and diffi-

cult to discover for experienced human managers, such a hyper-heuristic is

equivalent to a selection process on ready-to-use LLHs by a one-to-one trans-

formation. An early example was Bernstein (1987)’s method “SH”. SH builds

a population of new heuristics from a carefully chosen vocabulary, collects

statistics on their effectiveness, identifies those that work very well, or those

most likely to improve a bad schedule radically. It is not hard to find that SH

was a populate-and-select style heuristic selection method, while the space of

possible algorithms was limited by a constant number. Vázquez-Rodrı́guez

and Petrovic (2010)’s method searches simultaneously for the best sequence

of 13 dispatching rules and the number of operations to be handled by each

dispatching rule. Vázquez-Rodrı́guez and Petrovic (2010)’s approach was

equivalent to setting up a priority parameter belonging to {0, 1, . . . , 13}20 to

each dispatching rule and a positive integer to a pseudo parameter “length”.

Other instance-specific selection examples that employed machine learn-

ing techniques include Koonce and Tsai (2000)’s decision-rule-like heuristic

for dispatching priority in production scheduling, Kwak and Yih (2004)’s

20Where 0 stands for not selected.

2.2. HYPER-HEURISTICS 47

discovery of the decision tree approach (competitive decision selector) in

production control, X. Li and Olafsson (2005) and later Olafsson and X. Li

(2010)’s decision tree for dispatching jobs, Burke, Petrovic, and Qu (2006)’s

cased-based reasoning heuristic selection method in timetabling problems

and Xue, Chan, et al. (2011)’s class association rule learning in Euclidean

TSPs. There also were data set-specific (or family-specific) examples, such

as Lee, Piramuthu, and Tsai (1997)’s dispatching rule discovery embedded

in a genetic algorithm and Sha and C.-H. Liu (2005)’s discovery of a new

due date assignment heuristic (as a decision tree) for the dynamic job shop

problem, respectively.

In many heuristic selection methods, learning was regarded as the essence

of hyper-heuristics. That was especially obvious in the heuristic discoveries

mentioned above, where machine learning techniques were generally in-

volved (Koonce & Tsai, 2000; Kwak & Yih, 2004; Sha & C.-H. Liu, 2005; X. Li

& Olafsson, 2005; Olafsson & X. Li, 2010). These methods revealed a promis-

ing class of applications of heuristic selection (or generation) — tremendous

machine learning algorithms in certain conditions, as shown in Section 2.3.

2.2.2 Heuristic generation approaches

Burke, Hyde, Kendall, Ochoa, Ozcan, and Qu (2010) described heuristic

generation as “generating new heuristics from the components of existing

ones”. However, some heuristic discovery approaches are precisely equiva-

lent to other heuristic selection processes, such as Bernstein (1987)’s populate-

and-select method shown in Section 2.2.1. Such an algorithm could probably

possibly be misclassified by Burke, Hyde, Kendall, Ochoa, Ozcan, and Qu

48 CHAPTER 2. LITERATURE REVIEW

(2010)’s classification. This section presents a number of typical heuristic

generation approaches, which are so sophisticated and may actually return

one or many LLHs out of an uncountable number of possible LLHs.

A typical example of heuristic generation is Joslin and Clements (1999)’s

“squeaky wheel” optimization. The squeaky wheel implements an order of pri-

ority for building components such as the variables waiting for assignments.

There is a certain construction process, such as a greedy heuristic, that builds

a solution according to a given priority ordering. Trouble spots, “bottleneck”

components or the key components to change for a better solution, are iden-

tified through analyzing the constructed solution. Then the priority ordering

is updated by giving the trouble spots higher priorities and the next iteration

starts unless the termination condition is met. The LLH space of “squeaky

wheel” optimization is bounded in Θ(n!) generally, where n is the number

of the components (variables usually). However, only a portion of the space

can be reached in practice if the number of the variables is great enough.

Aickelin, Burke, and Li (2009) presented an updated version, evolutionary

“squeaky wheel” optimization, in which selection and mutation operators

were involved between analysis of the solution and prioritization of priority

ordering.

Another example is genetic programming (Koza, 1992, pp. 79–120). Ge-

netic programming is an evolutionary algorithm-based methodology. The

goal of genetic programming is evolving computer programs in a natural

selection way for certain problems. Particularly, the chromosomes in general

evolutionary algorithms are programs. For example, there are two equations

“3× x + 4” and “1− 2÷ y” selected from a population in a certain iteration.

2.3. SUPERVISED LEARNING 49

The results of a mutation operation may be “3× x + 5” and “1− 1÷ y”,

respectively. The results of a crossover operator may be “3× x + 2÷ y” and

“1− 4”. The size of the space of possible programs is bounded in Θ(2n), if

there are two free “characters” in the vocabulary and the equation is a 1D

string, where n is the maximum size of the program. The size of the space

will increase dramatically, if there are more characters and more complex

forms of equations. Therefore, in practice, some constraints like the “maxi-

mum size of program” are usually introduced to restrict the space of LLHs.

It is not necessary for every genetic programming to be a heuristic genera-

tion, because there are the programs that can be seen as solutions directly.

Examples of heuristic generation of genetic programming approaches can be

found in Ho and Tay (2005), Jakobović, Jelenković, and Budin (2007) and Tay

and Ho (2008) in production scheduling, Burke, Hyde, and Kendall (2006)

and Burke, Hyde, Kendall, and Woodward (2007) in bin packing, Fukunaga

(2008) in SAT, Keller and Poli (2008) in TSP, and Pillay and Banzhaf, 2007

and Bader El Den and Poli (2009) in timetabling.

2.3 Supervised Learning

Supervised learning, supervised machine learning, or classification, is the

search for algorithms that reason from externally supplied records (or in-

stances) to produce general hypotheses, which then make predictions about

future instances (Kotsiantis, 2007). In other words, supervised learning aims

at building a concise model of the distribution of class labels in terms of pre-

dictor features (or decision attributes) (Kotsiantis et al., 2006). An attribute

can be continuous, binary or categorical, but a label usually accepts discrete

50 CHAPTER 2. LITERATURE REVIEW

Table 2.1: Examples of records with known labels

Case T’ien’s horse King’s horse Date Was T’ien’s faster?
(attribute 1) (attribute 2) (attribute 3) (label)

1 high-grade high-grade day 1 no
2 high-grade high-grade day 2 yes
3 high-grade high-grade day 3 no
4 high-grade middle-grade day 1 yes
5 high-grade middle-grade day 2 yes
6 high-grade middle-grade day 3 yes

.

or categorical values only. Table 2.1 shows some examples of instances with

known labels from T’ien’s possible records of horse-racing. Supervised learn-

ing is considered as a classification problem due to the discrete labels and

the result of a supervised learning is a classifier. The results are usually

classification rules, regression functions or known examples. A possible

classification rule learned from the data in Table 2.1 is “if T’ien’s horse is

high-grade and the king’s is middle-grade then T’ien’s horse is faster.”

2.3.1 Well-known classification techniques

A taxonomy of some well-known classification techniques can be or-

ganized as a tree, as shown in Figure 2.1. Classification methods can be

divided into more and more specialized and well formalized methods such

as those on the right side of Figure 2.1. The discriminant function methods,

for instance, subsume recursive partitioning, which further includes three

algorithms: LTREE, CART and C4.5.

Three of the most efficient methods among those listed in Figure 2.1,

Naı̈ve Bayes normal, C4.5 and Ripper, are employed in this thesis. Therefore,

2.3. SUPERVISED LEARNING 51

C
la

ss
ifi

ca
ti

on
m

et
ho

ds

G
en

er
at

iv
e

m
et

ho
ds

D
is

cr
im

in
at

iv
e

m
et

ho
ds

D
is

cr
im

in
an

t
fu

nc
-

ti
on

m
et

ho
ds

is-
a

is
-a is-

a

Lo
gi

st
ic

R
eg

re
ss

io
n

is
-a

N
aı̈

ve
Ba

ye
s

N
or

m
al

qu
ad

ra
ti

c
d

is
-

cr
im

in
an

t
an

al
ys

is

N
or

m
al

lin
ea

r
d

is
-

cr
im

in
an

t
an

al
ys

is

is
-a

is
-ais

-a

R
ec

ur
si

ve
pa

rt
it

io
ni

ng

Fi
sh

er
’s

lin
ea

r
di

sc
ri

m
in

an
t

Su
pp

or
tv

ec
to

r
m

ac
hi

ne
s

N
eu

ra
ln

et
w

or
ks

k
ne

ar
es

tn
ei

gh
bo

rs

Se
tc

ov
er

in
g

is-
a

is
-a

is
-a is

-a
is

-a is
-a

N
aı̈

ve
Ba

ye
s

m
ul

ti
no

m
ia

l

C
om

pl
em

en
tN

aı̈
ve

Ba
ye

s

N
aı̈

ve
Ba

ye
s

no
rm

al

N
aı̈

ve
Ba

ye
s

ke
rn

el

N
aı̈

ve
Ba

ye
s

di
sc

re
ti

ze
d

is
-a is

-a
is

-a is
-a is-
a

LT
R

EE

C
A

R
T

C
4.

5

is
-a is
-a is
-a

N
on

lin
ea

r
SV

M

Li
ne

ar
SV

M

is
-a is

-a

M
LP

ba
ck

pr
op

ag
at

io
n

is
-a

W
ek

a
IB

k
is

-a

R
ip

pe
r

C
N

2

is
-a is
-a

Figure 2.1: A tree taxonomy of some well-known classification techniques
(Hilario, Kalousis, Nguyen, & Woznica, 2009)

52 CHAPTER 2. LITERATURE REVIEW

Table 2.2: References for further reading on the classification techniques not
selected in this thesis

Classification method Reference

Naı̈ve Bayes multinomial Rennie, Shih, Teevan, and Karger (2003)
Complement Naı̈ve Bayes McCallum and Nigam (1998)

Naı̈ve Bayes kernel John and Langley (1995)
Naı̈ve Bayes discretized John and Langley (1995)

Normal LDA Lachenbruch and Goldstein (1979)
Normal QDA Lachenbruch and Goldstein (1979)

Logistic Regression Le Cessie and Van Houwelinge (1992)
Fisher’s LD Fisher (1936)

LTREE Gama (1999)
CART Breiman, Friedman, Olshen, and Stone (1983)

Support vector machines Suykens and Vandewalle (1999)
Neural networks G. P. Zhang (2000)

Weka IBk Aha, Kibler, and Albert (1991)
CN2 Clark and Niblett (1989)

they are introduced in detail below. There are two criteria to select classifica-

tion techniques to use. One criterion is the efficiency (or quick running) of

each algorithm. Another is the overall diversity, i.e., to choose from different

categories. Suggested literature for further reading on other classification

techniques is listed in Table 2.2.

Naı̈ve Bayes normal is a probabilistic classifier based on Bayes’ theorem

P(A|B) = P(B|A)P(A)

P(B)
. (2.9)

In addition, all attributes (variables) are considered independent (naive) of

each other. Although the assumption of independency seems poor and naive,

Naı̈ve Bayes usually competes well with other sophisticated methods (Rish,

2001). Given attributes~a = {a1, a2, . . . , an} and a class C, the likelihood of C

is

P(~a|C) = P(a1, a2, . . . , an|C) =
n

∏
i=1

P(ai|C), (2.10)

2.3. SUPERVISED LEARNING 53

1. Check for base cases
2. For each attribute a

2.1. Find the feature that best divides the training data such as information
gain from splitting on a
3. Let abest be the attribute with the highest normalized information gain
4. Create a decision node node that splits on abest
5. Recurse on the sub-lists obtained by splitting on abest and add those nodes
as children of node

Figure 2.2: Pseudo codes of the C4.5 classifier

because of the assumption of independency. “Normal” means each attribute

is estimated like a normal distribution, not in a kernel estimator way (John &

Langley, 1995) and there is no supervised discretization to convert numeric

attributes to categorical values. Examples of successful applications of the

Naı̈ve Bayes normal include text classification (McCallum & Nigam, 1998)

and bio-informatics (Yousef et al., 2006). An open source Java implementation

of Naı̈ve Bayes normal provided in Weka (See Section 4.1) is employed, as

described in Section 4.3.

C4.5 generates a decision tree based on the concept of information entropy

(Quinlan, 1993, pp. 17–24). Kotsiantis (2007) summarized the pseudo codes of

C4.5 concisely, as shown in Figure 2.2. The decision tree is created in a greedy

way by iteratively maximizing the normalized information gain on each

node branching. Quinlan later developed improved commercial successors21

C5.0 (for Unix/Linux) and See5 (for Windows). This thesis employs J48,

which is an open source Java implementation of C4.5 provided in Weka.

Cohen (1995) proposed the Ripper method, or repeated incremental pruning

to produce error reduction. There are two main phases in Ripper. The first

phase is a building phase, where two actions, a growing action and a pruning

21See http://www.rulequest.com/see5-info.html.

http://www.rulequest.com/see5-info.html

54 CHAPTER 2. LITERATURE REVIEW

action, are repeatedly performed. In the growing, conditions (antecedents)

of rules are greedily (with highest information gain) increased until 100%

confidence is met. In the pruning, conditions are pruned in a certain metric.

The second phase is an optimization phase, where the size of the set of

built rules is reduced to fit the training records. JRip, an open source Java

implementation of Ripper provided in Weka is employed in this thesis.

2.3.2 Sampling and attribute selection for supervised learning

The amount of training records may be very large in some applications of

supervised learning. For example, the Network Intrusion Data used in the

1999 KDD Cup22 was raw TCP dump data collected for nine weeks. There

were 41 attributes and one label defined for 4,940,000 training records and

3,110,290 test records. The sizes of the training data and the test data were

743 MB and 430 MB, respectively. Sampling of records is usually introduced

in such large-scale data sets. The goal of sampling is to minimize the sample

size while maintaining the quality of learning results (H. Liu & Motoda, 2001,

p. 6). Reinartz (2002) summarized the most well-known samplings as, similar

to those in the EDAs, two groups:

Random sampling which randomly chooses a subset, and

Stratified sampling which selects the records of the minority class more

frequently in the imbalanced data sets, so that the minority class will

not be ignored due to the vanishing probability.

22See http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

2.3. SUPERVISED LEARNING 55

Characteristics of data are also important in sampling. Typical charac-

teristics range from simple statistics up to information on the data quality

(Reinartz, 2002). The usual way to examine sampling is by comparing the dif-

ferences in the indicators defined on a classifying procedure and the learning

results, such as computation time, memory cost, correctness and recall, on the

sampled records and on the original data set, such as in Zaki, Parthasarathy,

Li, and Ogihara (1997).

Besides the reduction of records (rows) by sampling, the attributes (columns)

can also reduce some classifier indicators, such as the computation time and

the memory used. An attribute selection (or feature selection) algorithm aims

at finding the optimal subset in a given set of training attributes. An evalua-

tion function or algorithm, that approximately indicates a promising value

for a proposed attribute subset, is usually attached, too. Clearly, an attribute

selection may run up to 2n − 1 times and cost too much time to numerate all

non-empty subsets of given attributes, where n = ‖~a‖ is the number of given

attributes. So a termination condition is usually developed. An example

of attribute selection techniques was Hall (1999)’s correlation-based feature

selection, which tended to choose subsets with low correlation internally and

high correlation with the label.

Because the correlations between attributes are usually not zero (partially

or fully dependent), some attribute manipulating methods also generate new

attributes to try to eliminate the correlations before attribute selection, such

as (Markovitch & Rosenstein, 2002)’s FICUS algorithm. This has been called

feature construction or transformation (Kotsiantis, 2007). The generated at-

tributes might lead to more concise and accurate classification and might help

56 CHAPTER 2. LITERATURE REVIEW

people understand some new concepts. In fact, such a transformation can

also be finished by principal component analysis or weighted principal component

analysis (Kriegel, Kröger, Schubert, & Zimek, 2008).

In terms of computation cost, the sampling approaches in supervised

learning are considerably different from those in the meta-heuristics that con-

sider a solution as an individual record. In supervised learning, a sampling

approach generally reduces the number of the records notably and hence

the overall computation time is usually reduced remarkably. For such a

meta-heuristic, a sampling approach commonly brings extra, sometimes tens

of times more, computation cost to prepare the training records to identify the

“good” ones. It could be synthesized that the variables are assumed highly

correlated to others in such a meta-heuristic.

2.3.3 Meta-learning

If finding the optimal classifier for a set of given records could be regarded

as an optimization problem, the choice of the best classification technique

for finding the optimal classifier becomes an algorithm selection problem.

Particularly, such a choice of the best classification technique is called meta-

learning (Vilalta & Drissi, 2002). The prefix “meta”, which means behind or

in an upper level, is exactly the same as that of meta-heuristics. Vilalta and

Drissi (2002) proposed a framework of meta-learning consisting of a set of

“base-learners” in the lower level and a “meta-learner” in the upper level.

For example, Lindner and Studer (1999) employed case-based reasoning to

govern and select supervised learning algorithms, and Xu, Krzyżak, and

Suen (1992) developed a method consisting of Bayesian formalism for com-

2.3. SUPERVISED LEARNING 57

piling predictions from a number of classifiers. In fact, the “upper level”

controlling processes of meta-learning, similar to those in hyper-heuristics,

are not necessarily machine learning techniques.

Meta-learning is naturally closely related (Smith-Miles, 2008b) to hyper-

heuristics (especially heuristic selection). For instance, Kanda, Carvalho,

Hruschka, and Soares (2011) proposed a meta-learning framework, which

is actually a hyper-heuristic, to select optimization algorithms for solving

TSPs. Meta-attributes were defined in the problem and the efficiency of the

optimization algorithms examined. The meta-attributes included the number

of cities, the number of edges, the lowest, the highest and the average costs of

edges, and the most frequent edge cost. Four meta-heuristics, including tabu

search, GRASP, simulated annealing and genetic algorithm, were employed

as LLHs in small-scale (n ≤ 100) TSP instances. In fact, Cruz-Reyes et

al. (2012) stated an on-going trend on the shifting of (heuristic) algorithm

selection methods from meta-learning to hyper-heuristics.

58 CHAPTER 2. LITERATURE REVIEW

Chapter 3

The SPOT Hyper-Heuristic

+¥ã	,
g��"

See a spot when looking at a leopard

through a bamboo tube.

5~#r#��6

(A New Account of the Tales of the World)

Liu, Yiqing

The quoted adage, “see a spot when looking at a leopard through a

bamboo tube,” actually has had two contradictory metaphorical meanings

through long use:

• (Original meaning) having a limited view thus missing the big picture;

• (Transferred meaning) being able to visualize the whole animal.

The SPOT algorithm, which involves sampling proportions, may possibly en-

counter the contradictory issue, too. This chapter mainly presents the SPOT

algorithm. Standards and indicators are also introduced to explain why and

59

60 CHAPTER 3. THE SPOT HYPER-HEURISTIC

how the presented approach can “visualize the whole” effectively instead

of having “a limited view”. Section 3.1 describes an overview of the SPOT.

Formal definitions of important concepts are given in Section 3.2. Particu-

larly, heuristic selection and heuristic generation are formally redefined in

Section 3.2.5. The SPOT algorithm can accordingly be classified as a heuristic

generation method in general. Section 3.3 presents a typical methodology

for developing the SPOT hyper-heuristic, including the determination of

important parameters. Finally, Section 3.4 provides some discussion on the

presented algorithm and on the formal definitions.

3.1 An Overview of the SPOT Approach

The SPOT (Suboptimum- and Proportion-based On-the-fly Training) ap-

proach is a heuristic generation methodology which modifies or creates the

heuristics and/or data structures for solving combinatorial optimization

problems according to the instance-specific information that is learned from

sampled small-scale subproblems and their suboptimum23. The main frame-

work of the SPOT can be described as “sample-learn-generate”. The SPOT

algorithm employs a standard for unconstrained problems in sampling and

a number of supervised learning methods for learning instance-specific infor-

mation. The attributive phrase “suboptimum-based” stands for an important

idea in the SPOT — to discover knowledge about suboptima instead of

optima. The attributive phrase “proportion-based” stands for another impor-

23In thesis, a proportion (sample) of variables is a finite set, such as 30 cities in a 3,000-city
TSP; a sampled subproblem is a problem (finding a solution for some objective) defined on
a sample of variables, with all the soft constraints defined on the sample, such as finding
the shortest tour for the 30 cities; a suboptimum of such a subproblem is a solution not
exceeding the optimum very much, such as a tour within 105% length of the optimal tour.

3.1. AN OVERVIEW OF THE SPOT APPROACH 61

tant idea, sampling a portion of variables to form a subproblem for further

investigation and learning. Based on the two ideas, the SPOT approach

can estimate all assignments in all suboptima from the suboptima of some

subproblems. Thus the SPOT method can be implemented as an “on-the-fly”

preprocessor within the routine of a heuristic or (possibly exact) algorithm.

The variables, similar to those in Naı̈ve Bayesian methods and in EDAs, are

regarded as relatively independent in the SPOT methodology.

The conceptual infrastructures of the SPOT method and a conventional

hyper-heuristic are compared, as shown in Figure 3.1. There are two algorith-

mic objects, a set of LLHs and a hyper-heuristic algorithm, in ellipse vertices

in the first figure. The data objects are shown in rectangles. The conventional

hyper-heuristic algorithm dynamically controls the set of LLHs according

to the feedback of some performance attributes. In comparison, the SPOT

method introduces one more data object — a small-scale subproblem (and its

suboptima). In the latter figure, the feedback is not directly compiled from a

feasible solution to the given problem. Instead, the feedback is about the com-

petitions among assignments of variables and collected from the suboptima

of its subproblem. The SPOT algorithm creates or modifies existing LLHs

to generate new LLHs according to the feedback. The generation of new

LLHs is highly associated with the meta-data of the sampled subproblem

and the given problem. Therefore, the SPOT algorithm is an instance-specific

algorithm.

The most important concept in the SPOT methodology is the standard

(or model) of the input combinatorial optimization problem, which is called

U/EA (Unconstrained and with Equinumerous Assignments). A precise

62 CHAPTER 3. THE SPOT HYPER-HEURISTIC

A combinatorial
optimization problem

& its solutions

LLH
algorithms

A hyper-
heuristic

algorithm

Solving

Selection or
generation

P
er

fo
rm

an
ce

at
tr

ib
u

te
s

(f
ee

d
ba

ck
)

(i) Framework of a conventional hyper-heuristic

A combinatorial
optimization problem

& its solutions

A small-scale
subproblem &
its suboptima

LLH
algorithms

The SPOT
algorithm

Sampling

Solving

Solving

Instance-specific

creation or

modification

Competin
g

assi
gnments

(fe
edback

)

(ii) The framework of SPOT

Figure 3.1: A comparison between the conceptual diagram of the SPOT
methodology and that of the conventional hyper-heuristic framework

3.1. AN OVERVIEW OF THE SPOT APPROACH 63

definition of the U/EA standard can be found in Section 3.2.3. The U/EA

standard regulates the input problem so that there is no inter-variable hard

constraints. The constraint-free condition means that any arbitrary change

of any assignment in a feasible solution still results in a feasible solution.

Another assumption is that the correlation coefficients among the variables

are almost zero. The constraint-free and the correlation-free conditions

enable proportion-based learning and suboptimum-based learning, as briefly

described as follows.

First, some methods of solving a U/EA problem can be approximately

estimated as some classifiers. In this thesis, an assignment (or valuation)

refers to associating a variable (or a set of variables sometimes) with a certain

constant value. Two assignments are called competitors, if their target vari-

ables are actually the same while their associated values are different. The

set consisting of all the competitors relating to a variable is called the group

of competitor assignments for the variable. Given a solution, there is usually

one and only one assignment for each variable, thus there is one and only

one “winner” assignment in each group. Such a “winner” assignment is

called an optimum assignment if there is (at least) an optimum that contains

the assignment. Henceforth, the objective of finding a solution in a search

space becomes a classification of n optimum assignments out of n groups. In

fact, the idea of transforming searching in solution space to classification or

estimation of variables is not new. A typical existing example is EDAs.

Furthermore, the classifier can be approximately learned from representa-

tive subproblems (proportions) and their optima. Because of the constraint-

free and the correlation-free conditions, the classification of the n optimum

64 CHAPTER 3. THE SPOT HYPER-HEURISTIC

assignments can then be approximately trained by a sampled representative

subset of n′ groups, like the ordinary sampling in supervised learning, where

n′ � n. The variables, instead of solutions, are regarded as “individuals” in

the sampling, as shown in Figure 3.1. Each assignment generates one row

of a training record. A training record stands for the decision attributes of a

competitor assignment, and the label denotes “whether the assignment is an

optimum assignment or not”. The subset of groups should be representative,

which is also concerned in general sampling as shown in Section 2.3.2. The

optimum assignments in the n′ groups are directly relating to their optima.

The classifier can be approximately learned from the suboptima of rep-

resentative subproblems, too. Because of the NP-hardness, it could be too

difficult to classify all the n′ optimum assignments correctly and quickly

for a NP-hard subproblem. On the other hand, the number of common as-

signments between a suboptimum and an optimum, as well as between two

suboptima, should be a dominatingly large fraction due to the correlation-

free condition. For instance, changing an arbitrary assignment in an optimum

can probably generate a considerably large number of suboptima. Therefore,

the classification label can be transformed from being optimum assignments

to being suboptimum assignments in the n′ groups. In practice, multiple sub-

problems can be sampled to reduce the sampling error in certain problems.

The classifier can also be approximately learned on-the-fly, if the size

n′ and the set of decision attributes are well restricted. The time cost of

the whole learning process mainly consists of two parts: (i) the time for

preparing the training records (suboptima) and (ii) the time for training the

classifier. For most algorithms, the first part is highly associated with the

3.2. FORMAL DEFINITIONS 65

size n′ of the subproblem. The latter part is mainly associated with the rows

(number of assignments) and columns (decision attributes) for stochastic

machine learning techniques. If both can be controlled to appropriate scales,

the overall time cost will be well restricted to an on-the-fly level. A possible

useful technique for controlling the columns is the attribute selection which

speeds up learning. However, more time spent on learning usually means

a more precise and more general classifier. Hence a sufficient amount of

time is still necessary for learning. The balance between the precision of

the classifier and the time cost should be carefully considered during the

development of the SPOT hyper-heuristic. Similar decision attributes can

also be found in recent advances of hyper-heuristics, such as Kanda et al.

(2011)’s meta-features and the features of SATzilla (Xu, Hutter, et al., 2008).

Finally, the classifier can be transformed to heuristics. When the classifier

is applied back to the given problem, each assignment can be associated with

the approximate value (probability) of being a “winner” (or (sub)optimum

assignment). Types of the value may include distance, weight, job demand

and penalty of dissatisfactions. Then many, if not all, LLHs can be modified

in their searching behavior with the values. A typical example for local search

heuristics is a reordered search sequence for the (probably reconstructed)

neighborhood. Some completely new LLHs might also be generated accord-

ing to the values. For example, the most favorite assignment in each group

is chosen to form a solution. It seems that modifying existing LLHs seems

more competitive than creating completely new LLHs in practice.

66 CHAPTER 3. THE SPOT HYPER-HEURISTIC

3.2 Formal Definitions

This section aims at precisely describing the concepts involved in this

thesis and improving the reproducibility of the presented approach. Sec-

tion 3.2.1 redefines the combinatorial optimization problem, in which the

extension includes the objective problem domains of the SPOT methodol-

ogy. Section 3.2.2 formulates hyper-heuristics based on the concepts in the

combinatorial optimization problem. The U/EA and the U/EA2 standards

are formatted in Section 3.2.3. The presented SPOT algorithm is defined in

Section 3.2.4. The definitions of heuristic selection and heuristic selection

are given in Section 3.2.5. Accordingly, the SPOT algorithm is regarded as a

hyper-heuristic and a heuristic generation method in general.

3.2.1 Combinatorial optimization problem

The SPOT method aims at solving different domains of combinatorial

optimization problems. A formal definition is extended from C. Blum and

Roli (2003) in this thesis and can be given as follows.

Definition 1 (Combinatorial optimization problem). A combinatorial optimiza-

tion problem (S, f) can be defined by :

• a countable set of variables X = {x1, x2, . . . , xn}, n ∈ Z+;

• discrete variable domains D1, D2, . . . , Dn;

• a set of possible solutions V = v1 × v2 × ...× vn, where vi = {(xi, ν)|ν ∈

Di} is the set of all assignments (valuations) for variable xi;

3.2. FORMAL DEFINITIONS 67

s ∈ S

Search space

f ∈ R+ ∪ {0}
Objective

function values

f (s)

Objective function

Figure 3.2: The mapping from feasible solutions to objective function values
in a combinatorial optimization problem

• (hard) constraints hc1, hc2, . . . , hcnc, where hci : V 7→ {0, 1}, 1 ≤ i ≤ nc;

• a set of feasible solutions S = {s|s ∈ V, ∏nc
i=1 hci(s) = 1};

• a real value objective function f to be minimized24, where f : S 7→ R+ ∪

{0}.

The main mapping in a combinatorial optimization problem is the objective

function, as shown in Figure 3.2. To solve a combinatorial optimization

problem one has to find a (feasible) solution s∗ ∈ S with minimum objective

function value, that is, f (s∗) ≤ f (s) for any s ∈ S. s∗ is called a global optimum

(or globally optimal solution) of the problem; and the set S∗ ⊆ S consisting

of all possible s∗ is called the set of global optima.

Some combinatorial optimization problems are not difficult to solve, espe-

cially for those having an optimal substructure. For example, the problem of

finding the shortest path in a finite graph can be solved by Dijkstra (1959)’s

algorithm in O(n2) time. However, many other combinatorial optimiza-

tion problems are in the NP-Complete class. Any NP-Complete problem,

theoretically, can be transformed to any other NP-Complete problem in

(deterministic) polynomial time. For example, Ruiz-Vanoye et al. (2011)

24As maximizing an objective function f is the same as minimizing − f , this thesis mainly
focuses on minimization problems without loss of generality.

68 CHAPTER 3. THE SPOT HYPER-HEURISTIC

summarized transformations between hundreds of NP-Complete problems,

where many problems were combinatorial optimization problems.

3.2.2 Hyper-heuristics

Hyper-heuristics aim at selecting or generating heuristics to solve prob-

lems. The process of selecting or generating heuristics is regarded as a ma-

chine learning procedure in this thesis. The definition of the hyper-heuristics

is given as Definition 2, which is partially based on Rice (1976)’s definition

of algorithm selection. A similar mapping model can be found in Ochoa,

Vázquez-Rodrı́guez, Petrovic, and Burke (2009).

Definition 2 (Hyper-heuristics). A hyper-heuristic is a 3-tuple (ag, ~A, l) in the

model of Figure 3.3, where:

• S is the set of search space of a given combinatorial optimization problem as

defined in Definition 1;

• ~A = {~a1,~a2, . . . ,~ana} is a set of attribute vectors;

• ag : S 7→ ~A is a mapping of attribute generation, sometimes ag can return

multiple attribute vectors;

• H = {h1, h2, . . . , hnh} is a set of low-level heuristics (LLHs);

• l is a machine learning procedure that predicts the best LLH or generates a

new LLH according to all vectors of attributes;

• π : H × S 7→ R+ ∪ {0} is a mapping of performance measure.

3.2. FORMAL DEFINITIONS 69

s ∈ S

Search space

~a ∈ ~A or ~A′ ⊆ ~A

Attribute space

h ∈ H

LLH space

π ∈ R+ ∪ {0}

Performance
measure space

ag(s)
Attribute generation

l

Learning

π(h, s)
Performance
mapping

A hyper-heuristic

Figure 3.3: Schematic diagram of a hyper-heuristic

In Definition 2, the learning l is the core of a hyper-heuristic. However,

the resulting LLHs of a hyper-heuristic do not necessarily guarantee their

solutions to be optima. In other words, the best algorithms in the LLH

space that maximize π are usually not guaranteed by a hyper-heuristic. The

hyper-heuristics that returns better LLH h in general are preferred naturally

in optimization practice. If someone considers deciding on an optimum

hyper-heuristic as a new optimization problem, the objective is to minimize

π with the ag, ~A and l being three variables to determine.

In many heuristic selection approaches, properties of LLHs such as the

computation time were chosen as decision attributes. The values of objective

functions were considered as the labels (or part of labels) for supervised

learning. A typical result of learning may look like “if a particular condition

is met, return the first LLH; otherwise return the second LLH.” It should be

noted that hyper-heuristics can optimize continuous optimization problems.

However, the problems are assumed as combinatorial optimization in the

70 CHAPTER 3. THE SPOT HYPER-HEURISTIC

following, because of the objective domains of the SPOT method.

3.2.3 The U/EA and the U/EA2 standards

A U/EA (Unconstrained and with Equinumerous Assignments) standard

(or model) is proposed for the combinatorial optimization problem to enable

the approximation in the SPOT algorithm. There are two restrictions in the

U/EA standard. The first restriction is that there are no inter-variable hard

constraints. In other words, changing the assignment of each variable is un-

constrained by others. The other restriction is the equinumerous assignments,

which means the domain of each variable has the exactly same cardinal

number.

Definition 3 (Equinumerous assignments). Two variables xi and xj in Definition

1 have equinumerous assignments, if and only if ‖Di‖ = ‖Dj‖, i , j, xi, xj ∈ X.

Definition 4 (U/EA problem). A combinatorial optimization problem in Defini-

tion 1 is called Unconstrained and with Equinumerous Assignments (U/EA), if

and only if:

1. there are no hard constraints among different variables in the given problem;

and

2. all variables have equinumerous assignments in the given problem.

Definition 5 (U/EA transformation). In the model of Figure 3.4, the injective

function T from the solution space of a combinatorial optimization problem is a

U/EA (Unconstrained and with Equinumerous Assignments) transformation, if

and only if the image of T fulfills the definition of U/EA in Definition 4.

3.2. FORMAL DEFINITIONS 71

s ∈ S

Search space

σ ∈ Σ

A new
search space

T(s)

An injective
function

Figure 3.4: The mapping of U/EA transformation from the search space of a
combinatorial optimization problem

As a mapping, a U/EA transformation can be either an equivalent (usu-

ally bijective) transformation or a relaxation (usually injective) technique. In

general, relaxation is much easier to implement in practice. For example,

one naive and effective relaxation technique is directly removing all the

constraints among the variables.

An example of a U/EA problem can be given in the TSP domain. The

solution (with n edges) to a TSP is required to be a Hamiltonian cycle (con-

nected graph) as a hard constraint. A possible relaxation is “to find n edges

to form a graph so that each city has a degree of 2”. In the relaxed model, the

graph is still with n vertices and n edges, but the connectivity of the graph is

not necessarily held.

Another standard (or model) called U/EA2 is presented to regulate the

attributes in the SPOT algorithm further. In the U/EA2 standard, each

attribute vector~a ∈ ~A has the same number of columns (dimensions), and

all the attributes in one column are consistent and have the same units.

Definition 6 (Equinumerous attribute vectors). Two attribute vectors~ai and

~aj are called equinumerous if and only if they have equal dimensions (amount of

columns) over a certain field, i.e. dimR~ai = dimR~aj.

Definition 7 (U/EA2). An attribute space in Definition 2 is called Unconstrained

and with Equinumerous Assignments and Equinumerous Attributes (U/EA2), if

72 CHAPTER 3. THE SPOT HYPER-HEURISTIC

and only if:

1. all the attribute vectors are generated from a U/EA combinatorial optimiza-

tion problem; and

2. all the attribute vectors are equinumerous attributes.

3.2.4 The SPOT hyper-heuristic

Definition 8 (SPOT hyper-heuristic). The SPOT hyper-heuristic is a 7-tuple

(sam, S′, T, Σ, ag, ~A, l) as shown in the model of Figure 3.5, where:

• sam : S 7→ S′ is a mapping of sampling which returns a small-scale (n′ � n)

subproblem;

• S′ is the solution space of the subproblem;

• T : S′ 7→ Σ is a mapping of U/EA transformation;

• Σ is the solution space of the transformed problem, ‖Σ‖ � ‖S‖;

• ~A = {~a1,~a2, . . . ,~ana} is a set of attribute vectors, where each vector stands

for one specified situation for one possible assignment competing with all other

competitors, and ~A covers all the possible situations, na ≥ n� n′; and

• ag : Σ′ 7→ ~A∑n′ Di is a mapping of assignment-based attribute generation

which generates a set of ∑n′ Di (as many as the size of all possible assignments

in the subproblem) attribute vectors from one solution, the attributes in each

vector are fully determined by the situation in regard to the competition of an

assignment.

3.2. FORMAL DEFINITIONS 73

s ∈ S

Search space

s′ ∈ S′

Search space of
a subproblem

σ ∈ Σ

A U/EA
search space

~A′ ⊆ ~A

U/EA2

attribute space

h ∈ H

LLH space

π ∈ R+ ∪ {0}

Performance
measure space

(Size=n)

(Size=n′ � n)

sam(s)
Sampling

T(s′)
U/EA transformation

ag(σ)
Assignment-based
attribute generation

l

learning

π(h, s)
Performance
mapping

The SPOT hyper-heuristic

Figure 3.5: Schematic diagram of SPOT hyper-heuristics

The other notions are the same as those in Definition 2.

Theorem 3. The SPOT algorithm is a special case of hyper-heuristics.

Proof. Define a mapping ag′(s) = ag (T (sam(s))), then the SPOT hyper-

heuristic 〈sam, S′, T, Σ, ag, ~A, l〉 is a hyper-heuristic 〈ag′, ~A, l〉. �

74 CHAPTER 3. THE SPOT HYPER-HEURISTIC

In the SPOT hyper-heuristic, each possible attribute vector~a ∈ ~A stands

for a particular possible situation of an assignment competing with all other

competing assignments. The returned algorithm h can generally assign

each attribute vector ~a with a prediction of a (computable, usually finite)

real-valued value γ ∈ Γ = [0, 1], where Γ is the set of possible predictions.

An example is the “likelihood of appearing in suboptima”. Therefore, the

general cardinal number of H is ‖H‖ = ‖Γ‖na. In other words, there could

be as many as ‖Γ‖na possible LLHs in total. In this thesis, na ≥ n is assumed

to be true. See Section 3.4 for more details on this assumption.

3.2.5 Heuristic selection and heuristic generation

Distinguishing heuristic selection and heuristic generation is actually not

easy due to various transformations (and equivalences) between different

problems. For example, the parameter optimization methods mentioned in

Section 1.3 can be regarded as complicated algorithm selection procedures.

An example of parameter optimization is “to determine two 0-1 integer pa-

rameters for an algorithm”. There are four possible configurations, including

(0, 0), (0, 1), (1, 0) and (1, 1). The problem can be seen as selecting a single

best algorithm from four. An algorithm generation approach, on the other

hand, seems difficult in becoming an equivalent selection procedure. An

example of algorithm generation is “to find the best propositional formula on

n (Boolean) propositional variables for fitting a Boolean function”. There are

2n irreducible formulae standing for 2n different functions. If every function

is expected to be tried in a test-and-select fashion, the problem can be seen

as selecting the best algorithm from 2n algorithms.

3.2. FORMAL DEFINITIONS 75

A meaningful boundary between selecting an algorithm from four and

selecting one from 2n is the computability of computers. Because the size n of

a combinatorial optimization problem is countable, as defined in Definition

1, i.e., n ≤ ℵ0. With the growth of n, the LLH space of a generation method

grows explosively and becomes incomputable so that it cannot be enumer-

ated and tested singly on a Turing machine. “Generation” or “make-up”

behavior, instead of the test-and-select method, is necessary for the feasibility

of returning heuristics in practice, and is called “generation”. Otherwise, an

exact (full) exploration of the LLH space must cost explosive time25.

Definition 9 (Heuristic selection). A hyper-heuristic in Definition 2 is a heuristic

selection algorithm in a domain of combinatorial optimization problems, if and only

if ‖H‖ ≤ ℵ0 can be held for all the problems in that domain, necessarily including

those with n = ℵ0, where H is the LLH space of the hyper-heuristic.

Definition 10 (Heuristic generation). A hyper-heuristic in Definition 2 is a

heuristic generation algorithm in a domain of combinatorial optimization problems,

if and only if ‖H‖ > ℵ0 can be held for no less than one problem with n = ℵ0 in

that domain, where H is the LLH space of the hyper-heuristic.

Typical examples of heuristic selection algorithms and heuristic genera-

tion algorithms can be found in Section 2.2.1 and Section 2.2.2, respectively.

The definitions given in this chapter clearly show the intensions and outline

the extensions of heuristic selection and heuristic generation. The definitions

are compatible with previous research, such as Burke, Hyde, Kendall, Ochoa,

Özcan, and Woodward (2010). In fact, every heuristic selection algorithm

25This could probably be a reason why there was no exact algorithm generation method
in literature, as far as concerned. See Figure 1.7.

76 CHAPTER 3. THE SPOT HYPER-HEURISTIC

can be equivalently transformed to the optimization of a parameter tuning

problem with finite independent parameters according to the definitions,

while every heuristic generation algorithm can be equivalently transformed

to the optimization of a parameter tuning problem with infinite independent

parameters. See Section 3.4 for more details.

Definition 11 (Turing (1936)’s computable number). A number is computable

if it differs by an integer from the number computed by a circle-free machine.

Lemma 1. The cardinal number of the set C of all computable numbers is ℵ0.

Proof. There are countably many Turing machines. Thus C is countably

infinite at most (‖C‖ ≤ ℵ0). The set of all integers is a subset of the set

of all computable numbers (Z ⊆ C). Thus ‖C‖ ≥ ‖Z‖ = ℵ0. Therefore,

‖C‖ = ℵ0. �

For example, all rational numbers,
√

2, log5 8, π and e are computable

numbers. However, in fact, most irrational numbers are incomputable. It

should be noted that incomputable irrational numbers are rarely involved in

the applications and research of combinatorial optimization. Therefore, algo-

rithms involving incomputable numbers are not discussed in the following.

Turing (1936), Davis (1965), Ko and Friedman (1982), Soare (1996) provide

more information about computability and computable numbers.

Theorem 4. An algorithm selection method for heuristics with a finite (or countably

infinite) set of ready-to-use heuristics is a heuristic selection algorithm.

Proof. The LLH set H is the same as the set of given ready-to-use heuristics.

Therefore, ‖H‖ ≤ ℵ0. �

3.3. METHODOLOGY OF DEVELOPING A SPOT HYPER-HEURISTIC 77

Theorem 5. A parameter optimization method for heuristics with a finite number

of computable real parameters is a heuristic selection algorithm.

Proof. Let a be the cardinal number of all parameters, ‖H‖ ≤ ‖C‖a ≤

(ℵ0)
a = ℵ0. �

Theorem 6. The SPOT hyper-heuristic is a heuristic generation algorithm.

Proof. The SPOT hyper-heuristic is a hyper-heuristic (Theorem 3). It is clear

that na ≥ n is assumed to be true26. For the set of possible predictions for

each attribute vector, ‖Γ‖ ≥ 2 can be generally held, where Γ is the set of

possible values for each attribute vector in the learning result. The cardinal

number of H is ‖H‖ = ‖Γ‖na ≥ 2na ≥ 2n = 2ℵ0 > ℵ0, for all n = ℵ0. �

The incomputability (or undecidability) involved in heuristic generation

algorithms, in fact, has two sides. On one hand, the incomputability of the

(very large-scale) LLH space makes it possible to return new results that

have not been unexamined by previous researchers. On the other hand, the

incomputability brings difficulties (mainly on complexity) in the practice of

optimization. The incomputability can, sometimes, be constrained manually

so that a “promising” part of the LLH space can be focused. One example

of restrictions to the “squeaky wheel” optimization is “to determine the top

five ‘bottleneck’ spots” (in Θ(n5) class, where n is the number of variables)

instead of “determining the full priority sequence” (in Θ(n!) class) in each

iteration. Clearly, the new constrained “squeaky wheel” optimization focuses

on a “promising” part and becomes a heuristic selection according to the

definitions.
26See Section 3.2.4 and Section 3.4.

78 CHAPTER 3. THE SPOT HYPER-HEURISTIC

3.3 Methodology of Developing a SPOT Hyper-Heuristic

In general, there are two major phases in developing the SPOT hyper-

heuristic: the design phase and the run phase. In the first phase, the input

problem is remodeled to meet the standards of U/EA and U/EA2. Domain-

specific parameters, including numeric and non-numeric parameters, are

determined and fine-tuned. The plans for applying the results of supervised

learning are also designed in the first phase. The latter phase is much more

straightforward. Given an input problem, the SPOT hyper-heuristic can

generate a number of new LLHs for solving it. The instance information is

learned in the latter phase.

3.3.1 The design phase

There are three phases in developing a SPOT hyper-heuristic, as shown

in Table 3.1. A seemingly unusual thing is that the development should stop

in certain cases after the first phase. That means the SPOT algorithm cannot

handle the input problems well, because of three possible reasons:

• The input problems do not meet the requirements of the U/EA stan-

dard;

• The attributes for supervised machines learning do not meet the re-

quirements of the U/EA2 standard; and/or

• The correlations among variables are too high so that the suboptimum-

and proportion-based learning always fails to approximate the correct

classifiers to identify (sub)optimum assignments.

3.3. METHODOLOGY OF DEVELOPING A SPOT HYPER-HEURISTIC 79

Table 3.1: Main phases in the design phase in developing a SPOT hyper-
heuristic

Phase Brief content Successful results To do when fails

P1 To try to transform the A U/EA problem & To quit for other methods
given problem a U/EA2 attribute space

P2 To determine parameters A set of parameters To try different plans
P3 To modify or to create LLHs New LLHs To try different plans

3.3.1.1 P1: Transformations

In the first phase (P1), the main concern is on transformation. One trans-

formation aims at converting an input combinatorial optimization problem

to a U/EA problem. This step can be omitted if the given problem has occa-

sionally met the two requirements of U/EA. The other transformation aims

at determining decision attributes and generating one attribute vector for

each possible assignment. In certain cases, the two transformations cannot

be conducted, which means the SPOT algorithm would not be able to handle

the problem well.

Another requirement besides the two standards is the low-correlation

assumption. An indicator r : S× S 7→ [0, 1] of “resemblance” is introduced

to measure the percentage of same assignments of two different solutions.

r(s, s0) =
Number of same assignments

n
. (3.1)

According to the assumption, the r value between any two suboptima of a

given instance should be close to 1. Furthermore, the average resemblance of

every (different) problem instance in the same domain should be very close

to 1, in the ideal cases.

80 CHAPTER 3. THE SPOT HYPER-HEURISTIC

Definition 12 (Compatibility of U/EA problems). A domain of problems which

meet the U/EA standard are called “compatible” with the SPOT hyper-heuristic,

if and only if for given a set {r̄1, r̄2, . . .} of average resemblances of suboptima

of different instances (one average resemblance for each instance) and the overall

average resemblance r̄ for all instances, the following conditions can generally be

held:

• (Generality) r̄i ≈ r̄j ≈ r̄, where r̄i, r̄j ∈ {r̄1, r̄2, . . .},

• (Approximability) r̄ ≈ 1.

A high r̄, such as 0.8, denotes the assignments in suboptima are hopefully

well approximable through investigating the subproblems and suboptima.

A low average resemblance (e.g., 0.15) means it is probably not reliable to

approximate in this way. A high level of generality means that the difference

between learning from a problem instance and learning from its subproblems

is small. A high level of approximability denotes the difference between

learning from optima and learning from suboptima is small. The compat-

ibility of the U/EA standard enables27 feasible and reliable suboptimum-

and proportion-based learning. In many perturbative meta-heuristics, such

as the Lin-Kernighan local search for TSP mentioned in Section 2.1.1, new

suboptima are expected to be reached from a known suboptimum by mod-

ifying a few assignments. A high level of compatibility is usually closely

related to a domain with successful perturbative methods. Generally, either

a low approximability or a low level of generality, or both, denote that the

27In fact, the compatibility could be the assumption of the proposed methodology. How-
ever, it is introduced as a “soft” indicator other than a “hard” assumption for the purpose of
a friendly cross-domain foundation.

3.3. METHODOLOGY OF DEVELOPING A SPOT HYPER-HEURISTIC 81

input problem is barely compatible with the assumptions of the SPOT hyper-

heuristic. The developer should try another transformation or change to

another algorithm.

The other standard to be determined in P1 is the U/EA2 model. A set of

attributes needs to be designed to represent the competition features of the

assignments, so that the sampled subproblem and its suboptimum can be

transformed into training data. A label column is determined by the training

suboptimum. The trained classifiers can predict the unlabeled assignment

in the given problem. The principle of the design of this model is to include

enough information for supervised learning. The state-of-the-art supervised

learning can precisely remove the useless and redundant decision attributes

in the results. It is usually not necessary to validate attributes design carefully

with indicators.

3.3.1.2 P2: Parameter determination

The second phase (P2) aims at determining numeric and non-numeric

parameters. There is one important numeric parameter and one important

non-numeric parameter to determine and to fine-tune the approach. Both are

sampling parameters. The numeric parameter is the size n′ of the subproblem

to be sampled. The non-numeric parameter is the method of sampling. With

the two parameters, a subproblem can be generated. Other parameters are

“secondary” parameters, for example,

• an effective problem algorithm28 which can find one or more suboptima

28Determination of an algorithm can also be regarded as a determination of a non-numeric
parameter.

82 CHAPTER 3. THE SPOT HYPER-HEURISTIC

for the subproblem and its parameters, and

• a supervised machine learning method and related parameters to dis-

cover instance-specific knowledge.

Above parameters are called “secondary”, because they usually have been

well studied. The effective methods and suggested values of parameters are

well-known in many domains. In development, the secondary parameters

should be determined before the two important parameters of sampling.

Some secondary parameters, such as the problem solving algorithm, can

be strongly domain-dependent. The design and fine-tuning of the domain-

dependent secondary parameters can be referred to the domain literature.

The machine learning is relatively independent of the problem domain, if

the training data (including decision attributes) is conducted for a general-

purpose machine learning. In this thesis, three machine learning methods,

including C4.5, Naı̈ve Bayes and Ripper, are employed together to discover

knowledge simultaneously. The three methods are very efficient according

to literature and come from the three main branches of supervised learning

techniques, as shown in Figure 2.1. The final result of classification is the

average value of the three methods for each unlabeled row (assignment). It is

believed that the average result of the three is more robust. The parameters

for the three methods are borrowed from suggested values by Weka, as

shown in Section 4.3.1. The result of machine learning can predict “what

assignment ought to be in optima or suboptima”.

In P2, the parameter n′ is determined and fine-tuned first. The way

method sampling is set to “random” selection, having an average effective

n′ in general. A verification of this development can be found in Section 6.5.

3.3. METHODOLOGY OF DEVELOPING A SPOT HYPER-HEURISTIC 83

With determined standards and secondary parameters (inclining subproblem

solving and learning), one most favored assignment can be identified from

a group of competitors for each variable. The resemblance r is used to

measure the resemblance between the identified most favorite assignments

and a known suboptimum. A higher level of r denotes, hopefully, more

improvements by the final generated LLHs. Different values of n′ can be

tested for selecting one value that maximizes r. Generally, when n′ increases,

r increases and the time cost of the subproblem solving and the learning

increases (dramatically), too. Therefore, the developer should balance the

size n′ to make sure r is high enough, and the time cost is limited. In practice,

if n′ is set to a constant value, the overall time cost of the SPOT heuristic

generation will probably be in polynomial-time.

Random selection should generally be a feasible and effective sampling

method. The reason lies in the correlation-free condition among the vari-

ables in the U/EA standard. In random selection, a proportion of the given

problem is made in terms of the designed group randomly29. Furthermore,

certain sampling methods can also be investigated to fine-tune the sampling

and the classifiers, especially when some inter-variable hard constraints have

been ignored in P1. Examples are a cropped area of cities in an Euclidean TSP,

and a cropped (nearest) segment of job permutations. Different sampling

methods can be tested. One or more methods can be selected to maximize

the indicators r in general. It should be noted that some groups of competitor

assignments would partially change after the sampling.

29The random choices were based on the pseudo random number generator in computer
programs. Therefore, the generated numbers were not completely random in theory.

84 CHAPTER 3. THE SPOT HYPER-HEURISTIC

3.3.1.3 P3: Heuristic modification

The third phase (P3) is the “last mile” and aims at transforming the

instance-specific results of learning (classifiers) back to LLHs. There basically

are two main ways of generating LLHs: modifying and creating. Modifying

LLH means that the generated LLH is fully or partially based on existing

heuristics. If taking a heuristic as a search sequence that traverses a limited

scope of the search space, one can principally modify the heuristic in two

ways:

• to change the search scope and

• to change the search sequence.

An example for the first is improving the 2-Opt local search to the 3-Opt

local search in the TSP domain. An example of the latter is reordering the

Lin-Kernighan local search for the TSP, which originally prefers to try high-

priority (short edges) swaps first. A modified version prefers to try the most

favored edge determined by learning results first. Creating LLH denotes

that the generated LLH is fully constructed by the classifiers. A naive (but

sometimes ineffective or infeasible) LLH is: to select a variable randomly,

to choose the most favorite assignment from the group regarding the hard

constraints, and to repeat until a solution is built. The indicators in P3 are

the traditional solution quality and the time cost. According to experience,

modifying methods are more efficient than creating in general, therefore, the

thesis focuses on modifying LLHs.

3.3. METHODOLOGY OF DEVELOPING A SPOT HYPER-HEURISTIC 85

In conclusion, the first and the last phases are about transformation. The

two phases are relatively difficult to handle. There are only two main param-

eters to be determined, one after the other, in the second phase. The expected

final performance can be measured by a numeric indicator. Therefore, the

second phase is relatively easier. Some important components, such as the

standards and subproblem solving algorithm, are domain-specific. In other

words, the domain-specific parameters must be redesigned when the SPOT

hyper-heuristic is applied to a new domain.

3.3.2 The run phase

It is more straightforward to solve a problem than to design and fine-tune

the SPOT algorithm. The procedure of solving can be briefly described as

follows. Given a problem P, There are four phases for generating new LLHs:

• To start with a problem P and its unlabeled attributes about assign-

ments,

• To sample for a subproblem P′ with determined size n′ and to solve the

subproblem efficiently to a suboptimum with a determined algorithm,

• To generate labeled attributes referring to the suboptimum,

• To learn instance-specific knowledge (as classifiers) on what assign-

ments are likely to appear in suboptima with three methods, C4.5,

Naı̈ve Bayes and Ripper, to predict the labels of unlabeled attributes in

phase 1., and to modify certain heuristics for new LLHs according to

the labels.

86 CHAPTER 3. THE SPOT HYPER-HEURISTIC

It should be noted that the last step consists of a process of finding instance-

specific knowledge. Therefore, the generated LLHs become instance-specific

algorithms and might not be useful in solving other problem instances.

3.4 Discussion

There are some similarities between the proposed SPOT algorithm and

the methodology in Xue, Chan, et al. (2011). For example, they have similar

concepts in the sampling subproblem and suboptimality, parameters, indi-

cators and heuristic generation processes. Both generate instance-specific

algorithms. The main difference is that Xue, Chan, et al. (2011) presented

a heuristic selection approach, though the instance-specific information was

obtained by a class association rules learning. There were fourteen prima-

facie decision attributes and one label defined. Each attribute has a finite

set of values. The classifier was in the form of class association rules with

confidences. The number of possible classifiers was countable. Thus, the

number of possible LLHs was countable. The method in Xue, Chan, et al.

(2011) was also specialized in regard to the Euclidean TSPs. In comparison,

the SPOT algorithm employs a semi-automatic attribute generation (See Sec-

tion 4.3.1) and three different supervised learning methods for cross-domain

development. The learning module in the SPOT hyper-heuristic is expected

to be more open and robust.

The idea of dividing (sampling) and analyzing a proportion for solving

a given problem is not novel. It can be found in many heuristic and exact

algorithms, such as the first-come, first-served. It can also be found in the

3.4. DISCUSSION 87

early days of differential calculus, ancient art of war and activities even earlier.

It is a natural thinking in problem solving. In this thesis, a standard U/EA is

given to regulate the input for the sampling proportion. The standard and

another property, compatibility, guarantee high approximability and low

correlations of variables for sampling.

If a given domain holds a good approximability to the U/EA standard,

heuristic (or at least perturbative) algorithms and their decision attributes

should not be too difficult to find in literature. The initial raw attribute can

be set to a possibly maximal set. The attribute selection procedure in SPOT

can help in choosing the best raw attributes for your domain.

It should be noted that the number na of all possible attribute vectors

is determined by the definition of the attributes. Generally, there are three

cases when n = ℵ0, listed as follows:

• If there is at least one attribute having countably infinite possible values,

such as an integer or a real number, then na must be countably infinite.

• If there are a countably infinite number of attributes, and each attribute

has a finite definition domain, then na must be countably infinite.

• If the number of attributes is finite and the definition domain of each

attribute is also finite, such as three Boolean attributes, then na must be

finite.

The inequality na ≥ n may not be held in the last case. In fact, a natural

attribute for an assignment in an NP-Complete problem usually has no

less than n or infinite possible values, such as the distance in TSP and the

88 CHAPTER 3. THE SPOT HYPER-HEURISTIC

processing time in FSP. In addition, attributes are defined to distinguish the

scenario of the problem so that some classifiers can be built. Therefore, a

design in the last case probably cannot meet the demand of resolution and

distinguishability for NP-Complete problems. Therefore, na ≥ n is assumed

to be true in this thesis.

The definitions of heuristic selection and heuristic generation are con-

sistent with the existing taxonomy in the literature, such as Burke, Hyde,

Kendall, Ochoa, Özcan, and Woodward (2010) in most cases. In fact, the

extensions of both concepts are extended. For example, the parameter tuning

techniques which used to be out of hyper-heuristics are regarded as heuristic

selection in this thesis. It should be noted that the two concepts are only

distinguishable on problem domains that can be extremely large (n = ℵ0).

That means, if a problem domain contains a strictly finite (or limited number

of) variables, any hyper-heuristic on the domain cannot be considered as

either heuristic selection or heuristic generation in this study. However, this

situation is rare in typical combinatorial optimization problems. Therefore,

the issue is not addressed in detail, and further research could be carried out

in the future. A possible plan is to define the hyper-heuristic approaches on

an always finite problem domain with finite variables as heuristic selection,

according to computability.

Chapter 4

Java Implementation of the SPOT Hyper-

Heuristic

Die Philosophie ist keine Lehre, sondern eine

Tätigkeit.

Philosophy is not a body of doctrine but

an activity.

Tractatus Logico-Philosophicus

Ludwig J. J. Wittgenstein

The design and implementation of the proposed SPOT algorithm are

presented in this chapter. Two algorithm development libraries, HyFlex and

Weka, are briefly introduced in Section 4.1. Section 4.2 represents the design

classes and public functions in the SPOT algorithm. The implementation

of two cross-domain classes and their functions, such as the training of

classifiers and the general procedure of problem solving, are detailed in

Section 4.3. Section 4.4 presents some overall discussion.

89

90 CHAPTER 4. JAVA IMPLEMENTATION

4.1 Supporting Libraries

This section introduces two algorithm development libraries: HyFlex and

Weka. HyFlex is a cross-domain hyper-heuristic development library and

Weka is a machine learning software and machine learning development

library. Both are written in Java language and both support cross-platform

development.

4.1.1 HyFlex

HyFlex30 (Hyper-heuristics Flexible framework) is a Java cross-domain

hyper-heuristic development platform (Ochoa, Hyde, et al., 2012). HyFlex

was also the competition platform in the hyper-heuristic competition CHeSC

2011 which focused on heuristic selection approaches. This thesis adopts

the same version of HyFlex as in CHeSC 2011. There are two main parts

designed in HyFlex for general heuristic selection approaches (Ochoa, Hyde,

et al., 2012):

• cross-domain part of hyper-heuristic algorithms, and

• domain-specific part of LLHs.

There is a “domain barrier” assumed between the two parts. The cross-

domain part, which is capable of calling ready-to-use LLHs through normal-

ized public functions, is considered the active part. The domain-specific part

is considered the passive part. Particularly, there are two optional parame-

30See http://www.asap.cs.nott.ac.uk/external/chesc2011/hyflex description.html.

http://www.asap.cs.nott.ac.uk/external/chesc2011/hyflex_description.html

4.1. SUPPORTING LIBRARIES 91

ters, depth of search and intensity of diversification, for each LLH. An LLH

may use none, one or two of the parameters.

Two super classes are defined as interfaces for the hyper-heuristics. One

is the HyperHeuristic which aims at encapsulating the data and operations

in the cross-domain part. Another is the ProblemDomain which emphasizes

on including the domain-specific LLHs and their data structures. The data

structures are completely inaccessible for the HyperHeuristic class. A hyper-

heuristic approach implemented in HyFlex can interact with the domain-

specific LLHs through public function calls. Public interface functions in

HyperHeuristic are mainly designed for supporting high-level strategies,

such as setting a time limit, tracing changes of objective values and getting the

best-so-far objective values. Public interface functions in the ProblemDomain

include getting and setting the parameters, loading problem instances, listing

and calling available LLHs and initializing and copying solutions in the

memory. More details about HyFlex can be found in Ochoa, Hyde, et al.

(2012).

4.1.2 Weka

Weka31 (Waikato Environment for Knowledge Analysis) is a machine

learning software and a development library in Java (Witten & Frank, 2005).

The version used in this thesis is 3.6. Weka contains many well implemented

algorithms for data analysis and machine learning, such as most of the

supervised learning methods shown in Figure 2.1. Weka also provides

visualization tools and graphical user interfaces to make the algorithms easy

31See http://www.cs.waikato.ac.nz/ml/weka/.

http://www.cs.waikato.ac.nz/ml/weka/

92 CHAPTER 4. JAVA IMPLEMENTATION

to use. The algorithms in Weka accept training data and test data as tables

of values, where each column stands for a decision attribute (or a label)

and each row denotes a training (or test) record. This study employs three

learning methods, J48, NaiveBayes and JRip, from Weka. The three classifiers

are Java implementations of the well-known C4.5, Naı̈ve Bayes and Ripper

methods introduced in Section 2.3.1. The parameters of the three methods

are the default values given by Weka. A heuristic attribute selection method

BestFirst is also used to choose a few of the most informative attributes when

the amount attributes are too large.

4.2 The Class Design

The operations in the SPOT algorithm are designed and encapsulated

in three classes, ProblemDomain UEA2, SPOT ML and SPOT, as shown as

n the thick borders in Figure 4.1. The three classes are introduced in the

following.

The class ProblemDomain UEA2 implements the super class ProblemDo-

main in HyFlex for supporting the domain-specific operations in the SPOT

hyper-heuristic, such as the sampling for subproblems (genSubprob()), the

U/EA transformation, the generations of raw attributes32 and the modifica-

tions (or creations) of LLHs. The operations on transformation and attributes

are encapsulated in public functions, such as manipulating competitive

groups (getCompetitiveGroups()), raw attributes (getRawAttributes())

and labels (getIntLabels() and setIntLabels()).

32The first step of attribute generation, see Section 4.3 for more details.

4.2. THE CLASS DESIGN 93

HyFlex.ProblemDomain
. . .
. . .

ProblemDomain UEA2

genSubprob(size, seed)
getCompetitiveGroups() : int[]
getRawAttributes() : double[][]
getIntLabels() : int[]
setIntLabels(lbls)

TSP UEA2
. . .
. . .

FSSP UEA2
. . .
. . .

Domain

HyFlex.HyperHeuristic
. . .
run()
. . .

SPOT

new llhs: LLH []

works on
1

1

SPOT ML

genNormAtts(groups, rawAtts) : double[][]
trainModelAndTest(atts, lbls, attsToBeLabeled) : int[]
trainModelAndTestAfterSel(atts, lbls, rawAtts, groups) : int[]

uses 1

1

Weka.attSelection.BestFirst
. . .
. . .

Weka.classifiers.J48
. . .
. . .

Weka.classifiers.JRip
. . .
. . .

Weka.classifiers.NaiveBayes
. . .
. . .

uses1

1

1 11

Figure 4.1: The class diagram of the SPOT hyper-heuristic

The class SPOT ML includes the cross-domain operations about attribute

generation and training and applying classifiers. genNormAtts() is a func-

tion that populates a number of attributes by comparing a raw attribute

of an assignment to those of its competitors, see Section 4.3. SPOT ML

encapsulates three effective classification techniques, i.e. J48, NaiveBayes

and JRip, in the function trainModelAndTest(). The attribute selection

94 CHAPTER 4. JAVA IMPLEMENTATION

method BestFirst is encapsulated into trainModelAndTestAfterSel(),

which extends the function trainModelAndTest().

The class SPOT is the high-level controller. It inherits the standard func-

tions from the super class HyperHeuristic. The class SPOT accepts an in-

stance of ProblemDomain UEA2 as its input problem and solves it step by

step, see Section 4.3 for the details of the steps. The learning in the class

SPOT is powered by the functions of SPOT ML.

4.3 Implementation in Java

The three classes were implemented in Java 2 Platform Standard Edition

(SE) version 1.6.0 32 (64-bit). The compiler was the default compiler pro-

vided in Java 2 SE. The machine was an Intel Core i7 975 3.33 GHz33. The

operating system was a Windows 7 64-bit with Service Pack 1. The class

ProblemDomain UEA2 is relatively domain-specific. The examples of its

implementation can be found in Section 5.2 and Section 6.2. The classes

SPOT ML and SPOT are cross-domain. Their implementations are detailed

as follows.

4.3.1 The class SPOT ML

There are three main public functions to implement in SPOT ML. Define

a problem with n groups, p competitor assignments in each group and

ra different raw attributes (measures) for each assignment. The function

33The official test program showed that 1.00 CPU second in four parallel thread mode for
this CPU was equivalent to 1.00 CPU second for a Pentium 4 3.0 GHz.

4.3. IMPLEMENTATION IN JAVA 95

genNormAtts() generates a table of normalized attributes with ra× (2p+ 3)

columns and n× p rows. Each row stands for the competition between one

assignment and its competitors. To illustrate the generation of the columns,

it is assumed that there is only n = 1 group of p assignments and ra = 1

raw attribute (measure). The raw attributes of the assignments are measured

and put in an ordered set {x1, x2, . . . , xp}, where x1 ≤ x2 ≤ . . . ≤ xp. For

each i-th assignment, Table 4.1 shows 2p + 3 normalized attributes (columns)

which describe the competition. A function bound100 is used to limit the

ranges. The first generated attribute is the real value of the raw attribute.

The remaining attributes are counts and comparisons without any units. A

column of Boolean labels can be attached to the table, where true denotes the

assignment can be found in a suboptima (or optima) and false otherwise.

Particularly, when there are two assignments in each group, some columns

can be removed due to redundancy. For example, the second row of attribute

“repeat counter” in Table 4.1 can be omitted.

The function trainModelAndTest() consists of training of the classi-

fiers and classifying of unlabeled data. It is a part of the last step in Section

3.3.2. First, the table consisting of normalized attributes and labels is used

to train the three classifiers. Each training is carried out with the default

parameters suggested by Weka, as listed in Table 4.2. The three trained

classifiers predict the unlabeled data which is generated from the given

problem by measuring the same raw attributes and generating normalized

attributes. The average (or summation) value of the labels predicted by

the three classifiers is regarded as the final label (prediction). In practice,

non-numeric Boolean values, such as true and false, can be converted to

96 CHAPTER 4. JAVA IMPLEMENTATION

Table 4.1: A list of generated attributes of the i-th assignment from one raw
attribute

Attribute(s) Equation Count

Absolute value xi 1
Repeat counter ∑ra

j=1 same†(xi, xj) 1
Equal to the first? same(xi, global‡ minimum of x1) 1
Equal to the last? same(xi, global‡ maximum of xp) 1
Relative values bound100\(xi/x]j), 1 ≤ j ≤ p p

Relative increments bound100(xj/x]j+1), 1 ≤ j ≤ p− 1 p− 1

†: same(x, y) =

{
1 if x = y,
0 if x , y.

‡: The minimum or maximum is available if there are multiple groups.

\: bound100(x) =

100 if x ≥ 100,
x if − 100 < x < 100,
−100 if x ≤ 100.

]: When y = 0, x/y =

100 if x < 0,
1 if x = 0,
−100 if x < 0.

numeric values, such as 1 and 0, in order to do arithmetic operations.

A preprocessing of attribute selection generally can select the most in-

formative columns to reduce the computation cost of training and to en-

hance the generalization of the classifiers. The attribute selection is very

useful when the number of columns ra× (2p + 3) is too large (e.g., 2000).

The function trainModelAndTestAfterSel() in the class SPOT extends

trainModelAndTest() with an attribute selection preprocess. The prepro-

cess calls the BestFirst search and the CfsSubsetEval evaluator provided by

Weka. Details about the selection method and the correlation-based evaluator

can be found in Hall (1999, Chap. 4).

4.3. IMPLEMENTATION IN JAVA 97

Table 4.2: The default values of main parameters of the classification and
attribute selection methods in Weka

Method Main parameter Default value Reference

J48 Confidence 0.25 Quinlan (1993)
Min number of objects 2
Number of folds 3

JRip Number of folds 3 Cohen (1995)
Min number of objects 2
Optimizations 2
Seed 1

NaiveBayes Using kenel estimator false John and Langley (1995)

BestFirst Lookup cache size 1 Hall (1999)
Search termination 5

4.3.2 The class SPOT

The class SPOT mainly implements one public interface run() inherited

from HyFlex.HyperHeuristic, as mentioned in Section 3.3.2. The function

run() consists of a full execution of the problem solving of the presented

algorithm. Given a set of determined parameters and a problem to solve, the

function run() can be briefly described as pseudo codes in Figure 4.2.

First, unlabeled attributes of possible assignments for classification are

generated in Lines 1 and 2 in Figure 4.2. Secondly, a subproblem is sampled

and is solved by a determined algorithm, as shown in lines 3 and 4. The

PHunter (Pearl Hunter), which is an effective heuristic selection algorithm de-

veloped by Chan et al. (2012) on HyFlex, is employed as the input algorithm.

The execution time of PHunter can be usually limited to a very short period,

for example, a few seconds. Suboptima can be found in most cases, because

the size of the subproblem is also limited. Then, the attributes and labels

about the suboptima of the subproblem can be generated, as shown as lines

98 CHAPTER 4. JAVA IMPLEMENTATION

1. ProblemDomain UEA2 i1 := load problem();
2. atts1 := SPOT ML.genNormAtts(i1.getCompetitiveGroups(), i1.getRawAttributes());
3. ProblemDomain UEA2 i2 := i1.genSubprob();
4. i2.solved by algorithm(an input algorithm);
5. atts2 := SPOT ML.genNormAtts(i2.getCompetitiveGroups(), i2.getRawAttributes());
6. lbls2 := i2.getIntLabels();
7. predLbls := SPOT ML.trainModelAndTest(atts2, lbls2, atts1);
8. i1.setIntLabels(predLbls);

Figure 4.2: The pseudo codes of function SPOT.run()

5 and 6. Finally, the assignments of the given problem can be predicted, and

some LLHs can be modified, as shown in lines 7 and 8. In the 7th line, there

is also an alternative learning function trainModelAndTestAfterSel()

consisting of a preprocess of attribute selection, as described in Section 4.3.1.

4.4 Discussion

The variable assignment weighting scheme presented in Xue, Chan, et al.

(2011) was implemented in C language and was compiled by GCC (GNU

Compiler Collection). The processes of class association rules learning and

weighting assignments were designed as domain-specific and static calls. In

comparison, the processes of the presented SPOT algorithm, which aim at

robust and cross-domain applications, are designed as open interfaces. For

example, the generation of normalized decision attributes on the basis of raw

attributes can provide more possible correlations for the models of stochastic

machine learning. Another example is the combination of three classification

techniques from different branches of supervised learning.

There are several advantages to develop the SPOT algorithm on the

HyFlex library. Although the version involved in this thesis is mainly used

4.4. DISCUSSION 99

for heuristic selection, HyFlex presents a concise and precise infrastructure

of interactions between domain-specific LLHs and cross-domain algorithms.

Secondly, there are six domains of NP-Complete benchmark problems as well

as their LLHs already included in HyFlex. Finally, a public hyper-heuristic

competition, CHeSC 2011, already validated the effectiveness and robustness

of HyFlex. The competition also attracted tens of hyper-heuristic researchers

worldwide and publicized their computational results on HyFlex. In other

words, HyFlex provides adequately reliable LLHs and hyper-heuristics for

reference.

In this thesis, another hyper-heuristic PHunter is employed as the solver

for the subproblem. There were three main reasons. First, as a cross-domain

hyper-heuristic, PHunter has fewer structures and codes compared to a num-

ber of algorithms in which each one is a specific solver for one domain. Fewer

structures and codes also mean fewer possible sources of implementation

errors. The second reason is the effectiveness. PHunter was the fourth overall

and the first in hidden domains34 out of twenty hyper-heuristics in CHeSC

2011. The last reason is that PHunter and SPOT share the same development

library HyFlex. Therefore, it is convenient to incorporate PHunter.

The reason of using a 64-bit Java instead of a 32-bit one lies on the max-

imum heap size. In a 32-bit Java environment on windows, the maximum

heap size is typically 1.8 G bytes (IBM35 Java) or 4 G bytes (Oracle/Sun

Java36). However, the class SPOT ML sometimes needs more memory for

storing data and training the classifiers, such as a 3 to 5 G bytes of memory or

34See http://www.asap.cs.nott.ac.uk/external/chesc2011/results.html.
35See http://publib.boulder.ibm.com/infocenter/javasdk/tools/index.jsp?topic=/com.

ibm.java.doc.igaa/ 1vg00014884d287-11c3fb28dae-7ff6 1001.html.
36According to the “Xmx” parameter.

http://www.asap.cs.nott.ac.uk/external/chesc2011/results.html
http://publib.boulder.ibm.com/infocenter/javasdk/tools/index.jsp?topic=/com.ibm.java.doc.igaa/_1vg00014884d287-11c3fb28dae-7ff6_1001.html
http://publib.boulder.ibm.com/infocenter/javasdk/tools/index.jsp?topic=/com.ibm.java.doc.igaa/_1vg00014884d287-11c3fb28dae-7ff6_1001.html

100 CHAPTER 4. JAVA IMPLEMENTATION

even more in the large-scale problems in Chapter 5 and Chapter 6. Therefore,

a 64-bit Java environment was chosen as the environment.

Chapter 5

Application I: The Traveling Salesman Prob-

lem Domain

Example is the school of mankind, and

they will learn at no other.

Letters on a Regicide Peace

Edmund Burke

In this Chapter, the presented SPOT hyper-heuristic is applied to a well-

known combinatorial optimization domain, the Traveling Salesman Problem

(TSP), in order to try to replicate Xue, Chan, et al. (2011)’s modeling approxi-

mately. Section 5.1 briefly overviews the background and some well-known

algorithms and data structures for TSPs. The implementation of TSP do-

main in HyFlex is introduced in Section 5.2. The domain-specific design and

parameters of the SPOT hyper-heuristic are given in Section 5.3 in detail.

Section 5.4 shows the results of experiments and some discussion is given in

Section 5.5.

101

102 CHAPTER 5. APPLICATION I: THE TSP DOMAIN

5.1 An Introduction to the TSP Domain

As defined in Section 1.2, a TSP aims at finding the shortest possible tour

in which each given city is visited exactly once. Examples of TSPs can be

found in Figure 1.6 and Figure A.1. TSP is one of the most comprehensively

studied problems in computer science, operational research and engineering

practice. A common form of TSPs is Euclidean TSP, where the distance

between cities is the Euclidean distance. The industrial applications of TSPs

include vehicle routing, electric power cable networks, and VLSI (Very-Large-

Scale Integration) chip fabrication (Punnen, 2004; Applegate, Bixby, Chvátal,

& Cook, 2006).

Both TSP (Garey & D. S. Johnson, 1979) and Euclidean TSP (Papadim-

itriou, 1977) were proven in the NP-Complete class. Papadimitriou and

Vempala (2006) showed that TSPs with triangular inequality are NP-hard to

approximate, with a ratio less than 220/219. Nevertheless, TSPs, especially

Euclidean TSPs, can be regarded as well-handled in practice, after decades of

research. Algorithms that guarantee finding optimal tours are now capable

of solving relatively large-scale instances. For example, the Concorde code

solved the 85,900 cities in a time of 136 CPU-years for a 2.4 GHz processor

(Applegate, Bixby, Chvátal, & Cook, 2006). Besides, efficient heuristics can

quickly find tours within a few percent of optimal on real-world instances

(D. S. Johnson & McGeoch, 1997). For example, Bentley (1992)’s greedy could

find a solution about 15% over the HK lower bound for a TSP with 85,900

cities in three seconds on a 500 MHz EV6 Compaq Alpha processor. More

sophisticated heuristics can get within 1% of optima in reasonable amounts

5.2. IMPLEMENTATION OF THE TSP DOMAIN IN HYFLEX 103

of time (Helsgaun, 2000; D. S. Johnson & McGeoch, 2002).

It is believed that one of the major reasons for the efficiencies of heuristics,

especially local search, are the highly effective edge candidate set structures.

The main concern of a candidate set is that it is impossible for most of very

long edges to appear in optimal tours. So a candidate set usually contains a

limited number of promising (short or holding particular properties) edges

for each city according to the geometry. Popular candidate sets include the

nearest-neighbor-first (Lin & Kernighan, 1973), the Delaunay (Reinelt, 1994),

the k-quadrant (Miller & Pekny, 1995), and the α-nearness (Helsgaun, 2000).

There also are other techniques for modifying search procedures according

to suboptima, such as the backbone (W. Zhang & Looks, 2005) and the tour-

merging (Cook & Seymour, 2003). According to the definitions in this thesis,

both the backbone and the tour-merging can be considered as heuristic

generation methods in regard to the amount of possible modifications on

heuristics, though they did not include complicated and explicit machine

learning techniques.

5.2 Implementation of the TSP Domain in HyFlex

The problem domain of TSP was implemented in HyFlex and used as a

hidden test domain37 in CHeSC 2011. The implementation employed ten

widely used benchmark instances from the TSPLIB data sets38, as shown

in Table 5.1. All the problems are 2D Euclidean instances. The six drilling

instances are from the print circuit board industry, and the two largest in-

37Not public before the competition.
38Available at: http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/.

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

104 CHAPTER 5. APPLICATION I: THE TSP DOMAIN

Table 5.1: Ten benchmark instances used in the implementation of TSP in
HyFlex

No. Id Size (n) Referential optimum In CHeSC? Notes

0 pr299 299 48191 X Drilling problem
1 pr439 439 107217 Drilling problem
2 rat575 575 6773 X Rattled grid
3 u724 724 41910 Drilling problem
4 rat783 783 8806 Rattled grid
5 pcb1173 1173 56892 Drilling problem
6 d1291 1291 50801 X Drilling problem
7 u2152 2152 64253 X Drilling problem
8 usa13509 13509 19982859 X Map of USA
9 d18512 18512 645238 Map of Germany

stances are national maps. The distance implemented in HyFlex was the

real-value Euclidean distance. However, the optima in Table 5.1 are based on

the rounded integer distance defined in TSPLIB. Because the error caused

by the rounding operation is limited, the optima can be used as referential

optima to measure the excesses of suboptima approximately. After a random

selection, five instances, No. 0, 2, 6, 7 and 8, were selected in the test beds to

benchmark the hyper-heuristics in CHeSC 2011.

Twelve LLHs were implemented, as shown in Table 5.2. The LLHs could

be categorized into four classes: mutation, ruin-and-recreate, local search

and crossover. Algorithms in the crossover class started from two tours and

created one new tour for return. Other algorithms started from one tour and

return a new (or same) return. All the implemented LLHs were carried out

on the nearest-neighbor-first candidate set. Eight nearest neighboring cities

were considered as candidates of the preceding or succeeding cities. In other

words, two out of eight shortest edges departing from one city were expected

to be in the optimum case.

5.3. DEVELOPMENT OF THE SPOT FOR TSPS 105

Table 5.2: The LLHs in the implementation of TSP in HyFlex
Type Id Parameters used Notes

Intensity of Depth of
mutation search

Mutation 0 Random reinsertion
1 Swap of two cities
2 Randomization
3 X Partial randomization
4 X A number of swaps of cities

Ruin-and-recreate 5 X Greedy partial reconstruction

Local search 6 X First improvement 2-Opt
7 X Steepest descent 2-Opt
8 X First improvement 3-Opt

Crossover 9 Order crossover
10 Partially mapped crossover
11 Precedence preservative crossover
12 One point crossover

5.3 Development of the SPOT for TSPs

This section presents the application of the SPOT heuristic generation

for the domain TSP. The development can be divided into the three phases

mentioned in Section 3.3:

P1: transformations for standards and sampling,

P2: determination of parameters, and

P3: generation of new LLHs (by modification).

All the domain-specific operations developed in phases P1 and P3 were

encapsulated in the interface functions within the class TSP UEA2, as shown

in Figure 4.1. The determined parameters were stored and used by the class

SPOT.

106 CHAPTER 5. APPLICATION I: THE TSP DOMAIN

5.3.1 P1: Transformations and sampling

The designs of the U/EA and the U/EA2 standards are described in

this section. The first standard is actually the problem model of the SPOT

algorithm so that the given combinatorial optimization problems must be

transformed to meet the standard. The latter standard regulates the gen-

eration of the labeled training data and the unlabeled test data, so that

meaningful classifiers can be trained and are compatible with the unlabeled

test data.

5.3.1.1 Design and validation of transformations

The hard constraint in a TSP is the requirement for a Hamiltonian cycle.

The Hamiltonian cycle is a graph cycle (i.e., closed loop) that visits each node

exactly once. In the perspective of a city, the Hamiltonian cycle means there

are only two edges connected to itself. Alternatively, each city has a degree

of two, in a formal description. The only inter-variable hard constraint is that

all the n edges must form a closed loop.

In the U/EA standard, there is no inter-variable hard constraint. There-

fore, the inter-variable hard constraints were directly removed. The inner-

variable constraint of “having a degree of two” was kept. Then the trans-

formed problem was actually a relaxed TSP, which could be stated as follows.

In a transformed TSP, a set C = {c1, c2, . . . , cn} of cities is given,

and for each pair (ci, cj) of distinct cities there is a distance d(ci, cj).

The target is to find n pairs so that (i) the summation of the n

lengths is relatively short and (ii) each city connects two and only

5.3. DEVELOPMENT OF THE SPOT FOR TSPS 107

two cities.

It might seem confusing to find “relatively short” targets. In fact, training

examples of “relatively short” edges could be obtained from a suboptimum

(of a subproblem). The instance-specific information about “what kind of

edge seems like ‘relatively short’ in a similar problem” could be learned, too.

The cardinal number of possible assignments for each city was always n− 1

originally. Henceforth, the new relaxed TSP meets the U/EA standard.

Three instances listed in Table 5.3 were selected to test the compatibility

of the relaxed TSP in the U/EA standard. The selection was mainly based

on the problem size. Small-scale problems, such as those with tens of cities,

might bring a biased geographic structure into the learning. Very large-scale

problems, such as those with thousands or millions of cities, cost too much

time due to the scale. Therefore, three problems with around one thousand

cities were selected. In each instance, two arbitrary suboptima were selected

randomly to check the resemblance between the two and to estimate the

average resemblance of each instance approximately. The approximability, i.e.

the overall average resemblance r̄, was 70.40%. Both the approximability and

generality (degree of approximation among r of instances) were acceptable.

Therefore, the U/EA model was said to be compatible to the SPOT hyper-

heuristic.

5.3.1.2 Design of decision attributes

The last task in P1 was to design attributes to meet the U/EA2 standard.

The design involved the definitions of the groups of competitors, the raw

108 CHAPTER 5. APPLICATION I: THE TSP DOMAIN

Table 5.3: Three benchmark TSP instances used in the development of the
SPOT algorithm

No. Id Size (n) % excess the referential optimum Resemblance r (%)

Suboptimum 1 Suboptimum 2

4 rat783 783 0.7609 0.8086 95.27
5 pcb1173 1173 0.5590 0.4394 60.70
6 d1291 1291 2.9279 3.2397 55.23

Approximability r̄ (%) 70.40

attributes and the label(s). The definitions were important. Because both the

labeled training data and the unlabeled test data would be generated accord-

ing to the definitions, and the training data determined the classification and

the final LLHs.

The group of competitors for a city ci was designed as the set of all the

n− 1 edges connecting to the city ci:

{
(ci, cj)|1 ≤ j ≤ n, j , i

}
. (5.1)

Each group was marked with a unique identity (integer). In this case, the

function getCompetitiveGroups() returned an array of n× (n− 1) inte-

gers, where each value stood for the identity of an edge group, and there

were p = n− 1 assignments in each group.

Nevertheless, effective candidate sets were also considered during the

design. Given a candidate set, the group for a city ci became

{
(ci, cj)|cj ∈ candidate set of(ci, sizec)

}
, (5.2)

where sizec (2 ≤ sizec ≤ n− 1) was a constant integer denoting the size of

5.3. DEVELOPMENT OF THE SPOT FOR TSPS 109

the edge candidates for each city. The candidate set employed in HyFlex

was the nearest-neighbor-first set, and the sizec was 8. In the design of

the SPOT hyper-heuristic, the same candidate set was used to generate

candidates, and the sizec was set to 20 to include more edges that could

possibly be suboptimum assignments. As a result, the implemented function

TSP UEA2.getCompetitiveGroups() returned an array of 20× n integers,

where each group consisted of p = 20 assignments.

Besides the length of the edges, angular properties were also consid-

ered during the design of the attributes, because all the instances were 2D

Euclidean TSPs. For each assignment (edge) (ci, cj) in each group, there

were ra = 2 raw attributes designed. The first was the (Euclidean) dis-

tance, i.e. d(ci, cj). The other raw attribute was the angle of the edge

atan2(yj − yi, xj − xi), where atan2 is a variation of the arctangent function:

atan2(∆y, ∆x) =

arctan (∆y/∆x) ∆x > 0

arctan (∆y/∆x) + π ∆y ≥ 0, ∆x < 0

arctan (∆y/∆x)− π ∆y < 0, ∆x < 0

+π/2 ∆y > 0, ∆x = 0

−π/2 ∆y < 0, ∆x = 0

0 ∆y = 0, ∆x = 0

(5.3)

Therefore, the function TSP UEA2.getRawAttributes() returned a 2D

array (in 20× n rows and 2 columns) of real values. The class SPOT then

generated ra× (2p + 3) = 86 columns of normalized attributes and 20× n

rows of data through the function genNormAtts(). In fact, the 86 columns of

110 CHAPTER 5. APPLICATION I: THE TSP DOMAIN

attributes included 10 of the 14 decision attributes in Xue, Chan, et al. (2011).

The tables generated from subproblems were compatible to the unlabeled

data in terms of classification. The designed attributes meet the standard of

U/EA2.

The design of the label was, in fact, determined by the design of the

group. Because the group was the set of 20 nearest-neighbor-first candidates

for each city, the label appeared in the suboptimum for each edge candidate

(assignment). The label of each row was set to 1, if the edge appeared in

the optimum (or optima); to 0 if not. The labels were obtained through the

function TSP UEA2.getIntLabels() which returned an array of 20× n

integer values consisting of 2× n 1s and 18× n 0s.

In summary, the transformation and the designs were relatively straight-

forward and partially used Xue, Chan, et al. (2011)’s model. The objective

of the SPOT hyper-heuristic was designed as “generating LLHs to focus on

the edge candidates that would likely appear in suboptima”. Examples of

generated data tables of labeled training data and unlabeled test data can be

found in Table B.1 and Table B.4 in Appendix B.

5.3.2 P2: Parameter determination

There were two important parameters to be determined, one by one, in

this phase, as described in Section 3.3.1. The first parameter was the size

of the subproblems n′, which was numeric. The other was the method of

sampling for generating subproblems, and it was non-numeric.

5.3. DEVELOPMENT OF THE SPOT FOR TSPS 111

5.3.2.1 The size n′ of subproblems

The tests of n′ were set up as follows. The function SPOT.run() was

executed without the final step of generating the LLHs. It was because the

indicators were measurable before the generation of LLHs. The sampling

method was set to the random selection. The attribute selection was enabled

by calling the function trainModelAndTestAfterSel() for classification.

The usual number of selected attributes was around ten, see Table B.1 and

Table B.3 in Appendix B for a comparison. The computation time of the em-

bedded subproblem solver PHunter was set to six seconds. After training the

classifiers and labeling the test data, the 20-nearest-neighbor-first candidate

sets were sorted by the weighted distance suggested by Xue, Chan, et al. (2011):

(
1− γidx

3

)
× d(ci, cj), (5.4)

where cj was the idx-th edge in the candidate set of ci and γidx was the

summation of predicted labels for the assignment (ci, cj). Then sizec was set

to 8 for generating a comparable data structure. In fact, weighting the edge

candidates is not a new idea, and relevant examples could be can in different

heuristic and exact algorithms, such as Nemhauser and Wolsey (1988, pp.

494–495)’s branch-and-bound tree.

The indicator r was decomposed into two indicators to measure the

suboptimality of the generated candidate set. The first indicator cov was

the average coverage of suboptimum assignments, which was the percentage of

the suboptimum assignments covered by the candidate set. It is clear that

112 CHAPTER 5. APPLICATION I: THE TSP DOMAIN

0 ≤ cov ≤ 1 and a greater cov usually stood for a more expected39 result for

learning and a better suboptimality. The other indicator d̄ was the average

depth, which measured the average index of the optimum assignments in

the candidate set. In other words, d̄ showed how many non-suboptimum

assignments were “wrongly” placed before suboptimum ones, on average. A

lower level of d̄ denoted a better accessibility of the promising assignments

when the cov was not changed.

Six values of n′ were tested, as shown in Figure 5.1. One hundred inde-

pendent tests were carried out for each value and each instance. Figure 5.1

shows the trends of the average coverage cov, the average depth d̄ and the

time cost against the value of n′. The “8-nearest-neighbor-first” was the data

set implemented in HyFlex.

It can be seen from Figure 5.1 that the new candidate set included more

suboptimum assignments when n′ ≥ 50. A decreasing trend of average

depth d̄ meant that the suboptimum assignments were gradually moving

towards the heads of the ordered groups when n′ increased. Comparing to

the candidate set implemented in HyFlex, the new candidate set generally

covered more suboptimum assignments but placed them slightly deeper. For

instance, when n′ = 800 the new candidate set covered +0.142%40 more on

the fraction but placed the suboptimum assignments +0.017 deeper when

n′ = 800. It was acceptable, because cov, which related to the scope of search

of LLHs, was slightly more important than d̄ which related to the depth of

search.
39A cov ≈ 1 could also possibly mean the learning was overfitting in some cases.
40See Table C.2 for data.

5.3. DEVELOPMENT OF THE SPOT FOR TSPS 113

M
ea

n
of

co
v

(%
)

n′

98

98.2

98.4

98.6

98.8

99

25 50 100 200 400 800

8-nearest-neighbor-first
×

×
× × × ×

SPOT

M
ea

n
of

d̄

n′

1.8

1.85

1.9

1.95

2

25 50 100 200 400 800

8-nearest-neighbor-first

×

×

×

× × ×

SPOT

Ti
m

e
co

st
(s

)

n′

0

2

4

6

8

10

25 50 100 200 400 800

× × × × ×

×

SPOT

Figure 5.1: Average test results for determining n’ in the development of the
SPOT algorithm, on the three TSP test instances (100 runs)

114 CHAPTER 5. APPLICATION I: THE TSP DOMAIN

The size n′ was chosen as 400 after the tests. The main reason was to

balance performance and time cost. The time spent on learning seemed to

increase considerably when n′ > 400. If too much time was spent on learning,

it would be difficult to call the application an “on-the-fly” hyper-heuristic.

5.3.2.2 The methods of sampling for subproblems

Besides the general random selection, another method, rectangular se-

lection, was also tested to try to fine-tune the SPOT algorithm. For the 2D

Euclidean instances in HyFlex, the geography of the cities can be regarded as

being in a minimum boundary rectangle. A smaller rectangle can be selected

within the boundary rectangle to choose a block (subset) of cities. Given the

size n of the input problem and the size n′ of the subproblems, the area of

the small rectangle is n′/n of that of the minimum boundary rectangle, if the

cities are assumed to be distributed uniformly in space. In practice, a few

small rectangles can be randomly placed and the one with the closest density

of cities can be selected, in order to reduce errors from possible irregular

distribution of cities.

The aspect ratio of the small rectangle was considered as a parameter.

Letting the aspect ratio of the minimum boundary rectangle be a constant

1:1, five ratios were tested, as shown in the first column in Table 5.4. It can be

seen that both the best (greatest) cov and the best (least) d̄ were generated

in the ratio 1:1, which meant keeping the same aspect ratio as the minimum

boundary rectangle. Therefore, the aspect ratio in the rectangular selection

was set to be the same as the boundary box in the following.

Tests were carried out to examine what sampling method was able to

5.3. DEVELOPMENT OF THE SPOT FOR TSPS 115

Table 5.4: Average test results on different aspect ratios in the rectangular
selection sampling method, where n′ = 400 and the aspect ratio of the
minimum boundary rectangle is assumed as 1:1 (100 runs, best performance
in bold)

Aspect ratio cov (%) d̄ Timeoverall (s) TimeL (s)

1:16 98.570 1.936 6.30 0.28
1:4 98.613 1.874 6.65 0.61
1:1 98.615 1.869 6.94 0.89
4:1 98.612 1.879 6.66 0.62

16:1 98.563 1.876 6.31 0.29

generate a sample that led to the best candidate set in terms of the two

indicators. Table 5.5 shows the average results and significance by one-way

ANOVA tests41. The first column of Table 5.5 is the indicator, and the second

column denotes the test instance. Results of the rectangular selection, the

random selection and two parallel subproblems where each method sampled

one of them are, listed in the third column, the fourth column and the fifth

columns, respectively. Given the method of sampling as categories, the F

values and the significance p show the variances of mean values and the

statistical significance of null hypothesis, as listed in the last two columns,

respectively.

It can be observed from Table 5.5 that the average values on cov were

not always significant, though the cov resulted by the “Parallel” column

seems slightly higher. The average values on d̄ were clearly significant, as

written in bold. Therefore, it was statistically significant that the d̄ relating

to the parallel runs of both selections was the best (least). The time spent

on the parallel mode was approximately twice much as that spent on one

41The one-way ANOVA (analysis of variance) is employed to compare means of two or
three samples in this thesis. The null hypothesis is that two or more groups are drawn from
the same population. When there are only two means to compare, the relation between
ANOVA and the t-test is given by F = t2.

116 CHAPTER 5. APPLICATION I: THE TSP DOMAIN

Table 5.5: Average results and significants of tests on different subproblems
sampled, where n′ = 400 (100 runs, significant p in bold)

Indicator Instance Rectangular Random Parallel ANOVA

selection selection F p

cov 4 99.617 99.617 99.617 0.51 0.60
5 98.892 98.892 98.892 —† —
6 97.332 97.343 97.345 3.12 0.05

Average 98.613 98.617 98.618 —

d̄ 4 2.103 2.107 2.103 6.65 0.00
5 1.893 1.906 1.895 92.79 0.00
6 1.652 1.618 1.599 19.80 0.00

Average 1.883 1.877 1.866 0.00
†: No variance.

subproblem. In the following, two parallel subproblems were sampled by

random selection and rectangular selection, respectively. Each subproblem

and its suboptimum contributed half of the training data for supervised

learning.

With the determined transformations, design of attributes, sampling

and other secondary algorithms and parameters, a predicted label could be

generated, and a weighted distance could be calculated for each assignment

(in the candidate set) on-the-fly. However, it should be noted that the 8-

nearest-neighbor-first candidate set already achieved an effective pair of

indicators, cov = 98.477% and d̄ = 1.842, as shown in Figure 5.1. The average

results in the “Parallel” column in Table 5.5 only shows a slightly higher

coverage (∆cov = +0.141%) but a slightly weakened depth (∆d̄ = +0.024).

Therefore, the new candidate set, as well as newly generated heuristics,

should be capable of providing slightly higher qualified solutions, while it

might need in-depth search capability to find them.

5.4. EXPERIMENTS AND OBSERVATIONS 117

5.3.3 P3: The generation of new LLHs

This part was the last mile of the development and of the function

TSP UEA2.setIntLabels(). The new candidate set was obtained after

P1 and P2. Figure 5.2 shows an example of the new candidate set. In the

second figure in Figure 5.2, thick lines are the assignments with Σ labels ≥ 2,

the thin lines are those with Σ labels = 1 and the gray lines are those with Σ

labels = 0. Although there were priorities given in the new candidate set, the

difference between the two figures in Figure 5.2 is actually not significant, as

indicated by cov and d̄. More details of generating the example can be found

in Appendix B.

The new candidate set generated by the SPOT algorithm was only applied

to the three local search LLHs in Table 5.2. The reason was the local search

LLHs had stronger in-depth search capabilities than those in other categories.

The algorithms number 6, 7 and 8 listed in Table 5.2 were called number 6’,

7’ and 8’ after change of the candidate set. Although the codes of all local

search LLHs remained the same, the scope and traces of their exploration of

the search space changed due to the change of the candidate set. The original

algorithm numbers 6, 7 and 8 were called “base algorithms” of the new ones.

Generally, the three new LLHs can be regarded as generated by the SPOT

hyper-heuristic.

5.4 Experiments and Observations

This section presents two groups of tests. In the first group of experi-

ments, the individual performance of each new LLH was examined, with

118 CHAPTER 5. APPLICATION I: THE TSP DOMAIN

(i) The 8-nearest-neighbor-first (ii) A new candidate set by the SPOT

Figure 5.2: A comparison of two candidate sets of the TSP instance rat783

comparisons to its base algorithm. In the other group of tests, the three

new LLHs replaced their base algorithms. The heuristic selection method

PHunter solved the updated domain consisting of new LLHs. The results

were compared to the solving of PHunter with the original LLHs and the

winners in the TSP domain in CHeSC 2011.

All the tests were carried out with the same instances which had been

selected for the competition in CHeSC 2011, i.e. the numbers 0, 2, 6, 7 and

5.4. EXPERIMENTS AND OBSERVATIONS 119

8 shown in Table 5.1. The size n′ of the subproblems was set to 400 and

two subproblems were generated in parallel to provide training data, as

described in Section 5.3.2. The overall computation time was set to be the

same as the normalized time in CHeSC 2011, which was equivalent to 10

CPU minutes for a Pentium 4 3.0 GHz computer. All the time costs of the

processes in the SPOT hyper-heuristic, such as sampling subproblems, solv-

ing the subproblems, learning instance-specific knowledge and modifying

LLHs, were fully included in the overall time in order to make the results

comparable. For the embedded subproblem solver PHunter, the time limit

for solving each subproblem was 1% of the overall time, i.e. equivalent to 6

CPU seconds on a Pentium 4 3.0 GHz machine. The time of the rest processes

in the SPOT was not directly restricted.

5.4.1 On the individual LLHs

Table 5.6 shows the results on tour quality of the newly generated LLHs

in terms of percentage excess over the referential optima42. There were

100 runs for each configuration and each problem instance. In each run, a

random initial tour was generated for all local search LLHs and all LLHs

started from the same initial tour independently. One-way ANOVA tests

were also included to check the significance of the changes. The second

column is the test instance. The third and the fourth columns show the

excesses of the shortest tour length and the average length found by the base

algorithms in HyFlex, respectively. The fifth and the sixth columns stand

for the shortest tour length and the average length found by the new LLHs,

42It should be noted that the referential optima do not necessarily present the true optima.

120 CHAPTER 5. APPLICATION I: THE TSP DOMAIN

Table 5.6: Test results on the tour quality of the generated LLHs and their
base algorithms (100 runs, n = 400, Depth of search = 1, improvements on
average performance in bold)

% excess by % excess by
Group Inst the base LLH the new LLH ∆ avg ANOVA

Min Avg Min Avg F p

No. 6 0 6.944 12.941 6.944 12.993 0.052 0.01 0.93
versus 2 6.329 8.151 6.329 8.156 0.005 0.00 0.97
No. 6’ 6 9.690 17.066 9.900 17.172 0.106 0.05 0.83

7 10.905 14.679 10.729 14.660 -0.019 0.01 0.93
8 10.027 11.840 10.027 11.840 0.000 0.00 —

Avg improvement (%) -0.190 Avg 0.92

No. 7 0 6.273 12.271 5.909 12.107 -0.164 0.07 0.79
versus 2 5.915 8.560 5.915 8.559 -0.001 0.00 0.99
No. 7’ 6 9.683 16.750 10.038 16.900 0.150 0.05 0.76

7 10.957 14.407 10.707 14.240 -0.166 0.05 0.44
8 9.515 11.589 9.515 11.589 0.000 0.00 —

Avg improvement (%) 0.322 Avg 0.75

No. 8 0 3.548 7.164 2.535 7.045 -0.119 0.11 0.74
versus 2 3.113 4.301 3.113 4.292 -0.009 0.01 0.91
No. 8’ 6 6.657 14.083 6.683 13.984 -0.099 0.04 0.84

7 7.346 10.507 7.108 10.387 -0.120 0.31 0.58
8 5.844 6.985 5.844 6.985 0.000 0.00 —

Avg improvement (%) 0.743 Avg 0.77

respectively. The seventh column denotes the change on the average excess,

where improvements (negative numbers) are written in bold. The last two

columns present the F values and the confidence p examined by the one-way

ANOVA tests. The last row in each group shows the average improvement

in percentage and the mean of p in each group. The average improvement of

each new LLH is defined as

Avg improvement = −new % excess − base % excess
base % excess

× 100%. (5.5)

It can be observed from the seventh column that the generated No. 7’ and

5.4. EXPERIMENTS AND OBSERVATIONS 121

No. 8’ LLHs found slightly better (0 < average improvement < 1%) tours

on average than their base algorithms. However, the generated No. 6’ local

search returned many inferior (average improvement < 0) results on average,

compared to its base algorithm. The improvements by No. 8’ seems more

steady (lower variance in the seventh column) and slightly more in amount

(+0.743% against +0.322%) compared to those of No. 7”s. However, all the

changes, no matter whether improved or weakened, were not statistically

significant43 (p� 0.05).

Nevertheless, the observations are consistent with the interpretation and

prediction according to the indicators cov and d̄ in Section 5.3.2. In fact, No.

6 LLH was the first improvement 2-Opt and No. 7 LLH was the steepest

descent 2-Opt, as shown in Table 5.2. The only difference between them was

that the first one accepts any swap of two cities if it can improve the tour

and the second one only accepts the swap with best improvement. Hence,

it can be observed that the differences between the first and the second

groups in the seventh column in Table 5.6 were considerable. No. 8 LLH

was the first improvement 3-Opt, which explored a higher level of swaps

than No. 6. The observation of the differences between the corresponding

groups in Table 5.6 verified that in-depth search algorithms were slightly

better in this particular application of the SPOT heuristic generation. In

fact, Xue, Chan, et al. (2011) also observed a similar phenomenon that an

α-nearness-like candidate set determined by machine learning made obvious

improvements on a 5-Opt local search but encountered significant failure on

43It should be noted that the insignificant and slight improvements did not necessarily
lead to the conclusion that the SPOT algorithm was useless in the TSP domain. In fact, the
same implementation could generate much more powerful LLHs by changing the rule of
sorting edge candidates. See Section 5.5 for more details.

122 CHAPTER 5. APPLICATION I: THE TSP DOMAIN

Table 5.7: Average time of generating new LLHs (100 runs, n = 400, Depth
of search = 1)

Instance Size n Time (s)

Min Avg Max Std dev

0 299 12.70 14.10 16.75 0.66
2 575 13.95 14.92 17.41 0.59
6 1291 13.10 14.35 16.43 0.48
7 2152 12.95 13.49 14.66 0.32
8 13509 19.47 23.03 28.69 2.25

a 2-Opt heuristic for Euclidean TSPs.

The time cost of generating the LLHs is shown in Table 5.7. The third to

the sixth column show the minimum, the average, the maximum values and

the standard deviation of the time cost of the whole SPOT hyper-heuristic

for each instance. It should be noted that a 12 equivalent CPU seconds for

solving two subproblems was included in the data. It could be observed that

the maximum time cost in the instance with 13509 cities was no more than

about 30 seconds. Therefore, the SPOT could facilitate an instance-specific

heuristic generation in an “on-the-fly” fashion.

Table 5.8 shows the run time of the LLHs in solving problems in mil-

liseconds. The computation time of No. 6, No. 7 and No. 8 LLHs which

was provided by HyFlex is shown in the second, the fifth and the eighth

columns, respectively. The time of No. 6’, No. 7’ and No. 8’ LLHs generated

is shown in the third, the sixth and the ninth columns, respectively. The

fourth, the seventh and the last columns show the changes of average time

in the three groups. It can be observed that the changes of time in the first

four instances were almost unnoticeable, especially when referring to the

level of the instrument error. In the last row, No. 7’ and No. 8’ LLHs took

5.4. EXPERIMENTS AND OBSERVATIONS 123

Table 5.8: Average run time of each LLHs (100 runs, n = 400, Depth of search
= 1, instrument error < 0.16 ms)

Instance Average run time of LLHs in the three group (ms)

No. 6 No. 6’ ∆ No. 7 No. 7’ ∆ No. 8 No. 8’ ∆

0 0.6 0.6 0.0 0.5 0.5 0.0 8.7 8.4 -0.3
2 1.3 1.3 0.0 1.4 1.3 -0.2 15.9 16.2 0.3
6 3.0 2.8 -0.2 2.8 2.8 0.0 52.7 53.5 0.8
7 6.2 6.2 0.0 6.2 6.6 0.3 111.1 111.1 0.0
8 103.6 97.2 -6.4 100.8 104.4 3.6 4162.9 4191.6 28.7

about 4% and 1% more time than their base algorithms, respectively, and

No. 6’ one saved about 6% of time. In general, the computation time of the

new LLHs was not considerably different from those of their base algorithms.

With consideration of the tour qualities of the new LLHs, No. 7’ and No. 8’

could possibly replace their base algorithms in the HyFlex framework.

5.4.2 Comparisons with other hyper-heuristics

Many existing hyper-heuristics, especially heuristic selection methods,

can benefit from the newly generated LLHs by the SPOT hyper-heuristic by

employing the new LLHs into their LLH sets. For example, the generated

instance-specific LLHs, especially No. 7’ and No. 8’, could replace their base

algorithms in HyFlex. The heuristic selection methods, such as the PHunter,

can run on the basis of an updated LLH set. Such a combination of SPOT

preprocessor and the body of the PHunter is noted as the SPOT-PHunter in

the following.

The HyFlex framework and the CHeSC 2011 competition provided public

and reliable results44 for twenty hyper-heuristics. In the TSP domain in

44See http://www.asap.cs.nott.ac.uk/external/chesc2011/raw-results.html.

http://www.asap.cs.nott.ac.uk/external/chesc2011/raw-results.html

124 CHAPTER 5. APPLICATION I: THE TSP DOMAIN

Table 5.9: The top three hyper-heuristics in the TSP domain in CHeSC 2011
No Algorithm Score Author

1 AdaptHH 40.25 Mısır et al. (2012)
2 EPH 36.25 David Meignan
3 PHunter 26.25 Chan et al. (2012)

CHeSC 2011, the top three hyper-heuristics are listed in Table 5.9. The

scoring system45 was the Formula one points system, in which the winner

got 10 points, the runner-up got 8 points, and the third got 6 in each instance.

There were five instances selected. Therefore, the maximum of possible score

was 50.

The SPOT-PHunter was tested as a normal algorithm player in CHeSC

2011. The parameters of the PHunter in the body were the same as deter-

mined in Chan et al. (2012). All the three new local search LLHs were used to

replace their base algorithms, even though No. 6’ might be less competitive

than its base algorithm. The tests were conducted for the five instances, and

each was tested 31 times. The time cost in each test was equivalent to 10

minutes on a Pentium 4 3.0 GHz CPU. The median values46 were used for

scoring, as shown in Table 5.10. The second to the fourth columns show the

results of the top three hyper-heuristic approaches in CHeSC 2011. The fifth

and the sixth columns present the median solutions found by PHunter and

the SPOT-PHunter. Because the tests in CHeSC 2011 were carried out on a

32-bit47 Java environment, the third and the fifth columns of PHunter data

in the table were labeled as PHunter32bit and PHunter64bit, respectively. The

last column shows the confidence of one-way ANOVA test on comparing the

45See http://www.asap.cs.nott.ac.uk/external/chesc2011/scoring.html.
46The median value of a set {1, 1, 3} is 1, while the average value is 5/3.
47Confirmed by private communication in 2011.

http://www.asap.cs.nott.ac.uk/external/chesc2011/scoring.html

5.4. EXPERIMENTS AND OBSERVATIONS 125

Table 5.10: Median tour length of the PHunter, the SPOT-PHunter and three
other hyper-heuristics in the TSP domain in HyFlex (31 runs, best results in
bold for each instance)

.

Inst Best results† in CHeSC 2011 Test results in thesis

AdaptHH EPH PHunter32bit PHunter64bit SPOT-PHunter ANOVA p

0 48194.9 48194.9 48194.9 48194.9 48194.9 —‡

2 6810.5 6811.9 6813.6 6812.6 6802.4 0.00
6 53099.8 52925.3 52934.4 52835.2 52872.7 0.28
7 66879.8 66756.2 67136.8 66826.0 66606.4 0.00
8 20822145.7 21064606.3 21246427.7 21221065.6 21419868.0 0.00

†: Results on a 32-bit Java.
‡: Exactly the same.

mean tour qualities between PHunter64bit and SPOT-PHunter. The best re-

sults for each instance are written in bold. Two entries, the PHunter64bit and

the SPOT-PHunter, were added to the set of twenty hyper-heuristics. The up-

dated scores, according to the scoring system, of the top five hyper-heuristics

are shown in Figure 5.3.

First, it should be noted that the median tour length returned by the

PHunter on a 64bit Java environment was equal to or slightly better (less)

than that on a 32bit Java in every test instance, as shown in Table 5.10, though

the codes (and complied binaries) of the PHunter algorithm remained exactly

the same. Therefore, the results of the PHunter64bit and the SPOT-PHunter

are more comparable.

The involving of new LLHs generated by the SPOT increased the score of

the PHunter from 27 to 34, as shown in Figure 5.3. Besides No. 0 instance

in which every algorithm returned identical results, the SPOT-PHunter beat

the PHunter64bit in two instances (No. 2 and No. 7), and both improve-

ments are significant. The PHunter64bit obtained better results in two other

instances, and one improvement is significant and another is insignificant

126 CHAPTER 5. APPLICATION I: THE TSP DOMAIN

10

20

30

40

PHunter64bit SPOT-PHunter AdaptHH† EPH† PHunter†
32bit

(†: Results on a 32-bit Java)

27

34
32

27

18

By the SPOT

Figure 5.3: Scores of the PHunter, the SPOT-PHunter and three other hyper-
heuristics in the TSP domain in HyFlex

(p = 0.28 > 0.05). In summary, it can be observed that the SPOT hyper-

heuristic insignificantly and slightly improved the PHunter algorithm. The

result is consistent with the observation and interpretation on the insignifi-

cant and slight improvements in Section 5.4.1. What made the SPOT-PHunter

have better scores, as shown in Figure 5.3, was the scoring system. For ex-

ample, in the instance No. 8 in Table 5.10, the PHunter64bit did not gain

much advantage in scoring after beating the SPOT-PHunter. Its score in this

instance was low, because it was still dominated by the AdaptHH and the

EPH.

5.5. DISCUSSION 127

5.5 Discussion

Compared to the algorithm in Xue, Chan, et al. (2011), the SPOT heuristic

generation implemented in this study was only able to make insignificant and

slight improvements in both theory and practice. Although the observations

partially verified the theoretical prediction by the indicators, there were certain

reasons that led to the insignificant and slight improvements. One main

reason is related to the capability of in-depth search of the local search LLHs

for modifying. For example, one of the major LLHs for modifying was an

efficient 5-Opt in Xue, Chan, et al. (2011), and the base LLHs in this study

were 3-Opt and 2-Opt local search. Another possible reason was the size of

the candidate set. When the size was 8 in HyFlex, the indicator cov showed

that a 8-nearest-neighbor-first candidate set had an almost 99% coverage

of suboptimum assignments. That meant there was very limited room for

the SPOT hyper-heuristic to improve. In comparison, the coverage of the

5-nearest-neighbor-first candidate set was about 97% and the maximum

room to improve was then about 3%.

The HyFlex is a great platform to test new hyper-heuristics. It is open

and flexible, and encapsulates a lot of algorithms and data structures in its

implementation. Nevertheless, there is still some room to extend and/or

to improve its LLHs and data structures further. For example, the 2-Opt

in HyFlex returned tours with more than a 13% excess over the referential

optima on average, as shown in Table 5.6, when the 2-Opt local search in

Helsgaun (2000) could find tours within a 4% excess, in general, in the same

data set of benchmark instances. Some other candidate sets could also be

128 CHAPTER 5. APPLICATION I: THE TSP DOMAIN

considered. For example, according to experiments, a k-quadrant candidate

set noticeably reduced the average excess of tours by a considerable 35%.

The same implementation of the SPOT hyper-heuristic generated new LLHs,

that further reduced the average excess of the k-quadrant candidate set by

around 1%, by sorting the edges in the k-quadrant order. The SPOT heuristic

generation in this study can probably generate stronger LLHs in an updated

implementation of the TSP domain.

Chapter 6

Application II: The Permutation Flow-Shop

Scheduling Problem Domain

µεταβoλὴ δὲ πάντων γλυκύ.

Change in all things is sweet.

The Nicomachean Ethics

Aristotle

This chapter presents an application of the SPOT heuristic generation for

another well-known combinatorial optimization domain, the permutation

Flow-Shop scheduling Problem (FSP). The structure of this chapter is similar

to that of Chapter 5. A brief introduction to FSPs is given in Section 6.1, and

Section 6.2 describes the implementation of the FSP domain in HyFlex. The

adaptation and design of the SPOT heuristic generation are presented in Sec-

tion 6.3. Experiments and observations are shown in Section 6.4, concluding

with general discussion in Section 6.5.

129

130 CHAPTER 6. APPLICATION II: THE FSP DOMAIN

Machine 1

Machine 2

Machine 3

t1,1 t2,1 t3,1

t1,2 t2,2 t3,2

t1,3 t2,3 t3,3

Makespan

Execution time

Figure 6.1: An example of an FSP schedule with a permutation (J1, J2, J3)

6.1 An Introduction to the FSP Domain

FSP, sometimes referenced as F/permu/Cmax or n/m/p/Cmax notation-

ally, aims at finding a permutation of n jobs that minimizes the makespan.

Figure 6.1 shows an example of an FSP schedule. FSP has been compre-

hensively studied since the 1950s and still attracts many researchers even

now, see S. M. Johnson (1954), Heller (1960), Ignall and Schrage (1965), Tail-

lard (1993), Reza Hejazi and Saghafian (2005). FSP and its variants can be

applied to the traditional domains such as the surface mount technology and

printed circuit manufacturing as well as some innovative domains such as

multimedia object scheduling in the World Wide Web (Allahverdi & Al-Anzi,

2002).

As stated in Chapter 1, FSP was proven to be NP-Complete (Garey, D. S.

Johnson, & Sethi, 1976) and NP-hard to approximate with a factor less than

5/4 (Williamson et al., 1997). However, S. M. Johnson (1954)’s polynomial-

time two-machine scheduling had a strong influence in the later algorithms,

such as Ignall and Schrage (1965)’s Branch-and-Bound, Campbell, Dudek,

and Smith (1970)’s CDS and Gupta (1975)’s approach. Similar to the TSP

6.2. IMPLEMENTATION OF THE FSP DOMAIN IN HYFLEX 131

domain, there are effective heuristics for FSPs, too. A well-known heuristic is

Nawaz et al. (1983)’s NEH heuristic which employs a “curtailed-enumeration”

and can obtain very satisfactory solutions — usually within a 5% excess over

the best-known solutions in large-scale FSPs. Other exact and heuristic

algorithms, such as Reeves (1995)’s genetic algorithm and Taillard (1990)’s

tabu search, are also popular in solving FSPs. Some hyper-heuristic research

has also been carried out. For example, Vázquez-Rodrı́guez and Ochoa (2011)

investigated evolving ranking functions for NEH to prioritize operations.

6.2 Implementation of the FSP Domain in HyFlex

HyFlex implemented the FSP domain and publicized a part of the FSP

instances for open tests in CHeSC 2011. There were twelve FSP instances, as

shown in Table 6.1. The instances were selected from a well-studied bench-

mark data set48 by Taillard (1993). All the problems were randomly generated

instances. The best-known solutions in the fourth column in Table 6.1 were

collected from Zobolas, Tarantilis, and Ioannou (2009). Three instances, Nos.

1, 3 and 8, were randomly selected into the test beds. Two more instances,

Nos. 10 and 11, which were not publicized before the competition, were also

included for evaluating the hyper-heuristics in CHeSC 2011.

Table 6.2 shows fifteen LLHs implemented in FSP domain. The LLHs

could also be categorized into the four classes: mutation, ruin-and-recreate,

local search and crossover. Similar to the crossover methods for TSPs,

crossover algorithms for FSPs started from two tours and created one new

48Available at: http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/
ordonnancement.html.

http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/ordonnancement.html
http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/ordonnancement.html

132 CHAPTER 6. APPLICATION II: THE FSP DOMAIN

Table 6.1: Twelve benchmark instances used in the implementation of FSP in
HyFlex

No. Id Size (n×m) Best known In CHeSC? Notes

0 TA081 100× 20 6202 Randomly generated
1 TA082 100× 20 6183 X Randomly generated
2 TA083 100× 20 6271 Randomly generated
3 TA084 100× 20 6269 X Randomly generated
4 TA085 100× 20 6314 Randomly generated
5 TA092 200× 10 10480 Randomly generated
6 TA093 200× 10 10922 Randomly generated
7 TA111 500× 20 26059 Randomly generated
8 TA112 500× 20 26520 X Randomly generated
9 TA114 500× 20 26456 Randomly generated

10 TA101 200× 20 11195 X Randomly generated
11 TA113 500× 20 26371 X Randomly generated

Table 6.2: The LLHs in the implementation of FSP in HyFlex
Type Id Parameters used Notes

Intensity of Depth of
mutation search

Mutation 0 Random reinsertion
1 Swap of two jobs
2 Randomization
3 X Partial randomization
4 The NEH heuristic (Nawaz et al., 1983)

Ruin-and- 5 X Partial reconstruction by the NEH
recreate 6 X X Partial reconstruction by a greedy stepper NEH

Local search 7 Iterated steepest descent 1-job interchange
8 Iterated first improvement 1-job interchange
9 X Random steepest descent 1-job interchange

10 X Random first improvement 1-job interchange

Crossover 11 Order crossover
12 Precedence preservative crossover
13 Partially mapped crossover
14 One point crossover

solution. Other algorithms started from one tour and returned a new (or

same) one. Many LLHs were based on the effective NEH heuristic which

involved iterations of assignment trials (limited backtracking).

6.3. THE DEVELOPMENT OF A SPOT FOR THE FSP 133

6.3 The Development of a SPOT for the FSP

This section presents an application of the SPOT hyper-heuristic for the

domain FSP, in the form of the three development phases mentioned in

Section 3.3:

P1: transformations for standards and sampling,

P2: determination of parameters, and

P3: generation of new LLHs (by modification).

All the domain-specific operations developed in phases P1 and P3 were

encapsulated in the interface functions within the class FSP UEA2, as shown

in Figure 4.1. The determined parameters were stored and used by the class

SPOT.

6.3.1 P1: Transformations and sampling

The designs of the U/EA and the U/EA2 standards are described in this

section. The first standard focuses on the input problem. Transformations

between permutations of FSPs and 0-1 matrices are introduced to meet the

U/EA standard. The latter standard aims at delivering meaningful and

sufficient information in terms of attributes, which can be partially borrowed

from existing algorithms.

134 CHAPTER 6. APPLICATION II: THE FSP DOMAIN

6.3.1.1 Design and validation of transformations

Every solution of an FSP is a unique permutation (or sequence) of n jobs.

The size of the search space is n!. When n is a large number, the size can be

approximated by Stirling’s formula49:

n! =
√

2πn
(n

e

)n
eλn , (6.1)

where 1
12n+1 < λn < 1

12n . Given an FSP, a Boolean function of the relationship

“following” between two jobs Ji and J j can be defined as follows:

f l(i, j) =

0 iff. index of Ji ≤ index of J j,

1 otherwise.
(6.2)

Any permutation of n jobs can be transformed to an n× n 0-1 (or Boolean)

matrix, where each element is the value of function f l on its row index and

column index. For example, a permutation (J3, J2, J1) can be written as the

matrix
0 1 1

0 0 1

0 0 0

 (6.3)

The conversion from a matrix to a permutation can be stated as follows. Let

the summation ∑1≤j≤n f l(i, j) of the i-th row be the weight of the i-th job Ji.

The permutation refers to the ordered jobs which are sorted by the weights

in the ascending order.

49See http://en.wikipedia.org/wiki/Stirling’s approximation.

http://en.wikipedia.org/wiki/Stirling's_approximation

6.3. THE DEVELOPMENT OF A SPOT FOR THE FSP 135

It is clear that f l(i, i) = 0 must be a constant for any i. In a designed trans-

formed FSP, each f l(i, j) is considered as a variable, where i , j. Therefore,

there are n2 − n Boolean variables. The new transformed problem can be

described as follows.

In a transformed FSP, n jobs are given to be processed on m

machines in the same order, the process time of job i on machine

j being ti,j (i = 1, 2, . . . , n; j = 1, 2, . . . , m). A 0 or 1 value of

“following” needs to be determined for each pair of jobs such that

the total elapsed time (makespan) is minimized.

The variables are unconstrained, and each variable is Boolean. Henceforth,

the transformed FSP meet the U/EA standard. The cardinal number of the

new search space is 2n2−n. The new search space is, actually, much larger

than the original search space when n is a large number, for example,

limx→+∞
2n2−n

n! = limx→+∞
2n2−n

√
2πn(n

e)
n

= limx→+∞ eln 2(n2−n)− ln 2+ln π+ln n
2 −n(ln n−1)

= limx→+∞ eln 2n2

= +∞.

(6.4)

Therefore, the transformation from permutations to matrices is a one-to-

one mapping and the transformation from matrices to permutations is a

many-to-one mapping.

Four instances were selected from HyFlex to test the compatibility of

the transformed FSP in the U/EA standard, as listed in Table 6.3. Even

though the instances seemed to be among small-scale instances in HyFlex,

136 CHAPTER 6. APPLICATION II: THE FSP DOMAIN

Table 6.3: Four benchmark FSP instances used in the development of the
SPOT algorithm

No. Id Size (n×m) % excess the best-known Resemblance r (%)

Suboptimum 1 Suboptimum 2

0 TA081 100× 20 1.0158 1.0803 79.76
1 TA082 100× 20 0.8895 1.0189 75.50
2 TA083 100× 20 0.7176 0.7973 87.72
3 TA084 100× 20 0.8614 0.9890 75.33

Approximability r̄ (%) 79.58

they were actually complicated enough50 to test and to train the SPOT hyper-

heuristic. In each instance, two arbitrary suboptima were selected to check

the resemblance between them. The approximability r̄ was 79.58%, as shown

in Table 6.3. Both approximability and generality were greater than those

in Chapter 5, respectively. Therefore, the transformed FSP was regarded as

compatible to the SPOT hyper-heuristic.

6.3.1.2 Design of decision attributes

Designing the attributes to meet the U/EA2 standard was the last task in

P1. The design involved the definitions of the groups of competitors, the raw

attributes and the label(s), similarly to that in Chapter 5.3.1. Each variable of

a “following” was considered as a group consisting of two competitor assign-

ments: 0 and 1. Therefore, there were n2 − n groups and p = 2 assignments

in each group. The function getCompetitiveGroups() returned an array

of 2n2− 2n elements of assignments, with n2− n unique identities of groups.

Many existing heuristics, such as Palmer (1965), Campbell et al. (1970)’s

CDS, Gupta (1975) and Dannenbring (1977)’s RA, have proposed many

50Evidence shows that they are still unsolved.

6.3. THE DEVELOPMENT OF A SPOT FOR THE FSP 137

Table 6.4: The 5m + 3 raw attributes designed for a job Ji against another job
J j in the FSP domain (i , j)

Raw att Cols Definition Reference

Mean t 1 avg (ti,1, ti,2, . . . , ti,m)
Std dev 1 stdev (ti,1, ti,2, . . . , ti,m)
Min t 1 min (ti,1, ti,2, . . . , ti,m)
Max t 1 max (ti,1, ti,2, . . . , ti,m)

Dist 1 ∑2≤k≤m−1

[
(m− k)× |ti,k − tj,k−1|

]
+ti,1 + ti,m

Palmer 1 ∑1≤k≤m [−(m− 2k)× ti,k] Palmer (1965)
Gupta 1 sgn†(ti,m − ti,1)/ min(ti,1 + ti,2, ti,2 + ti,3, Gupta (1975)

. . . , ti,m−1 + ti,m)
Real time m {ti,k|1 ≤ k ≤ m}
CDS part1 m− 1 {∑1≤l≤k ti,k|2 ≤ k ≤ m} Campbell et al. (1970)
CDS part2 m− 1 {∑k≤l≤m ti,k|1 ≤ k ≤ m− 1} Campbell et al. (1970)
RA part1 m− 1 {∑1≤l≤k(m + 1− k)ti,k|1 ≤ k ≤ m− 1} Dannenbring (1977)
RA part2 m− 1 {∑k≤l≤m(m + 1− k)ti,k|2 ≤ k ≤ m} Dannenbring (1977)

∑ 5m + 3

†: the sign function sgn(x) =

1 x > 0,
0 x = 0,
−1, x < 0.

decision attributes. Given a variable f l(i, j)51, there are ra = 5m + 3 raw

attributes defined, as shown in Table 6.4. The first column in Table 6.4

shows the name of a raw attribute. The second column is the number of

raw attributes for each category. The third column presents the equations to

calculate the attributes. Some references are given in the last column. As a

result, the function FSP UEA2.getRawAttributes() returned a 2D array

(in 2n2 − 2n rows and 5m + 3 columns) of Boolean values. The class SPOT

then generated 2× ra columns of normalized attributes, because there were

only two competitors in each group and some redundant attributes could be

removed. A generated data table had 10m + 6 columns and 2n2 − 2n rows.

The data table can be a subset in the U/EA2 attribute space.

51A job Ji against a competitor J j.

138 CHAPTER 6. APPLICATION II: THE FSP DOMAIN

Because the group was defined with the Boolean values of the f l function,

the label was set to the f l function and its possible values were 0 and 1. As a

result, the objective of finding a permutation was transformed into finding a

matrix of “following” relations. Examples of generated data tables of labeled

training data and unlabeled test data can be found in Table B.5 and Table B.7

in Appendix B.

6.3.2 P2: Parameter determination

There are two important parameters to be determined one by one in

this phase, as described in Section 3.3.1. The first parameter is the size of

subproblems n′, which is numeric. The other is the method of sampling for

generating subproblems, and it is non-numeric.

6.3.2.1 The size n′ of subproblems

The tests of n′ were set up as follows. The targets of sampling in the

FSP domain were the jobs, excluding the machines. The reason was that the

number of columns for training was a (linear) function against the number

m of machines. If the machines were sampled, the attributes in the training

data and the attributes in the test data must be inconsistent. Random selection

sampling on jobs was employed to determine the size n′. The function

SPOT.run() was executed without the final step of generating LLHs. The

solving time of a subproblem was set to 6 seconds for the PHunter algorithm.

The algorithm selection was not enabled for two reasons. The main reason

was that the algorithm selection could noticeably reduce the precision of the

machine learning. The second reason was the intent to test the performance

6.3. THE DEVELOPMENT OF A SPOT FOR THE FSP 139

(49,48,68,74,42,9,99,67,75,46,4,61,89,58,30,88,18,78,13,97,34,64,71,35,1,69,26,14,32,51,

25,33,0,98,31,47,81,8,12,70,52,94,29,83,96,10,2,63,7,92,65,66,86,45,22,59,19,3,90,21,60,

95,77,39,79,53,6,82,41,43,72,50,84,57,27,62,37,24,44,91,36,85,73,28,16,76,5,40,15,80,55,

23,87,17,11,93,20,38,54,56)

(i) A predicted permutation by the classifiers in the SPOT algorithm

(48,49,75,4,64,30,95,99,97,67,80,26,68,89,42,57,65,54,94,23,31,45,58,74,32,9,71,46,90,72,

78,62,34,92,70,13,18,47,15,96,29,60,76,37,25,59,33,14,22,6,77,69,41,83,87,12,61,21,82,51,

84,27,36,79,2,7,24,8,66,0,39,35,1,17,93,50,11,88,63,86,55,3,43,73,53,16,91,5,52,44,85,40,

10,81,98,19,20,38,28,56)

(ii) An NEH permutation by the NEH heuristic

(49,48,75,4,99,68,67,42,30,64,89,74,97,9,58,46,26,78,71,18,34,32,13,31,94,65,61,95,47,70,

14,25,45,69,33,29,92,96,90,51,57,88,12,35,1,83,72,80,59,0,60,22,8,62,2,23,77,7,6,54,21,37,

66,41,63,82,15,76,79,98,52,81,86,84,39,27,10,3,36,24,50,87,53,19,43,73,91,17,44,16,93,11,

55,85,5,40,28,20,38,56)

(iii) A weighted permutation by adding up the weights in (i) and (ii)

Figure 6.2: Examples of a predicted permutation, an NEH permutation and

a weighted permutation for the FSP instance TA082

of the supervised learning on a relatively large number (tens to a couple

of hundreds) of columns of data. The computation time of the embedded

subproblem solver PHunter was also set to six seconds. After training

classifiers and predicting labels, the generated matrix was transformed to the

weights of summations of “following” back to the given variables for sorting

a permutation of jobs. Similar to the weighted distance which combined

the general results of learning and variable-specific data of lengths of edges

(Xue, Chan, et al., 2011), the weighting in the FSP domain also considered a

random permutation by NEH to calculate the weighted summations, with

each permutation weighted as a half. An example is shown in Figure 6.2.

140 CHAPTER 6. APPLICATION II: THE FSP DOMAIN

The indicator used in the tests was r, which represented the average

resemblance between the “following” matrix of a given permutation to those

of the two suboptima listed in Table 6.3. The meaning of r could also be

regarded as the average coverage of suboptimum assignments of “following”.

Similarly to the development for the TSP, it is clear that 0 ≤ r ≤ 1 and a

greater value of r usually stood for a better result of learning and a higher

quality of including more promising assignments. It should be noted that

the labels generated by classifiers could not be directly used to measure

the coverage r before converting to a permutation. There were possibly

a lot of inconsistencies in a matrix of predicted Boolean values, such as

f l(i, j) = f l(j, i) = 0. When the labels were converted to weights and a new

“following” matrix was generated, the indicator r can be used to measure the

average coverage.

Five values of n′ were tested, as shown in Figure 6.3. One hundred

independent tests were carried out for each value for each instance. In the

“SPOT (direct)” entry, the jobs were sorted by the predicted weights in a

descending order. In the “SPOT (weighted permutation)” entry, the jobs

were sorted in a combined weight, as shown in Figure 6.2. The “longest-

total-time-first” presents a referential r of the permutation in the descending

order of the summation ∑1≤j≤m ti,j of the time of a job Ji. The “NEH” shows

r of the results of Nawaz et al. (1983)’s NEH heuristic which initialized with

the longest-total-time-first sequence. The “average of random NEHs” refers

to the average value of 100 NEH heuristics initialized with a randomized

permutation.

It can be observed from Figure 6.3 that the indicator r on the results of

6.3. THE DEVELOPMENT OF A SPOT FOR THE FSP 141

M
ea

n
of

r
(%

)

n′

50

55

60

65

70

75

longest-total-time-first

NEH

Avg of random NEHs

10 20 30 40 50

+

+
+ + +

SPOT (direct)×
× × × ×

SPOT (weighted permutation)

St
an

da
rd

de
vi

at
io

n
of

r
(%

)

n′

0

1

2

3

4

5

Avg of random NEHs

10 20 30 40 50

+

+

+
+ +

SPOT (direct)×

× × × ×

SPOT (weighted permutation)

Ti
m

e
co

st
(s

)

n′

0

10

20

30

10 20 30 40 50

+ +
+

+

+

SPOT (direct)
× ×

×

×

×

SPOT (weighted permutation)

Figure 6.3: Average test results for determining n’ in the development of the
SPOT algorithm, on the four FSP training instances (100 runs)

142 CHAPTER 6. APPLICATION II: THE FSP DOMAIN

the SPOT hyper-heuristic were noticeably greater than for the longest-total-

time-first sorting and greater than the results of the NEHs when n′ ≥ 20.

When the size n′ increased, both r and the time spent on learning gradually

and steadily increased. However, the two entries of SPOT methods were too

close on both r and time when n′ ≥ 30, therefore, the standard deviation of r

is included in Figure 6.3 to check the variances. The size n′ was finally set

to 30 after a careful balance between r (effect), time cost and, especially, the

possibility of training the classifiers from parallel subproblems, like those

described in Section 5.3.2.The weighted permutation is selected, because it

led to less variance and there was no significant differences on the time cost

and the means when n′ = 30.

6.3.2.2 The methods of sampling for subproblems

Segment selection is another sampling method, which chooses a number of

consecutive jobs from a high-qualified permutation. Because all the instances

were randomly generated, a random order or a noncompetitive permutation,

such as the conventional longest-total-time-first sorting in Figure 6.3, might

not generate samples that were much different from those by random selec-

tion. The segment selection in this chapter was based on the effective results

from the NEH heuristic.

Two groups of tests were carried out on the sampling methods, as shown

in Table 6.5 and Table 6.6. In the first group in Table 6.5, the segment selection

was compared with the random selection. It was found that the segment

selection seemed non-competitive against the random selection. In the other

group of tests in Table 6.6, two subproblems were selected in parallel. The

6.3. THE DEVELOPMENT OF A SPOT FOR THE FSP 143

Table 6.5: Average results and significants of r in tests on different subprob-
lems sampled, where n′ = 30 (100 runs, significant values of p in bold)

Instance Segment Random ANOVA

selection (%) selection (%) F p

0 72.845 72.853 0.00 0.96
1 72.888 73.054 1.43 0.23
2 71.451 72.174 15.29 0.00
3 67.726 68.733 34.61 0.00

Average 71.227 71.703 — 0.30

Table 6.6: Average results and significants of r in tests on different combina-
tion of parallel subproblems sampled, where n′ = 30 (100 runs, significant
values of p in bold)

Instance Segment + random Random ×2 ANOVA

selections (%) selections (%) F p

0 72.569 74.785 77.31 0.00
1 74.131 74.962 4.86 0.03
2 72.494 73.421 53.46 0.00
3 70.563 71.566 68.03 0.00

Average 72.439 73.183 — 0.01

“ Segment + random selections” column in Table 6.6 is the “Random ×2

selections” column and denotes two parallel random selections. Given the

methods of sampling as categories, the F values and the significance p are

shown in the last two columns in both tables, respectively.

It can be observed from Table 6.5 that the random selection resulted

in significant larger values of r in two instances and the average r of the

random selection was +0.476% more. According to Table 6.6, the parallel

selections with two random selections were significantly better than those

with a segment selection and a random selection in three instances, and

the average result was +0.744% more on r and the improvements were

very significant (p = 0.00). The final sampling method was set to two

144 CHAPTER 6. APPLICATION II: THE FSP DOMAIN

Table 6.7: Average results and significants of time of generation (timeoverall)
in tests on different combination of parallel subproblems sampled, where
n′ = 30 (100 runs, significant values of p in bold)

Instance Segment + random Random ×2 ANOVA

selections (s) selections (s) F p

0 25.87 26.12 1.33 0.25
1 25.37 25.59 0.97 0.33
2 25.70 25.71 0.00 0.97
3 25.77 25.59 0.78 0.38

Average 25.68 25.75 — 0.48

parallel random selections. In fact, Kadioglu et al. (2010) also noticed that

“tuning on a collection of instances helps prevent over-tuning and allows

parameters to generalize to similar instances”. The difference between the

selected method and the longest-total-time-first in Figure 6.3 on r was a

considerable +20.976%. The noticeable difference indicated that some LLHs

generated by the SPOT algorithm should be capable of outperforming their

base algorithms significantly.

In addition, the time for generating the predicted permutations is shown

in Table 6.7. It can be observed that there was no significant difference in

any of the instances (as well as the average value) on time of the SPOT

hyper-heuristics for the two parallel methods. In summary, the two parallel

random selections were able to sample expected subproblems for training

the classifiers in about the same time.

6.3.3 P3: The generation of new LLHs

In the following, the labeled values of the following relationship are

converted to permutation to make the results more consistent. As designed

6.4. EXPERIMENTS AND OBSERVATIONS 145

and tested, the weighted permutation was used to modify some mutation

LLHs provided in HyFlex in the function FSP UEA2.setIntLabels(). The

LLHs that were modified, and their modifications are listed in Table 6.8.

The basic idea was in changing a mutation heuristic to a guided mutation

and changing a local search to a guided local search. The two LLHs in the

ruin-and-recreate category are also considered as multi-variable mutations.

No. 9 and No. 10 LLHs were modified to greedy random local search LLHs by

a greedy initialization and a greedy randomization. A rejection function was

employed in the greedy randomization for modifying the search sequences in

No. 9 and No. 10 LLHs. Given a swap of two jobs (i, j), there was probability

to reject the swap:

1− min(|predicted(i)− location(i)|, |predicted(j)− location(j)|)
n

. (6.5)

The rejection function denoted that the jobs closer to the predicted locations

rejected to be shuffled in a higher probability. No. 2 LLH was a complete

randomization for all the jobs. No. 3 LLH was a complete randomization of a

part of the permutation. No. 4 LLH was a NEH using the input permutation

as the initial sequence. They were not included in the modification. The local

search heuristics No. 7 and No.8 were not included in the modification. The

main reason was the scopes of the two local search LLHs were not modified

by the new permutations, Section 6.5 gives more details. Similarly to those

LLHs in the TSP domain, six new LLHs were generated as Nos. 0’, 1’, 5’, 6’, 9’

and 10’. The original LLHs are called the base algorithms.

146 CHAPTER 6. APPLICATION II: THE FSP DOMAIN

Table 6.8: The modified LLHs for FSPs and modifications by the SPOT
heuristic generation

Type Id Original behavior Modified behavior

Mutation 0 Reinserting a random job to Choosing 3† random indices, doing
a random index. the most favorite reinsertion (1 in 6).

1 Swapping two random jobs. Choosing 3† random indices, doing
the most favorite swap (1 in 3).

Ruin-and- 5 Removing some random On each removal, choosing 3† random
recreate indices and inserting back indices, always removing the least

by calling iterated NEHs. favorite index.
6 Removing some random

indices and inserting back Same as above.
by calling stepper NEHs.

Local 9 Randomizing a sequence, Building a greedy sequence in the
search trying width-first steepest descending order of the distant to

descent 1-interchange the predicted index, randomizing the
one by one. sequence by swaps with a rejection

function.
10 Randomizing a sequence,

trying width-first first Same as above.
improvement 1-interchange
one by one.

†: Effective parameters according to tests, not rigorously examined in thesis.

6.4 Experiments and Observations

This section describes two groups of tests. In the first group of experi-

ments, the individual performance of each new LLHs was examined, with

comparisons to their base algorithms. In the other group of tests, the five

new LLHs replaced their base algorithms. The heuristic selection method

PHunter solved the updated domain consisting of new LLHs. The results

were compared to the solving of PHunter with the original LLHs and the

winners in the FSP domain in CHeSC 2011.

All the tests were carried out on the same instances which had been

selected for the CHeSC 2011 competition, i.e. the numbers 1, 3, 8, 10 and 11

6.4. EXPERIMENTS AND OBSERVATIONS 147

shown in Table 6.1. The size n′ of the subproblems was set to 30 and two

subproblems were generated in two parallel random selections to provide

training data, as described in Section 6.3.2. The overall computation time

was set to the same as the normalized time in CHeSC 2011, which was

equivalent to 10 CPU minutes for a Pentium 4 3.0 GHz computer. All the

time costs of the processes in the SPOT hyper-heuristic, such as sampling

subproblems, solving the subproblems, learning instance-specific knowledge

and modifying LLHs, were fully included in the overall time in order to

make the results comparable. For the embedded subproblem solver PHunter,

the time limit for solving each subproblem was 1% of the overall time, i.e.

equivalent to 6 CPU seconds on a Pentium 4 3.0 GHz machine. The time cost

of rest processes the in SPOT was not directly restricted.

6.4.1 On the individual LLHs

Table 6.9 shows the results on the final makespan of the newly generated

LLHs in terms of percentage excess over the best-known solutions. There

were 100 runs for each configuration and each problem instance. In each

run, a random initial tour was generated by the NEH with a random seed.

All the LLHs started from the same initial tour independently. One-way

ANOVA tests were also included to check the significance of the changes.

The third column in Table 6.9 is the test instance, and the fourth and the fifth

columns show the excesses of the best and the average makespans found

by the base algorithms in HyFlex, respectively. The sixth and the seventh

columns indicate the best and the average makespans found by the new

LLHs, respectively. The eighth column denotes the change in the average

148 CHAPTER 6. APPLICATION II: THE FSP DOMAIN

excess, where improvements (negative numbers) are written in bold. The

last two columns show the F values and the confidence p examined by the

one-way ANOVA tests. The significant values (p ≤ 0.05) are in bold.

It can be observed from the eighth column that all the newly generated

LLHs in the ruin-and-recreate and local search classes generally returned

better (negative in % excess) permutations than their base algorithms. The

average improvements in the ruin-and-recreate class were statistically sig-

nificant and was more than those in the local search class. The differences

between the new LLHs and their base algorithms in the local search class

were almost significant, though the null hypophyses could not be fully ob-

jected (p = 0.10, 0.08). In comparison, the new LLHs in the mutation class

were neither significant nor robust. The observations on the LLHs in the

latter two classes were consistent with the interpretation and prediction

according to the indicator r in Section 6.3.2. The insignificant and unstable

improvements in the mutation category were because of the main objective

of mutation operations, which aim at diversifying a given solution.

The time cost of generating the LLHs is shown in Table 5.7. The third to the

sixth columns show the minimum, the average, the maximum values and

the standard deviation of the time cost of the whole SPOT hyper-heuristic for

each instance. It should be noted that a limit of 12 equivalent CPU seconds

for solving two subproblems was included in the data. It can be observed

that the maximum time cost in the large-scale instance with 500 jobs and

20 machines was about 60 seconds. Therefore, the SPOT could carry out

instance-specific heuristic generation in an “on-the-fly” fashion for practical

problems, for example, in a 10 minute time.

6.4. EXPERIMENTS AND OBSERVATIONS 149

Table 6.9: Test results on the makespan of the generated LLHs and their base
algorithms (10 runs, 100 iterations in each run, Depth of search = 1, Intensity
of mutation = 1, improvements on average performance in bold, significant
values of p in bold)

% excess by % excess by
Category Group Inst the base LLH the new LLH ∆ avg ANOVA

Min Avg Min Avg F p

Mutation No. 0 1 4.642 7.004 4.432 7.053 0.049 1.41 0.23
versus 3 4.100 6.435 4.291 6.378 -0.057 1.93 0.17
No. 0’ 8 2.342 3.069 2.206 3.081 0.012 1.00 0.32

10 3.734 5.488 3.698 5.484 -0.004 0.02 0.90
11 2.154 2.827 2.063 2.837 0.010 0.71 0.40

Avg improvement (%) -0.096 Avg 0.40

No. 1 1 4.351 7.485 4.561 7.447 -0.038 0.59 0.44
versus 3 4.371 6.865 3.876 6.834 -0.031 0.40 0.52
No. 1’ 8 2.247 3.175 2.244 3.167 -0.008 0.41 0.52

10 3.975 5.760 3.957 5.770 0.009 0.05 0.83
11 2.154 2.919 2.108 2.924 0.005 0.15 0.70

Avg improvement (%) 0.177 Avg 0.60

Ruin-and- No. 5 1 4.739 6.510 4.221 6.188 -0.321 115.81 0.00
recreate versus 3 3.892 5.742 2.951 5.513 -0.230 61.40 0.00

No. 5’ 8 2.391 3.103 2.195 3.012 -0.092 65.62 0.00
10 3.805 5.415 3.868 5.381 -0.033 1.58 0.21
11 1.843 2.827 2.097 2.766 -0.061 31.23 0.00

Avg improvement (%) 2.931 Avg 0.04

No. 6 1 3.396 5.127 3.105 4.867 -0.260 95.50 0.00
versus 3 2.983 4.633 2.616 4.468 -0.165 37.20 0.00
No. 6’ 8 1.836 2.510 1.791 2.426 -0.084 70.67 0.00

10 3.037 4.451 2.814 4.390 -0.061 6.18 0.01
11 1.710 2.283 1.627 2.225 -0.057 36.93 0.00

Avg improvement (%) 3.171 Avg 0.00

Local No. 9 1 3.510 5.097 3.299 5.016 -0.081 10.24 0.00
search versus 3 2.999 4.565 2.903 4.507 -0.058 5.20 0.02

No. 9’ 8 1.821 2.424 1.761 2.399 -0.024 5.71 0.02
10 2.930 4.240 2.975 4.223 -0.018 0.75 0.39
11 1.638 2.165 1.551 2.147 -0.018 3.72 0.05

Avg improvement (%) 1.023 Avg 0.10

No. 10 1 3.574 5.170 3.607 5.130 -0.041 2.65 0.10
versus 3 2.903 4.621 3.063 4.577 -0.044 3.23 0.07
No. 10’ 8 1.829 2.441 1.701 2.421 -0.020 3.98 0.05

10 2.966 4.300 2.930 4.267 -0.033 2.51 0.11
11 1.566 2.185 1.612 2.166 -0.019 4.00 0.05

Avg improvement (%) 0.839 Avg 0.08

150 CHAPTER 6. APPLICATION II: THE FSP DOMAIN

Table 6.10: Average overall time (timeoverall) of generating new LLHs (10
runs)

Instance Size Time (s)

(n×m) Min Avg Max Std dev

1 100× 20 11.19 13.51 16.77 1.61
3 100× 20 12.11 14.26 17.24 1.59
8 500× 20 59.25 62.77 65.38 2.06
10 200× 20 19.35 21.65 24.87 1.87
11 500× 20 60.19 62.41 64.80 1.50

Table 6.11 shows the computation time of the new LLHs and their base

algorithms for solving problems. No. 1 and No. 2 LLHs only changed the

indices of some jobs without any iteration or backtracking. Therefore, the

computation time and the differences in computation time in the first two

groups was not noticeable. The time was also hardly noticeable in the tests

for instances No. 1 and No. 3. Slight increments on time could be seen in

the results of the LLHs No. 5’ and No. 6’, while slight reductions could be

observed in those of the LLHs No. 9’ and No. 10’. Both the percentages

of the increments and the reductions were no more than 5%. In summary,

the newly generated LLHs spent almost the same amount of time as their

base algorithms, respectively. The new LLHs are eligible to replace their base

algorithms in HyFlex in practice.

Figure 6.4 represents the non-dominance of four new LLHs. The tests

were carried out on all the five 100× 20 instances implemented in HyFlex. It

can be observed from Figure 6.4 that the two LLHs in the ruin-and-recreate

category were considerably improved in solution quality and the two in

the local search class were slightly improved in solution quality. All the

differences on time were very limited. The relevant significances are included

in Table C.6 in Appendix C. In summary, it is confident to have four new and

6.4. EXPERIMENTS AND OBSERVATIONS 151

Table 6.11: Average run time of each LLHs (10 runs, 100 iterations in each
run, instrument error < 0.16 ms)

Inst Average run time of LLHs in the four group (ms)

0 0’ ∆ 1 1’ ∆ 5 5’ ∆ 6 6’ ∆ 9 9’ ∆ 10 10’ ∆

1† 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
3† 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
8 0 0 0 0 0 0 40.7 40.7 0.0 13089.5 13051.7 -37.8 120.8 121.0 0.2 120.9 120.9 0.0

10 0 0 0 0 0 0 6.7 6.6 -0.1 831.9 831.3 -0.6 19.1 19.3 0.2 19.0 19.1 0.1
11 0 0 0 0.1 0 0 40.8 40.8 0.0 13067.3 12947.3 -120.0 120.9 121.1 0.2 120.7 120.4 -0.4

Avg imp (%) 0.3 0.4 -0.5 -0.1
†: Not included in the average improvements due to the level of instrument error.

4.5

5

5.5

6

6.5

1 10 100

A
ve

ra
ge

ex
ce

ss
ov

er
th

e
be

st
-k

no
w

n
(%

)

Average computation time (ms)

No. 5

No. 5’

No. 6

No. 6’

No. 9

No. 9’

No. 10

No. 10’

Figure 6.4: Comparisons between the new LLHs and their base algorithms for
solving the 100× 20 FSP instances TA81, TA82, TA83, TA84 and TA85

non-dominated LLHs in the ruin-and-recreate and the local search categories

in the results of the SPOT heuristic generation.

152 CHAPTER 6. APPLICATION II: THE FSP DOMAIN

Table 6.12: The top three hyper-heuristics in the FSP domain in CHeSC 2011
No Algorithm Score Author

1 ML 39 Mathieu Larose (Université de Montréa)
2 AdaptHH 37 Mısır et al. (2012)
3 VNS-TW 34 Hsiao, Chiang, and Fu (2011)

6.4.2 Comparisons with other hyper-heuristics

Based on the four new LLHs generated by the SPOT algorithm, many

existing hyper-heuristics, especially heuristic selection methods, can benefit.

A typical and straightforward way is to replace the base algorithms by the

generated LLHs. After replacement of their base algorithms, the set of fifteen

LLHs of the FSP domain in HyFlex consisted of the six new LLHs. The

heuristic selection method PHunter was also employed to run on the basis

of an updated LLH set. The combination of the SPOT preprocessor and the

body of the PHunter is noted as the SPOT-PHunter in the following tests.

The HyFlex framework and the competition CHeSC 2011 also provided

reliable results for twenty hyper-heuristics in the FSP domain52. The top

three hyper-heuristics are listed in Table 6.12. There were five instances

selected, as shown in Table 6.1, so a maximum possible score was 50 for each

entry.

The SPOT-PHunter was tested as a normal algorithm player in CHeSC

2011. The parameters of the SPOT part were the same as determined in this

chapter, and the parameters of the PHunter part were the same as determined

in Chan et al. (2012). All the six new LLHs were used to replace their base

algorithms. The tests were conducted for the five instances selected in CHeSC

52See http://www.asap.cs.nott.ac.uk/external/chesc2011/raw-results.html.

http://www.asap.cs.nott.ac.uk/external/chesc2011/raw-results.html

6.4. EXPERIMENTS AND OBSERVATIONS 153

Table 6.13: Median makespan of the PHunter, the SPOT-PHunter and three
other hyper-heuristics in the FSP domain in HyFlex (31 runs, best results in
bold for each instance)

.

Inst Best results† in CHeSC 2011 Test results in thesis

ML AdaptHH VNS-TW PHunter64bit SPOT-PHunter ANOVA p

1 6245 6240 6251 6246 6242 0.55
3 6323 6326 6328 6350 6323 0.00
8 26800 26814 26803 26822 26790 0.00
10 11384 11359 11376 11375 11359 0.01
11 26610 26643 26602 26609 26604 0.28

†: Results on a 32-bit Java.

2011, and each was tested 31 times. The time cost in each test was equivalent

to 10 minutes on a Pentium 4 3.0 GHz CPU. The median values were used

for scoring, as shown in Table 6.13. The second to the fourth columns show

the median solutions found by the top three hyper-heuristic approaches in

CHeSC 2011. The fifth and the sixth columns show the median results of the

PHunter and the SPOT-PHunter. The last column shows the significance

of one-way ANOVA test. The best results for each instance are written in

bold. Two entries of the PHunter64bit and the SPOT-PHunter were added

to the set of twenty hyper-heuristics. The updated scores, according to the

scoring system, of the top five hyper-heuristics are shown in Figure 6.5. It

should be noted that the tests in CHeSC 2011 were carried out on a 32-bit

Java environment.

It can be seen from Table 6.13 that the SPOT-PHunter found the three

best results in the five instances. The final score of the SPOT-PHunter was

43 out of 50, as shown in Figure 6.5. The runner-up was the AdaptHH

with a score of 31. The PHunter64bit solved instances with base algorithms

instead of newly generated LLHs. The PHunter64bit gained a score of 20.5,

154 CHAPTER 6. APPLICATION II: THE FSP DOMAIN

10

20

30

40

PHunter64bit SPOT-PHunter AdaptHH† ML† VNS-TW†

(†: Results on a 32-bit Java)

20.5

43

32
29.5

26

By
th

e
SP

O
T

Figure 6.5: Scores of the PHunter, the SPOT-PHunter and three other hyper-
heuristics in the FSP domain in HyFlex

which was the lowest in the five hyper-heuristics. The SPOT-PHunter won

the PHunter64bit in every instance according to Table 6.13. Furthermore,

the difference between the result of the PHunter64bit and that of the SPOT-

PHunter was significant in three instances out of the five, as shown in Table

C.7 in Appendix C. The observations on the scores and the improvements

meant that the SPOT heuristic generation generally improved the heuristic

selection of the PHunter64bit in solving in every FSP instance, where the

improvements were significant in three instances.

The main reason for the significant improvements is the observations

and interpretation of the significantly non-dominated LLHs, as presented in

Section 6.4.1. Another reason was No. 7 and No. 8 local search LLHs did not

6.5. DISCUSSION 155

Table 6.14: A flawed transformation of FSPs that resulting in a very low
approximability

No. Id (n×m) % excess the best-known Resemblance r (%)

Suboptimum 1 Suboptimum 2

0 TA081 1.0158 1.0803 7.00
1 TA082 0.8895 1.0189 2.00
2 TA083 0.7176 0.7973 18.00
3 TA084 0.8614 0.9890 6.00

Approximability r̄ (%) 8.33

“homogenize” the differences brought by the new LLHs. That was probably

because the depth of search53 was only 1 in those local search LLHs. If a

3-job interchange local search or a 4-job interchange was implemented, the

new LLHs might not return significantly different results.

6.5 Discussion

The transformations in this chapter and Chapter 5 met the requirements

of the U/EA standard and had acceptable approximability, although, there

were some flawed transformations that failed to do so. For example, given

an FSP problem, let the position (index) of each job in the permutation be a

variable. The transformed problem seemed to meet the standard of U/EA,

however, the approximability was very low, as shown in Table 6.14. The

approximability of the transformed model was 8.33% which was too low for

the SPOT algorithm.

The reason why the main model in this chapter was converting the rela-

tionship of “following” into the variable, is based on the following observa-

53It means the true integer depth of local search (range: 1, 2, . . . , n), not the decimal “Depth
of search” parameter (range: 0 to 1) in HyFlex.

156 CHAPTER 6. APPLICATION II: THE FSP DOMAIN

tion. Taking the two suboptima for the instance No. 0 as examples, as shown

in Table A.1 in Appendix A, one can easily find that both permutations end

with the substring “{. . . , 48, 12, 6, 40}”. The first suboptimal permutation

started with a substring “{53, 77, 58, 21, . . .}”, and the other started with a

substring “{53, 21, 46, 0, . . .}”. In the four extreme positions in the heads and

the four in the tails, the two suboptima had six of the same jobs and five of

them were exactly in the same positions. After further investigation, it was

not difficult to discover that the relationship of “following” was much more

meaningful and robust for suboptima.

It could be concluded that the parameter n′ is more important than the

method of sampling, according to the values of resemblance r in Figure 6.3,

Table 6.5 and Table 6.6. It is clear that the differences of r varied much more

in Figure 6.3 than in the other two tables. The observation, in fact, verified

the development process of the determination n′ first, with the method set to

random selection.

The LLHs generated by the SPOT in this chapter were mutations and

some local search heuristics with a slight changing in their behavior. No. 7

and No. 8 local search LLHs did not benefit from the generated permutations.

The main reason was that the depths of search of the four local search LLHs

were, in fact, equal to 1. Both were variants of the 1-interchange local search.

The differences were mostly on the criterion of acceptance (steepest descent

or first improvement). The scopes of search of the two local search methods

did not change noticeably by reordering their search routes according to

a generated permutation. The capability of the 1-interchange local search

actually was also limited. As a result, the differences on the makespan by

6.5. DISCUSSION 157

the newly generated LLHs, as shown in Table 6.9, seemed passed onto the

results of the SPOT-PHunter, as shown in Table 6.13. In fact, the predicted

permutation by the SPOT hyper-heuristic could possibly benefit the local

search LLHs by extending the scope of search to a higher level. For example,

if a 1-interchange was very favorite according to learning results but failed

to improve the permutation, a conditional 2-interchange could be enabled.

158 CHAPTER 6. APPLICATION II: THE FSP DOMAIN

Chapter 7

Discussion and Conclusions

In the confrontation between the stream

and the rock, the stream always wins, not

through strength but by perseverance.

Brown Jr., H. Jackson

Heuristic generation is a subclass of hyper-heuristics. Instead of solving a

given problem directly, a heuristic generation approach generates new heuris-

tics. This thesis presents a heuristic generation methodology called SPOT

(Suboptimum- and Proportion-based On-the-fly Training). The proposed

method was implemented and verified in two well-known NP-Complete

combinatorial optimization problem domains. Section 7.1 gives some discus-

sion on the findings, implications and limitations while concluding remarks

are given in Section 7.2.

159

160 CHAPTER 7. DISCUSSION AND CONCLUSIONS

7.1 Discussion on the SPOT Methodology and Findings

In summary, the SPOT hyper-heuristic is a novel methodology aiming

at improving existing heuristics and data structures with instance-specific

information. Furthermore, there are new standard and new indicators de-

veloped for SPOT so that the instance-specific information can be obtained

from optima, suboptima or suboptima of subproblems for a given problem.

The limited scale of learning enables the capability of on-the-fly execution

of SPOT. Applications in the well-known NP-Complete problem domains

such as the TSP domain and the FSP domain were successful and verified

the SPOT hyper-heuristic generation in general.

7.1.1 Principal findings

Referring to the development procedures and the experimental results,

the presented SPOT hyper-heuristic was shown to be capable of conduct-

ing an on-the-fly supervised learning for finding instance-specific infor-

mation and generating new heuristics according to the obtained instance-

specific information. Particularly, it was proven to generate significantly

non-dominated new heuristics for large-scale FSP benchmark instances in a

few minutes. In terms of operations, SPOT contains three phases: (i) input to

the problem with certain regulations, (ii) suboptimum- and proportion-based

supervised learning for the instance-specific information and (iii) modify (or

create) of heuristics.

The input problems regulations included the U/EA standard and the

indicator of “compatibility”. As a requirement of SPOT, the U/EA standard

7.1. DISCUSSION ON THE SPOT METHODOLOGY AND FINDINGS 161

of the input combinatorial optimization problem was applied in the two

domains. Three transformations of combinatorial optimization problems,

one for the TSP and two for the FSP, were designed to remove the inter-

variable hard constraints so that a transformed problem can meet the U/EA

standard. An indicator of “resemblance” r was employed to measure the

compatibility of each transformation. The generality of applying SPOT to

transformed problems was measured by the similarities between the average

resemblance values of the instances. The approximability of transformed

problems was measured by the overall average resemblance value of all the

instances. Later tests and discussion verified the U/EA standard and the

compatibility. According to experience, some problem domains are natural

for the U/EA standard and the compatibility, such as the TSP domain. Some

others with strong inter-variable hard constraints or strong inter-variable

correlations are hard to meet. An example is the personnel scheduling

problem involving complex contracts and licenses (staff skills) and a 24-hour

job demand.

A distinct feature of the SPOT hyper-heuristic is the capability of learning

approximate information on the basis of suboptima and sampled proportions

instead of optima and the original problem. This is the key to the success

of SPOT. As stated in the Chapter 3, the capability came from the U/EA

standard and the compatibility of problems. Attributes were developed to

represent information from the suboptima of subproblems. In this thesis,

an ordinary measurement was considered as a “raw attribute”. An auto-

mated attribute generation procedure helps populating many “normalized

attributes” and assists the data in the learning process to meet the U/EA2

162 CHAPTER 7. DISCUSSION AND CONCLUSIONS

standard. Many attributes were about comparisons and increments, which

have no unit but represent certain concerns of competition in the possible

assignments. The instance-specific information about suboptimality was

in the form of representing competition in the opponent assignments. In

fact, besides the stochastic machine learning, there could also be many other

candidates for explicit or implicit learning, such as the backbone (W. Zhang &

Looks, 2005) and tour-merging (Cook & Seymour, 2003) in the TSP domain.

The generation of new heuristics, in fact, would be much more often in the

form of modifying existing heuristics rather than creating new ones completely.

The key process in generating new heuristics is the transformation from

instance-specific information to numeric or non-numeric objects that directly

interacted with the search heuristics. This thesis presents some examples

on how to utilize the obtained instance-specific information to modify (or

guide) the search in existing heuristics. For example, in FSP, the predicted

permutation based on the “following” relationship can advise the promising

mutation operation from a number of random mutation operations. This

representation (or interpretation) might not be necessary if the learning

involved was not stochastic learning, such as the backbone (W. Zhang &

Looks, 2005) in the TSP domain.

In the practical development of SPOT, there were two main parameters

to be determined in the SPOT heuristic generation. One was the size of

the subproblems, and the other was the method(s) to sample subproblems.

The first one was more important than the second one, according to the

U/EA standard. The indicators, one or more, represent the resemblance r

and help identify better configurations. Other numeric and non-numeric

7.1. DISCUSSION ON THE SPOT METHODOLOGY AND FINDINGS 163

parameters are considered as secondary and adopted from the literature.

These parameters may, somehow, affect the whole algorithm, though the

suggested values (or methods) in the literature would be of low-risk and be

more robust in general.

The main theoretical findings were the formal definitions on hyper-heuristics,

heuristic section and heuristic generation. As far as is known, the definitions

are the first exact formulations, especially for the latter two. In brief, if a

hyper-heuristic can only return finite or countably infinite different heuris-

tics, it is a heuristic selection approach; if a hyper-heuristic can return some

heuristics in uncountable possible algorithms, it is a heuristic generation. The

presented formal definitions can distinguish heuristic selection approaches

and heuristic selection methods precisely, and most of the results are con-

sistent with previous work. Furthermore, the scopes of the notions were

considerably extended. For example, the backbone (W. Zhang & Looks, 2005)

and the tour-merging (Cook & Seymour, 2003) in the TSP domain could be

regarded as heuristic generation methods by the definition.

7.1.2 Interpretation and implications of findings

First, all the findings verified the feasibility, the effectiveness and the effi-

ciency of the SPOT heuristic generation. In fact, the verification did not only

come from positive supporting results, such as the significantly improved

ruin-and-recreate heuristics in the FSP domain, but also from the neutral and

even negative results in terms of solution quality or applicability, such as

the insignificant improvements in the TSP domain and the flawed transfor-

mation of FSPs. All the positive, neutral and negative cases supported the

164 CHAPTER 7. DISCUSSION AND CONCLUSIONS

values and the prediction of the indicator(s) of the SPOT development.

The two applications of the SPOT methodology in the two NP-Complete

problem domains showed that the presented algorithm was capable for

cross-domain applications. Particularly, every problem domain should be

transformed to meet the U/EA standard for a possible effective adaptation

of the SPOT hyper-heuristic. The capability of the SPOT would, in fact,

depend more on the capability of the developer in regard to transformation

than the specific given problem domain or the particular set of given problem

instances. It could probably also give a possible solution to algorithms, which

are encountering NFL theories. The proposed algorithm aimed at being able

to handle cross-domain problems in certain conditions, such as the U/EA

standard. However, the U/EA standard is closely related to perturbative

meta-heuristics, as mentioned in Section 3.3.1. The SPOT, therefore, could

not become a universal solver.

Computer power has been increasing continuously. However, the com-

plexity, such as incomputability and NP-hardness, limited practical poly-

nomial time programs in problem solving. It is very common to see an

up-to-date effective meta-heuristic or exact algorithm spending a long time,

up to weeks and months, on a large-scale combinatorial optimization prob-

lem. Therefore, it is not easy to find optima to discover instance-specific

information. The capability of learning instance-specific information from

suboptima of subproblems was is most interesting, and is theoretically en-

abled by the U/EA standard and a high-level of compatibility. The two

regulations made the learning and generation feasible and on-the-fly.

In a “compatible” domain, perturbative heuristics such as local search

7.1. DISCUSSION ON THE SPOT METHODOLOGY AND FINDINGS 165

should be relatively more effective than constructive heuristics. Hence the

two applications also mainly focused on perturbative heuristics. New LLHs

were generated by modifying existing LLHs. Therefore, it seems the SPOT

applications in thesis should be called heuristic “modification” instead of

generation. Nevertheless, new constructive heuristics can also be generated.

For example, the generating permutations by “direct” weighting in Section

6.3.2 was actually a constructive solution — though it was easily dominated.

It would also be interesting to investigate whether the instance-specific

information can be applied in exact algorithms. Xue, Chan, et al. (2011) gave

a preliminary trial on this topic.

The SPOT heuristic generation presented in this thesis was based on

stochastic supervised machine learning. However, it would probably be

possible to extract instance-specific information through non-stochastic ma-

chine learning methods, such as the backbone (W. Zhang & Looks, 2005)

and tour-merging (Cook & Seymour, 2003) in the TSP domain. It is because

the essence of the learning phase is to distinguish “promising” assignments

from a group of competitors. For the applications without sampling for

subproblems, the intersection or the union of assignments from different

suboptima, such as the backbone and tour-merging, could provide strong

information about suboptima assignments, too. Therefore, it would be inter-

esting to investigate a non-stochastic learning version which continues to use

the “sample-learn-generate” framework of the SPOT algorithm on-the-fly.

166 CHAPTER 7. DISCUSSION AND CONCLUSIONS

7.1.3 Interpretation in the context of the literature

Generally, the findings in this thesis were consistent with previous re-

search described in the literature. For example, the application in the TSP

domain re-implemented the sampling and heuristic modifications of Xue,

Chan, et al. (2011) and partially replicated the decision attributes. The devel-

opment and results found some trends that were the same as those described

in Xue, Chan, et al. (2011). One main difference was that the average coverage

was noticeably improved in Xue, Chan, et al. (2011) when it was slightly and

insignificantly improved, as described in Chapter 5. Explanations are given

in Section 5.5. Another example was the redefinition of the three notions of

hyper-heuristics. Although the three definitions in this thesis changed all the

notions by increasing their extensions, their intensions remained. As a re-

sult, most of the clearly categorized hyper-heuristics, such as those in Burke,

Hyde, Kendall, Ochoa, Özcan, and Woodward (2010), could be classified to

the same category according to the new definitions.

The sampling for subproblems is the first main step on the SPOT hyper-

heuristic, if the transformations are considered as preparations. In fact,

the sampling in this thesis was more similar to the sampling in stochastic

learning, particularly the Naı̈ve Bayes, and some meta-heuristics, especially

the EDAs. There were normal distributions and the kernel method for a

Naı̈ve Bayes classifier to use (John & Langley, 1995). There were standard

probability-based (Mühlenbein & Paaß, 1996; Mühlenbein, Bendisch, & Voigt,

1996) and factorized distribution-based (Mühlenbein & Mahnig, 1999) es-

timations in EDAs, too. In this research, both random selection and some

7.1. DISCUSSION ON THE SPOT METHODOLOGY AND FINDINGS 167

non-random selections were also designed and tested. In some domains,

such as the TSP domain, it was better to use subproblems generated by

different methods of sampling.

The final results of the experiments showed that the SPOT methodology

was very competitive against the winners of CHeSC 2011 on the HyFlex

framework. However, it should be noted that the opponents’ results were

tested on a 32-bit Java, and the results in this thesis were tested on a 64-bit

Java. Although there was a performance factor measured by an official pro-

gram to covert the local CPU time to a Pentium IV 3.0 GHz, the conversion

seemed not so precise when a lot of floating computations were involved.

One proof was that the PHunter got a slight but steady performance improve-

ment on every single test instance in the TSP domain. Similar observation can

also be obtained in the FSP domain, see Table C.8 in Appendix C. However,

due to the demanded memory in machine learning, a 64-bit Java had to be

chosen for conducting all tests.

7.1.4 Limitations

The formal definitions contributed a few formulations of some important

concepts in hyper-heuristics. However, the definitions were, in fact, no more

than a few manipulations, which tied the distinguishability of the hyper-

heuristic notions to well-known concepts. In addition, the distinguishability

of heuristic generation, for example, was only applicable when there was an

infinitely large problem. Therefore, the given definitions are preliminary and

would benefit from modifications and refinements in future.

In this thesis, the methodology of examining the performance of a new

168 CHAPTER 7. DISCUSSION AND CONCLUSIONS

algorithm was based on experiments on benchmark instances and in com-

parison with well-known effective algorithms in an (hopefully) equivalent

environment. There were a number of factors that might cause some errors in

the final results of the two domains of applications, as discusses as follows.

Number of test instances: Five test instances, as many as tests in CHeSC

2011, were used in each domain. If there were more instances, the

results should become theoretically slightly less biased, if any.

Source of test instances: Although the test instances were well-known bench-

mark instances, more application domains would avoid biased results,

if any. For example, the instance selection in the TSP domain seemed

better than that in the FSP domain.

Unstable solutions: The stop criterion was a time limit, so the operations or

flops done by a CPU were not stable. A solution was changing the stop

criterion to iterations or operations.

Instrument error in measuring time in Java: In the implementations in this

study, the time cost was measured by a class ThreadMXBean provided

by Java. However, the precision was not very satisfactory. In certain

cases, the resolution on time provided by the class was about 160

milliseconds. That was too much in comparison with fast heuristics of

one millisecond.

32/64-bit environment of Java: It should be appreciated that there was an

official program in CHeSC 2011 to measure a CPU factor for the par-

ticipant’s machine. However, the measurement seemed imbalanced

according to the test results in Chapter 5 and Chapter 6. A probable

7.1. DISCUSSION ON THE SPOT METHODOLOGY AND FINDINGS 169

reason was the float/integer ratio considered in the program might

vary in different applications of domains.

CPU and memory performance adjustment: A state-of-the-art CPU and mem-

ory are often capable of adjusting their voltages, clocks and perfor-

mances to save power. Some models of CPUs also mapped one hard

core into two virtual cores. This would be an issue in measuring the

performance of an algorithm.

LLH implementation: The quality of LLHs also affected the results. If there

was some unnoticed error in the LLHs in HyFlex, there would be

inherent errors.

One answer to resolve the random errors, such as the unstable solutions

and instrument error, was to use the statistical techniques. For example, the

one-way ANOVA tests were generally employed in this thesis to compare

the differences in average values between two sets of values. Besides the

possible sources of errors listed above, the limited sources and scale of bench-

mark instances in HyFlex and the Formula 1-like scoring system in CHeSC

2011 might also lower the precision and the confidence of the experimental

results. Nevertheless, Xue, Chan, et al. (2011)’s results of a similar heuristic

generation method showed a good scalability for Euclidean TSP instances,

which covered three different sources and from 3,000 to 1,000,000 cities.

There were also some difficulties in the development phase of the SPOT

heuristic generation, as follows.

Transformation for the U/EA standard: Although it is not difficult to find

a U/EA transformation, transformations cannot be easily borrowed

170 CHAPTER 7. DISCUSSION AND CONCLUSIONS

from one domain to another. For example, in the personnel scheduling

domain in HyFlex, some perturbative techniques worked very well.

But both transformations in the two applications failed in practice.

Constructing a new high-level of compatible transformation may spend

a lot of time.

Memory usage of stochastic learning: The demand for memory could be

billions of bytes, when there are millions of rows of data records. This

problem is particularly serious when there is no attribute selection.

Interpretation of instance-specific information into heuristics: The instance-

specific information obtained in this research was in the form of stochas-

tic classifiers. The method of conversion of the classifiers would be

important for the final generated heuristics. It is a relative difficult task

to find a highly satisfactory conversion.

Although the main framework of the SPOT methodology is presented in

thesis, there are a few issues not mentioned:

Parameter analysis of the size of initial raw attributes: In thesis, the size,

as a parameter of attribute selection method, was referred to some

default value. Further works can be done in examining the size of raw

attributes in some given domains.

Parameter analysis of the size of sampled subproblems: In the two appli-

cations, the sizes were set to two, which was the minimal number

fulfilling the requirements of Definition 12. Further analysis can show

the difference of the measurements of compatibility by different sizes.

7.2. CONCLUSIONS 171

Descriptive compatibility: One issue is to determine a descriptive scale

to interpret the two numbers “generality” and “approximability” in

compatibility, e.g., “good” for 0.8 to 1.0 generality and “incompatible”

for 0 to 0.05 generality.

Transformation between domains: In the literature, Ruiz-Vanoye et al. (2011)

summarized a transformation map between hundreds of NP-Complete

problems. Maybe in the future an approximability tree or table can

be organized, so that a given domain A can take advantage of a well-

defined transformation in another known domain B by mapping itself

to B first. A given practical domain A can also take advantage of

another well-tackled domain B by mapping, too.

7.2 Conclusions

This thesis presents the SPOT heuristic generation approach for solving

combinatorial optimization problems. With the proposed “sample-learn-

generate” framework, SPOT samples small-scale subproblems, obtains instance-

specific information from the suboptima of the subproblems by machine learn-

ing, then generates new heuristics by modifying existing heuristics and data

structures accordingly. All the operations are conducted on-the-fly, and it is

capable of generating non-dominated new heuristics for large-scale instances

very efficiently, such as in the FSP domain. In the development of SPOT

algorithm, two standards were incorporated to regulate the problem input

and the machine learning data. Besides, an automated attribute generation

procedure was introduced for populating more “normalized attributes” for

172 CHAPTER 7. DISCUSSION AND CONCLUSIONS

learning. An indicator of “resemblance” of suboptima is also introduced

to measure the compatibility of the input problem. Generally, if a problem

domain meets the standard of input and its compatibility is high, the SPOT

algorithm is expected to be a competitive method in the domain.

Additionally, formal definitions of the hyper-heuristic and its subclasses,

heuristic selection and heuristic generation, were proposed in this study.

Based on the new definitions, SPOT is a heuristic generation algorithm.

These definitions are mostly consistent with existing taxonomies on hyper-

heuristics, such as in Burke, Hyde, Kendall, Ochoa, Özcan, and Woodward

(2010).

SPOT was implemented in two well-known NP-Complete problem do-

mains, the TSP and the FSP. Experiments were carried out in the two domains

for benchmarking purpose. The generated heuristics were non-dominated

and competitive in the FSP domain in HyFlex, while the improvements in the

TSP domain were limited. The results in both domains successfully validated

the compatibility predicted. To verify the long-time result of using SPOT,

one of the winners of the international hyper-heuristic competition CHeSC

2011, named PHunter, was tested with the generated heuristics. In TSP, the

heuristics generated by the SPOT method gave unstable improvements in

terms of solution quality. In FSP, the improvements were significant, and

the score of PHunter was approximately doubled (from 20.5 to 43 with 50

maximum) and became the highest among all the leading hyper-heuristics.

This is evidence on the success of SPOT.

There are two main contributions from this research. The first is the

SPOT heuristic generation methodology, and the other is the enhancement

7.2. CONCLUSIONS 173

of definitions of the hyper-heuristics and its two subclasses. In addition, the

capability of discovering instance-specific information from suboptima of

subproblems is an interesting property. It was also the key to the success

of the SPOT heuristic generation. SPOT can be applied in any combinato-

rial optimization domain if the problem instances in the domain meet the

standard requirements and the compatibility measures. Therefore, SPOT is a

conditionally cross-domain algorithm and its new property might probably

be an answer to the issues raised by the NFL theorems.

Future works on SPOT and related concepts include continued research

on the non-stochastic machine learning techniques and the refinements of

the definitions. It would also be meaningful to modify the-state-of-the-art

LLHs by employing SPOT to push forward the Pareto frontier for general

hyper-heuristics in terms of performance. Another interesting research could

be making a transformation map. On the map, the distances and paths of

transformations from well-known combinatorial optimization problems to

the required models of SPOT can be drawn, so that the adaption of SPOT

will be convenient in practice.

174 CHAPTER 7. DISCUSSION AND CONCLUSIONS

Appendix A Suboptima of Training Instances

(i) Inst 4, Cost = 8873.002687969361 (ii) Inst 4, Cost = 8877.2061295038

Figure A.1: Suboptima of the training instance rat783 in the TSP

175

176 SUBOPTIMA OF TRAINING INSTANCES

(i) Inst 5, Cost = 57210.04615291555 (ii) Inst 5, Cost = 57142.007438059256

Figure A.2: Suboptima of the training instance pcb1173 in the TSP

SUBOPTIMA OF TRAINING INSTANCES 177

(i) Inst 6, Cost = 52288.38373274874

(ii) Inst 6, Cost = 52446.80109412457

Figure A.3: Suboptima of the training instance d1291 in the TSP

178 SUBOPTIMA OF TRAINING INSTANCES

Table A.1: Suboptima of the training instances in the FSP
Instance Solution
(Cmax)

Inst 0 53, 77, 58, 21, 81, 0, 2, 39, 78, 75, 50, 34, 73, 3, 82, 32, 80, 61, 4, 46, 20, 5, 27,
(6265) 62, 88, 55, 30, 98, 59, 24, 85, 45, 15, 69, 11, 84, 57, 49, 1, 43, 65, 60, 52, 79, 10,

99, 8, 54, 90, 9, 93, 29, 38, 19, 71, 42, 92, 31, 66, 47, 41, 76, 36, 95, 14, 68, 33,
16, 44, 64, 94, 28, 25, 70, 63, 86, 56, 17, 23, 67, 89, 87, 51, 22, 37, 13, 72, 97, 18,
74, 7, 96, 91, 35, 83, 26, 48, 12, 6, 40

Inst 0 53, 21, 46, 0, 34, 82, 54, 4, 79, 81, 73, 58, 50, 78, 30, 39, 55, 80, 20, 38, 88, 11,
(6269) 99, 2, 49, 64, 75, 32, 52, 47, 60, 15, 69, 70, 8, 9, 10, 42, 43, 3, 59, 65, 44, 5, 84,

94, 92, 31, 27, 61, 29, 90, 14, 36, 17, 85, 77, 33, 1, 93, 35, 72, 98, 24, 41, 19, 86,
22, 16, 95, 28, 23, 37, 66, 76, 62, 45, 97, 71, 67, 87, 63, 74, 91, 7, 96, 89, 51, 18,
56, 13, 25, 57, 83, 26, 68, 48, 12, 6, 40

Inst 1 49, 48, 4, 94, 67, 30, 75, 51, 0, 65, 96, 83, 9, 89, 34, 68, 64, 35, 63, 99, 74, 61, 81,
(6238) 53, 26, 22, 2, 13, 12, 95, 18, 77, 98, 84, 8, 39, 59, 10, 71, 32, 19, 7, 46, 88, 15, 50,

21, 58, 41, 6, 82, 42, 47, 76, 3, 80, 78, 87, 31, 43, 1, 52, 40, 90, 62, 86, 24, 70, 25,
92, 29, 27, 36, 33, 85, 97, 69, 60, 72, 44, 57, 16, 5, 55, 73, 79, 37, 45, 14, 93, 11,
20, 66, 28, 91, 23, 17, 38, 56, 54

Inst 1 48, 94, 64, 49, 65, 68, 18, 61, 30, 96, 77, 13, 32, 2, 99, 34, 95, 88, 67, 51, 53, 89,
(6246) 42, 8, 81, 3, 1, 78, 9, 59, 52, 39, 75, 82, 19, 46, 90, 4, 6, 23, 15, 21, 27, 37, 31,

74, 76, 58, 83, 29, 73, 10, 22, 33, 97, 47, 92, 50, 45, 70, 0, 7, 35, 84, 14, 12, 79,
60, 25, 63, 26, 57, 69, 72, 44, 87, 43, 91, 85, 24, 55, 17, 40, 62, 86, 16, 41, 71, 36,
20, 66, 28, 5, 11, 54, 98, 93, 80, 38, 56

Inst 2 86, 9, 91, 60, 65, 10, 63, 66, 75, 28, 50, 23, 41, 46, 85, 22, 47, 57, 53, 4, 55, 97,
(6316) 11, 33, 21, 56, 19, 80, 68, 45, 32, 79, 69, 96, 12, 59, 74, 3, 52, 39, 84, 87, 40, 98,

77, 36, 24, 5, 93, 67, 14, 31, 15, 29, 76, 2, 27, 18, 48, 34, 95, 58, 16, 71, 20, 1,
26, 43, 30, 8, 42, 94, 89, 90, 7, 78, 62, 54, 88, 38, 92, 72, 83, 35, 25, 6, 70, 49, 0,
73, 51, 37, 61, 64, 44, 81, 17, 99, 13, 82

Inst 2 86, 9, 40, 60, 10, 96, 63, 91, 66, 41, 57, 75, 85, 50, 28, 23, 46, 47, 62, 22, 53, 59,
(6321) 55, 80, 45, 32, 97, 11, 21, 33, 79, 69, 4, 56, 38, 39, 92, 24, 3, 19, 68, 52, 65, 77,

84, 87, 5, 93, 29, 76, 14, 31, 67, 2, 27, 98, 18, 16, 48, 34, 95, 58, 71, 1, 20, 54, 26,
43, 30, 89, 42, 7, 49, 74, 8, 37, 78, 44, 36, 88, 72, 0, 83, 35, 73, 90, 25, 6, 70, 12,
64, 51, 61, 15, 81, 13, 82, 17, 94, 99

Inst 3 0, 67, 44, 4, 43, 59, 78, 88, 73, 68, 21, 47, 45, 34, 87, 28, 37, 64, 2, 38, 85, 32,
(6323) 75, 53, 95, 66, 54, 60, 15, 55, 70, 50, 84, 83, 25, 27, 91, 6, 90, 94, 76, 1, 72, 24,

8, 71, 57, 30, 18, 97, 14, 92, 62, 16, 58, 48, 99, 3, 10, 98, 7, 42, 89, 22, 69, 31, 23,
77, 17, 93, 49, 12, 86, 63, 11, 41, 82, 5, 80, 36, 56, 65, 61, 46, 51, 20, 33, 74, 40,
9, 81, 96, 29, 19, 13, 26, 52, 79, 35, 39

Inst 3 0, 59, 28, 44, 4, 50, 68, 45, 43, 73, 15, 54, 87, 49, 56, 2, 67, 64, 10, 53, 95, 94, 32,
(6331) 11, 88, 55, 71, 83, 1, 92, 78, 20, 24, 7, 37, 85, 57, 27, 72, 76, 98, 66, 91, 82, 69,

70, 77, 99, 97, 9, 62, 23, 38, 40, 34, 60, 12, 30, 86, 36, 17, 14, 31, 21, 22, 42, 18,
75, 25, 93, 89, 46, 84, 51, 3, 8, 90, 61, 29, 6, 16, 33, 5, 74, 19, 80, 65, 41, 52, 13,
58, 63, 96, 47, 48, 81, 26, 79, 35, 39

Appendix B Examples of Data and Results
of Learning

179

180 EXAMPLES OF DATA AND RESULTS OF LEARNING

Table B.1: The group and raw attributes of assignments in the 20-nearest-
neighbor-first candidate set of two subproblems of the TSP instance rat783
(15840 rows × (1 column of group + 2 columns of raw attributes), n′ = 400,
sampled by a random selection and a rectangular selection, respectively)

Group A1 A2
Id (distance) (angle)

316 13.04 0.08
17.20 0.62
23.09 1.26
23.77 -1.32
27.02 -0.89
27.80 -0.66
29.00 0.81
30.41 0.48
34.13 -1.02
37.16 -0.42
38.12 1.49
40.20 -1.47
40.79 0.20
42.20 0.63
43.46 0.40
45.18 -0.09
45.28 1.04
45.49 0.99
46.53 1.08
48.51 -1.32

...
...

...

167 16.40 -0.66
17.20 -2.19
26.08 -2.14
26.93 0.38
28.32 2.41
30.23 -0.60
30.87 1.14
36.24 2.06
36.40 -0.37
36.67 -2.95
37.36 0.27
40.45 2.99
42.15 -2.75
43.05 0.05
43.86 1.15
45.61 -2.48
49.19 -0.46
49.98 1.92
50.64 -1.41
51.09 2.27

EXAMPLES OF DATA AND RESULTS OF LEARNING 181

Table B.2: The full training table consisting of normalized attributes of assign-
ments and the label of suboptima of two subproblems of the TSP instance
rat783 (15840 rows × (86 columns of attributes + 1 column of labels), at-
tributes normalized from Table B.1)

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 · · · A85 A86 Label

13.04 20 0 0 1 0.76 0.56 0.55 0.48 0.47 · · · 0.85 0.85 1
17.20 20 0 0 1.32 1 0.75 0.72 0.64 0.62 · · · 0.85 0.85 0
23.09 20 0 0 1.77 1.34 1 0.97 0.85 0.83 · · · 0.85 0.85 1
23.77 20 0 0 1.82 1.38 1.03 1 0.88 0.85 · · · 0.85 0.85 0
27.02 20 0 0 2.07 1.57 1.17 1.14 1 0.97 · · · 0.85 0.85 0
27.80 20 0 0 2.13 1.62 1.20 1.17 1.03 1 · · · 0.85 0.85 0
29.00 20 0 0 2.22 1.69 1.26 1.22 1.07 1.04 · · · 0.85 0.85 0
30.41 20 0 0 2.33 1.77 1.32 1.28 1.13 1.09 · · · 0.85 0.85 0
34.13 20 0 0 2.62 1.98 1.48 1.44 1.26 1.23 · · · 0.85 0.85 0
37.16 20 0 0 2.85 2.16 1.61 1.56 1.38 1.34 · · · 0.85 0.85 0
38.12 20 0 0 2.92 2.22 1.65 1.60 1.41 1.37 · · · 0.85 0.85 0
40.20 20 0 0 3.08 2.34 1.74 1.69 1.49 1.45 · · · 0.85 0.85 0
40.79 20 0 0 3.13 2.37 1.77 1.72 1.51 1.47 · · · 0.85 0.85 0
42.20 20 0 0 3.24 2.45 1.83 1.78 1.56 1.52 · · · 0.85 0.85 0
43.46 20 0 0 3.33 2.53 1.88 1.83 1.61 1.56 · · · 0.85 0.85 0
45.18 20 0 0 3.46 2.63 1.96 1.90 1.67 1.62 · · · 0.85 0.85 0
45.28 20 0 0 3.47 2.63 1.96 1.90 1.68 1.63 · · · 0.85 0.85 0
45.49 20 0 0 3.49 2.64 1.97 1.91 1.68 1.64 · · · 0.85 0.85 0
46.53 20 0 0 3.57 2.70 2.02 1.96 1.72 1.67 · · · 0.85 0.85 0
48.51 20 0 0 3.72 2.82 2.10 2.04 1.80 1.74 · · · 0.85 0.85 0

...
...

...
...

...
...

...
...

...
...

. . .
...

...
...

16.40 20 0 0 1 0.95 0.63 0.61 0.58 0.54 · · · 0.94 0.80 1
17.20 20 0 0 1.05 1 0.66 0.64 0.61 0.57 · · · 0.94 0.80 1
26.08 20 0 0 1.59 1.52 1 0.97 0.92 0.86 · · · 0.94 0.80 0
26.93 20 0 0 1.64 1.57 1.03 1 0.95 0.89 · · · 0.94 0.80 0
28.32 20 0 0 1.73 1.65 1.09 1.05 1 0.94 · · · 0.94 0.80 0
30.23 20 0 0 1.84 1.76 1.16 1.12 1.07 1 · · · 0.94 0.80 0
30.87 20 0 0 1.88 1.79 1.18 1.15 1.09 1.02 · · · 0.94 0.80 0
36.24 20 0 0 2.21 2.11 1.39 1.35 1.28 1.20 · · · 0.94 0.80 0
36.40 20 0 0 2.22 2.12 1.40 1.35 1.29 1.20 · · · 0.94 0.80 0
36.67 20 0 0 2.24 2.13 1.41 1.36 1.30 1.21 · · · 0.94 0.80 0
37.36 20 0 0 2.28 2.17 1.43 1.39 1.32 1.24 · · · 0.94 0.80 0
40.45 20 0 0 2.47 2.35 1.55 1.50 1.43 1.34 · · · 0.94 0.80 0
42.15 20 0 0 2.57 2.45 1.62 1.57 1.49 1.39 · · · 0.94 0.80 0
43.05 20 0 0 2.62 2.50 1.65 1.60 1.52 1.42 · · · 0.94 0.80 0
43.86 20 0 0 2.67 2.55 1.68 1.63 1.55 1.45 · · · 0.94 0.80 0
45.61 20 0 0 2.78 2.65 1.75 1.69 1.61 1.51 · · · 0.94 0.80 0
49.19 20 0 0 3.00 2.86 1.89 1.83 1.74 1.63 · · · 0.94 0.80 0
49.98 20 0 0 3.05 2.91 1.92 1.86 1.76 1.65 · · · 0.94 0.80 0
50.64 20 0 0 3.09 2.94 1.94 1.88 1.79 1.67 · · · 0.94 0.80 0
51.09 20 0 0 3.11 2.97 1.96 1.90 1.80 1.69 · · · 0.94 0.80 0

182 EXAMPLES OF DATA AND RESULTS OF LEARNING

Table B.3: Results of the attribute selection for the full training table of Table
B.2 (15840 rows × (8 columns of attributes + 1 column of labels))

A1 A3 A5 A6 A7 A8 A14 A20 Label

13.04 0 1 0.76 0.56 0.55 0.35 0.29 1
17.20 0 1.32 1 0.75 0.72 0.46 0.38 0
23.09 0 1.77 1.34 1 0.97 0.62 0.51 1
23.77 0 1.82 1.38 1.03 1 0.64 0.53 0
27.02 0 2.07 1.57 1.17 1.14 0.73 0.60 0
27.80 0 2.13 1.62 1.20 1.17 0.75 0.62 0
29.00 0 2.22 1.69 1.26 1.22 0.78 0.64 0
30.41 0 2.33 1.77 1.32 1.28 0.82 0.67 0
34.13 0 2.62 1.98 1.48 1.44 0.92 0.76 0
37.16 0 2.85 2.16 1.61 1.56 1 0.82 0
38.12 0 2.92 2.22 1.65 1.60 1.03 0.84 0
40.20 0 3.08 2.34 1.74 1.69 1.08 0.89 0
40.79 0 3.13 2.37 1.77 1.72 1.10 0.90 0
42.20 0 3.24 2.45 1.83 1.78 1.14 0.93 0
43.46 0 3.33 2.53 1.88 1.83 1.17 0.96 0
45.18 0 3.46 2.63 1.96 1.90 1.22 1 0
45.28 0 3.47 2.63 1.96 1.90 1.22 1.00 0
45.49 0 3.49 2.64 1.97 1.91 1.22 1.01 0
46.53 0 3.57 2.70 2.02 1.96 1.25 1.03 0
48.51 0 3.72 2.82 2.10 2.04 1.31 1.07 0

...
...

...
...

...
...

...
...

...
16.40 0 1 0.95 0.63 0.61 0.45 0.36 1
17.20 0 1.05 1 0.66 0.64 0.47 0.38 1
26.08 0 1.59 1.52 1 0.97 0.71 0.57 0
26.93 0 1.64 1.57 1.03 1 0.73 0.59 0
28.32 0 1.73 1.65 1.09 1.05 0.77 0.62 0
30.23 0 1.84 1.76 1.16 1.12 0.82 0.66 0
30.87 0 1.88 1.79 1.18 1.15 0.84 0.68 0
36.24 0 2.21 2.11 1.39 1.35 0.99 0.79 0
36.40 0 2.22 2.12 1.40 1.35 0.99 0.80 0
36.67 0 2.24 2.13 1.41 1.36 1 0.80 0
37.36 0 2.28 2.17 1.43 1.39 1.02 0.82 0
40.45 0 2.47 2.35 1.55 1.50 1.10 0.89 0
42.15 0 2.57 2.45 1.62 1.57 1.15 0.92 0
43.05 0 2.62 2.50 1.65 1.60 1.17 0.94 0
43.86 0 2.67 2.55 1.68 1.63 1.20 0.96 0
45.61 0 2.78 2.65 1.75 1.69 1.24 1 0
49.19 0 3.00 2.86 1.89 1.83 1.34 1.08 0
49.98 0 3.05 2.91 1.92 1.86 1.36 1.10 0
50.64 0 3.09 2.94 1.94 1.88 1.38 1.11 0
51.09 0 3.11 2.97 1.96 1.90 1.39 1.12 0

EXAMPLES OF DATA AND RESULTS OF LEARNING 183

J48 pruned tree

A8 <= 0.986899
| A6 <= 0.936329: 1 (711.0/69.0)
| A6 > 0.936329
| | A7 <= 0.907959
| | | A5 <= 1.425106
| | | | A8 <= 0.795966: 1 (308.0/86.0)
| | | | A8 > 0.795966: 0 (60.0/27.0)
| | | A5 > 1.425106: 0 (229.0/106.0)
| | A7 > 0.907959: 0 (1007.0/299.0)
A8 > 0.986899: 0 (13525.0/288.0)

Number of Leaves : 6
Size of the tree : 11

Figure B.1: Instance-specific result of the J48 classifier for the TSP instance
rat783, training data shown in Table B.3

JRIP rules:
===========
1. (A7 <= 1.01303) and (A7 <= 0.823592) and (A6 <= 0.800735)

=> Label=1 (510.0/25.0)
2. (A7 <= 1.061977) and (A7 <= 0.906932) and (A5 <= 1.433721)

and (A8 <= 0.720805) => Label=1 (389.0/90.0)
3. (A7 <= 1.126515) and (A8 <= 0.794645) and (A5 <= 1.355669)

and (A6 <= 0.917267) => Label=1 (33.0/10.0)
4. (A8 <= 1.049303) and (A6 <= 1.059753) and (A8 <= 0.866758)

and (A5 <= 1.566151) => Label=1 (319.0/154.0)
5. (A14 <= 0.692356) and (A6 <= 1.194349) and (A14 <= 0.504353)

and (A7 <= 0.709541) => Label=1 (51.0/22.0)
6. (A8 <= 1.051403) and (A6 <= 1.155428) and (A14 <= 0.493171)

and (A14 >= 0.479119) => Label=1 (38.0/16.0)
7. (A8 <= 1.051403) and (A7 <= 1.01716) and (A20 <= 0.385248)

and (A5 <= 3.508232) and (A8 >= 0.938898) => Label=1
(37.0/15.0)

8. => Label=0 (14463.0/539.0)

Number of Rules : 8

Figure B.2: Instance-specific result of the JRip classifier for the TSP instance
rat783, training data shown in Table B.3

184 EXAMPLES OF DATA AND RESULTS OF LEARNING

Naive Bayes Classifier

Class 0: Prior probability = 0.9
A1: Normal Distribution. Mean = 34.1648 StandardDev = 12.2188

WeightSum = 14256 Precision = 0.07893093700787401
A3: Normal Distribution. Mean = 0 StandardDev = 0.1667

WeightSum = 14256 Precision = 1.0
A5: Normal Distribution. Mean = 4.6907 StandardDev = 5.3678

WeightSum = 14256 Precision = 0.005596767589330649
A6: Normal Distribution. Mean = 2.4956 StandardDev = 1.2026

WeightSum = 14256 Precision = 0.0020412012114637015
A7: Normal Distribution. Mean = 1.9844 StandardDev = 0.7277

WeightSum = 14256 Precision = 7.003549220879403E-4
A8: Normal Distribution. Mean = 1.6846 StandardDev = 0.5389

WeightSum = 14256 Precision = 3.5252928054789944E-4
A14: Normal Distribution. Mean = 1.0454 StandardDev = 0.2923

WeightSum = 14256 Precision = 1.501225443814196E-4
A20: Normal Distribution. Mean = 0.8162 StandardDev = 0.2232

WeightSum = 14256 Precision = 1.0161365097366262E-4

Class 1: Prior probability = 0.1
A1: Normal Distribution. Mean = 13.9825 StandardDev = 6.5628

WeightSum = 1584 Precision = 0.07893093700787401
A3: Normal Distribution. Mean = 0.0076 StandardDev = 0.1667

WeightSum = 1584 Precision = 1.0
A5: Normal Distribution. Mean = 1.675 StandardDev = 1.9162

WeightSum = 1584 Precision = 0.005596767589330649
A6: Normal Distribution. Mean = 0.9672 StandardDev = 0.4053

WeightSum = 1584 Precision = 0.0020412012114637015
A7: Normal Distribution. Mean = 0.7923 StandardDev = 0.3266

WeightSum = 1584 Precision = 7.003549220879403E-4
A8: Normal Distribution. Mean = 0.6861 StandardDev = 0.2872

WeightSum = 1584 Precision = 3.5252928054789944E-4
A14: Normal Distribution. Mean = 0.4315 StandardDev = 0.1895

WeightSum = 1584 Precision = 1.501225443814196E-4
A20: Normal Distribution. Mean = 0.3378 StandardDev = 0.149

WeightSum = 1584 Precision = 1.0161365097366262E-4

Figure B.3: Instance-specific result of the NaiveBayes classifier for the TSP
instance rat783, training data shown in Table B.3

EXAMPLES OF DATA AND RESULTS OF LEARNING 185

Table B.4: Eight selected columns of test data and the summation of predicted
labels of the assignments in the 20-nearest-neighbor-first candidate set of the
TSP instance rat783 (15660 rows × (8 columns of selected attributes + 1
column of summations of labels))

A1 A3 A5 A6 A7 A8 A14 A20 Σ label

7.62 0 1 0.58 0.43 0.30 0.21 0.14 2
13.04 0 1.71 1 0.73 0.51 0.36 0.24 2
17.89 0 2.35 1.37 1 0.70 0.49 0.33 2
25.55 0 3.36 1.96 1.43 1 0.71 0.46 1
28.64 0 3.76 2.20 1.60 1.12 0.79 0.52 0
33.54 0 4.40 2.57 1.88 1.31 0.93 0.61 0
34.00 0 4.46 2.61 1.90 1.33 0.94 0.62 0
36.00 0 4.73 2.76 2.01 1.41 0.99 0.65 0
36.24 0 4.76 2.78 2.03 1.42 1 0.66 0
36.69 0 4.82 2.81 2.05 1.44 1.01 0.67 0
37.00 0 4.86 2.84 2.07 1.45 1.02 0.67 0
40.05 0 5.26 3.07 2.24 1.57 1.11 0.73 0
42.45 0 5.57 3.26 2.37 1.66 1.17 0.77 0
49.65 0 6.52 3.81 2.78 1.94 1.37 0.90 0
52.01 0 6.83 3.99 2.91 2.04 1.44 0.95 0
55.01 0 7.22 4.22 3.08 2.15 1.52 1 0
55.80 0 7.33 4.28 3.12 2.18 1.54 1.01 0
57.22 0 7.51 4.39 3.20 2.24 1.58 1.04 0
58.18 0 7.64 4.46 3.25 2.28 1.61 1.06 0

...
...

...
...

...
...

...
...

...
2.00 0 1 0.22 0.10 0.09 0.06 0.04 2
9.22 0 4.61 1 0.44 0.42 0.29 0.18 2

20.88 0 10.44 2.26 1 0.95 0.65 0.41 1
21.93 0 10.97 2.38 1.05 1 0.69 0.43 1
27.17 0 13.58 2.95 1.30 1.24 0.85 0.53 0
30.81 0 15.40 3.34 1.48 1.40 0.97 0.60 0
31.02 0 15.51 3.36 1.49 1.41 0.97 0.61 0
31.14 0 15.57 3.38 1.49 1.42 0.98 0.61 0
31.89 0 15.95 3.46 1.53 1.45 1 0.63 0
32.00 0 16.00 3.47 1.53 1.46 1.00 0.63 0
34.89 0 17.44 3.78 1.67 1.59 1.09 0.68 0
40.22 0 20.11 4.36 1.93 1.83 1.26 0.79 0
41.05 0 20.52 4.45 1.97 1.87 1.29 0.81 0
46.49 0 23.24 5.04 2.23 2.12 1.46 0.91 0
47.00 0 23.50 5.10 2.25 2.14 1.47 0.92 0
50.99 0 25.50 5.53 2.44 2.32 1.60 1 0
52.01 0 26.00 5.64 2.49 2.37 1.63 1.02 0
53.01 0 26.50 5.75 2.54 2.42 1.66 1.04 0
53.37 0 26.68 5.79 2.56 2.43 1.67 1.05 0
55.57 0 27.78 6.03 2.66 2.53 1.74 1.09 0

186 EXAMPLES OF DATA AND RESULTS OF LEARNING

(i) The 20-nearest-neighbor-first (ii) Promising assignments classified by
candidate set the SPOT heuristic generation

Figure B.4: A set of promising edges selected from the 20-nearest-neighbor-
first candidate set of the training instance rat783 in the TSP, according to
the Σ label column in Table B.4 (where black edges in the second figure were
the assignments with Σ label ≥ 2 and the gray edges were those with Σ label
= 1)

EXAMPLES OF DATA AND RESULTS OF LEARNING 187

Table B.5: The group and raw attributes of assignments of the “following”
relationship in two subproblems of the FSP instance TA082 (3480 rows × (1
column of group + 103 columns of raw attributes), n′ = 30, sampled by two
random selections, respectively)

Group A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 · · · A103

541 56.2 515.64 4555 -633 -0.02 96 41 64 82 59 30 64 45 44 · · · 96
47.2 759.82 4414 145 0.04 35 81 10 54 38 51 26 83 87 · · · 89

567 56.2 515.64 5403 -633 -0.02 96 41 64 82 59 30 64 45 44 · · · 96
49.6 991.10 5502 49 -0.09 72 99 62 10 1 64 16 2 73 · · · 99

562 56.2 515.64 5211 -633 -0.02 96 41 64 82 59 30 64 45 44 · · · 96
43.5 637.00 5415 637 0.06 40 40 36 22 57 87 8 23 5 · · · 87

565 56.2 515.64 4075 -633 -0.02 96 41 64 82 59 30 64 45 44 · · · 96
44.5 602.47 4156 -1173 -0.08 25 56 49 75 59 21 76 36 53 · · · 83

545 56.2 515.64 5635 -633 -0.02 96 41 64 82 59 30 64 45 44 · · · 96
42.2 694.03 5830 297 -0.03 31 19 50 3 75 31 40 8 77 · · · 96

560 56.2 515.64 4808 -633 -0.02 96 41 64 82 59 30 64 45 44 · · · 96
50.8 754.91 5450 93 0.02 54 58 34 53 38 18 78 28 71 · · · 95

566 56.2 515.64 5361 -633 -0.02 96 41 64 82 59 30 64 45 44 · · · 96
62.1 664.89 4824 342 0.02 59 29 32 87 67 93 21 85 84 · · · 93

553 56.2 515.64 6629 -633 -0.02 96 41 64 82 59 30 64 45 44 · · · 96
51.8 933.36 6948 1401 -0.17 78 28 23 8 4 2 58 93 58 · · · 97

544 56.2 515.64 5320 -633 -0.02 96 41 64 82 59 30 64 45 44 · · · 96
47.5 1043.95 6236 2466 0.09 5 6 25 62 7 80 57 25 10 · · · 99

557 56.2 515.64 4437 -633 -0.02 96 41 64 82 59 30 64 45 44 · · · 96
52.1 727.67 5087 191 0.02 41 46 40 38 8 38 77 97 37 · · · 97

551 56.2 515.64 4682 -633 -0.02 96 41 64 82 59 30 64 45 44 · · · 96
50.9 886.62 4498 -1528 -0.14 99 65 71 31 74 56 78 45 74 · · · 99

547 56.2 515.64 2599 -633 -0.02 96 41 64 82 59 30 64 45 44 · · · 96
54.1 654.62 4189 -1031 -0.03 39 88 73 60 22 61 59 33 76 · · · 95

559 56.2 515.64 4930 -633 -0.02 96 41 64 82 59 30 64 45 44 · · · 96
44.7 851.50 4997 -424 -0.02 89 71 13 97 14 35 40 26 54 · · · 97

555 56.2 515.64 3974 -633 -0.02 96 41 64 82 59 30 64 45 44 · · · 96
48.5 955.21 4141 -752 -0.09 41 88 82 40 78 79 2 9 32 · · · 97

554 56.2 515.64 5747 -633 -0.02 96 41 64 82 59 30 64 45 44 · · · 96
57.2 757.33 5611 176 -0.03 96 9 27 88 39 37 64 72 91 · · · 96

540 56.2 515.64 4357 -633 -0.02 96 41 64 82 59 30 64 45 44 · · · 96
44.5 579.53 4315 507 -0.02 44 25 35 73 33 37 25 38 31 · · · 96

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
. . .

...

331 45.4 888.34 4707 -369 -0.03 19 84 84 25 11 58 33 35 55 · · · 97
56.2 515.64 3098 -633 -0.02 96 41 64 82 59 30 64 45 44 · · · 96

188 EXAMPLES OF DATA AND RESULTS OF LEARNING

Table B.6: The full training table from two subproblems of the FSP instance
TA082 (3480 rows × (206 columns of attributes + 1 column of labels), at-
tributes normalized from Table B.5)

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 · · · A206 Label

56.2 1.19 515.64 0.68 4555 1.03 -633 -4.37 -0.02 -0.44 96 2.74 · · · 1.08 1
47.2 0.84 759.82 1.47 4414 0.97 145 -0.23 0.04 -2.28 35 0.36 · · · 0.93 0
56.2 1.13 515.64 0.52 5403 0.98 -633 -12.92 -0.02 0.19 96 1.33 · · · 0.97 1
49.6 0.88 991.10 1.92 5502 1.02 49 -0.08 -0.09 5.18 72 0.75 · · · 1.03 0
56.2 1.29 515.64 0.81 5211 0.96 -633 -0.99 -0.02 -0.30 96 2.40 · · · 1.10 1
43.5 0.77 637.00 1.24 5415 1.04 637 -1.01 0.06 -3.35 40 0.42 · · · 0.91 0
56.2 1.26 515.64 0.86 4075 0.98 -633 0.54 -0.02 0.23 96 3.84 · · · 1.16 0
44.5 0.79 602.47 1.17 4156 1.02 -1173 1.85 -0.08 4.38 25 0.26 · · · 0.86 1
56.2 1.33 515.64 0.74 5635 0.97 -633 -2.13 -0.02 0.68 96 3.10 · · · 1.00 1
42.2 0.75 694.03 1.35 5830 1.03 297 -0.47 -0.03 1.46 31 0.32 · · · 1.00 0
56.2 1.11 515.64 0.68 4808 0.88 -633 -6.81 -0.02 -0.98 96 1.78 · · · 1.01 1
50.8 0.90 754.91 1.46 5450 1.13 93 -0.15 0.02 -1.02 54 0.56 · · · 0.99 0
56.2 0.91 515.64 0.78 5361 1.11 -633 -1.85 -0.02 -0.72 96 1.63 · · · 1.03 1
62.1 1.10 664.89 1.29 4824 0.90 342 -0.54 0.02 -1.39 59 0.61 · · · 0.97 0
56.2 1.09 515.64 0.55 6629 0.95 -633 -0.45 -0.02 0.11 96 1.23 · · · 0.99 1
51.8 0.92 933.36 1.81 6948 1.05 1401 -2.21 -0.17 9.50 78 0.81 · · · 1.01 0
56.2 1.18 515.64 0.49 5320 0.85 -633 -0.26 -0.02 -0.19 96 19.20 · · · 0.97 1
47.5 0.85 1043.95 2.02 6236 1.17 2466 -3.90 0.09 -5.18 5 0.05 · · · 1.03 0
56.2 1.08 515.64 0.71 4437 0.87 -633 -3.31 -0.02 -0.81 96 2.34 · · · 0.99 1
52.1 0.93 727.67 1.41 5087 1.15 191 -0.30 0.02 -1.24 41 0.43 · · · 1.01 0
56.2 1.10 515.64 0.58 4682 1.04 -633 0.41 -0.02 0.12 96 0.97 · · · 0.97 1
50.9 0.91 886.62 1.72 4498 0.96 -1528 2.41 -0.14 8.14 99 1.03 · · · 1.03 0
56.2 1.04 515.64 0.79 2599 0.62 -633 0.61 -0.02 0.56 96 2.46 · · · 1.01 0
54.1 0.96 654.62 1.27 4189 1.61 -1031 1.63 -0.03 1.78 39 0.41 · · · 0.99 1
56.2 1.26 515.64 0.61 4930 0.99 -633 1.49 -0.02 0.86 96 1.08 · · · 0.99 1
44.7 0.79 851.50 1.65 4997 1.01 -424 0.67 -0.02 1.16 89 0.93 · · · 1.01 0
56.2 1.16 515.64 0.54 3974 0.96 -633 0.84 -0.02 0.19 96 2.34 · · · 0.99 1
48.5 0.86 955.21 1.85 4141 1.04 -752 1.19 -0.09 5.18 41 0.43 · · · 1.01 0
56.2 0.98 515.64 0.68 5747 1.02 -633 -3.60 -0.02 0.63 96 1.00 · · · 1.00 1
57.2 1.02 757.33 1.47 5611 0.98 176 -0.28 -0.03 1.58 96 1.00 · · · 1.00 0
56.2 1.26 515.64 0.89 4357 1.01 -633 -1.25 -0.02 0.84 96 2.18 · · · 1.00 1
44.5 0.79 579.53 1.12 4315 0.99 507 -0.80 -0.02 1.19 44 0.46 · · · 1.00 0

...
...

...
...

...
...

...
...

...
...

...
...

. . .
...

...
45.4 0.81 888.34 1.72 4707 1.52 -369 0.58 -0.03 1.58 19 0.20 · · · 1.01 1
56.2 1.24 515.64 0.58 3098 0.66 -633 1.72 -0.02 0.63 96 5.05 · · · 0.99 0

EXAMPLES OF DATA AND RESULTS OF LEARNING 189

J48 pruned tree

A89 <= 32
| A90 <= 0.685864: 1 (274.0)
| A90 > 0.685864
| | A92 <= 0.876712: 1 (8.0)
| | A92 > 0.876712: 0 (8.0)
A89 > 32
| A159 <= 8239
| | A160 <= 0.975358: 0 (326.0)
| | A160 > 0.975358
| | | A30 <= 1.054054: 1 (14.0)
| | | A30 > 1.054054: 0 (8.0)
| A159 > 8239
| | A90 <= 3.648649
| | | A166 <= 4.821429
| | | | A14 <= 7.333334
| | | | | A189 <= 6255
| | | | | | A40 <= 19.4
| | | | | | | A16 <= 6.857143
| | | | | | | | A13 <= 9
| | | | | | | | | A94 <= 1.321951
| | | | | | | | | | A10 <= 1.282051: 1 (78.0)
| | | | | | | | | | A10 > 1.282051
| | | | | | | | | | | A2 <=1.148707: 0(2.0)
| | | | | | | | | | | A2 > 1.148707: 1(4.0)
| | | | | | | | | A94 > 1.321951
| | | | | | | | | | A2 <= 1.174407: 0 (4.0)
| | | | | | | | | | A2 > 1.174407: 1 (4.0)
| | | | | | | | A13 > 9
| | | | | | | | | A13 <= 20
| | | | | | | | | | A160 <= 1.206111
...
| | A90 > 3.648649
| | | A34 <= 1.36: 0 (166.0)
| | | A34 > 1.36
| | | | A16 <= 18: 0 (4.0)
| | | | A16 > 18: 1 (6.0)

Number of Leaves : 157
Size of the tree : 313

Figure B.5: Instance-specific result of the J48 classifier for the FSP instance
TA082, training data shown in Table B.6

190 EXAMPLES OF DATA AND RESULTS OF LEARNING

JRIP rules:
===========
1. (A92 <= 0.882979) and (A169 >= 439) and (A21 <= 64) and

(A68 >= 0.910891) => Label=1 (404.0/0.0)
2. (A134 >= 1.336439) and (A92 <= 1.11976) and (A185 >= 3581)

and (A20 >= 0.946429) and (A68 <= 1.568389) and (A182 >=
0.954958) => Label=1 (108.0/2.0)

3. (A134 >= 1.061898) and (A134 >= 1.47425) and (A46 <=
2.333333) and (A182 >= 1.016753) and (A40 >= 0.9125) =>
Label=1 (124.0/10.0)

4. (A94 <= 1.030769) and (A59 >= 234) and (A100 <= 0.862408)
and (A90 <= 0.874074) and (A3 <= 754.905263) => Label=1
(134.0/2.0)

5. (A98 <= 1.091153) and (A134 >= 0.941898) and (A168 >=
1.716763) and (A26 >= 0.428571) and (A206 <= 1.021277) =>
Label=1 (106.0/8.0)

6. (A134 >= 0.950803) and (A94 <= 1.27027) and (A181 >= 2618)
and (A178 <= 1.158451) and (A132 >= 1.167996) and (A53 <=
174) => Label=1 (68.0/8.0)

7. (A92 <= 1.140625) and (A135 >= 3308) and (A69 <= 469) and (A80
>= 0.840686) and (A168 <= 1.143382) => Label=1 (100.0/2.0)

8. (A131 >= 2506) and (A92 <= 1.310606) and (A24 >= 1.24359)
and (A129 >= 2091) and (A14 <= 1.107143) and (A26 >= 0.857143)
=> Label=1 (72.0/0.0)

9. (A54 >= 0.843931) and (A96 <= 1.398104) and (A173 >= 942) and
(A166 <= 0.887446) and (A137 <= 5502) and (A42 >= 0.545455)
=> Label=1 (52.0/0.0)

10. (A136 >= 1.147994) and (A98 <= 1.246201) and (A46 <= 1.769231)
and (A7 >= -53) and (A108 <= 1.046472) and (A70 >= 0.778243)
=> Label=1 (66.0/2.0)

11. (A55 >= 192) and (A102 <= 1.219638) and (A23 >= 33) and (A4
<= 1.288403) and (A186 >= 0.99223) and (A186 <= 1.252018) and
(A3 >= 754.905263) and (A14 <= 4.4) => Label=1 (64.0/4.0)

12. (A96 <= 1.180995) and (A37 <= 56) and (A96 <= 0.805825) and
(A10 >= 0.21875) and (A50 <= 1.264706) and (A60 >= 0.621212)
=> Label=1 (52.0/2.0)

13. (A134 >= 1.069912) and (A10 <= -0.368421) and (A16 >= 1.8)
and (A182 <= 0.923543) => Label=1 (26.0/0.0)

14. (A181 >= 2642) and (A181 <= 2957) and (A92 <= 1.126984) and
(A3 <= 914.681579) and (A31 >= 79) and (A194 >= 0.960687) =>
Label=1 (54.0/0.0)

...
41. => Label=0 (1690.0/0.0)

Number of Rules : 41

Figure B.6: Instance-specific result of the JRip classifier for the FSP instance
TA082, training data shown in Table B.6

EXAMPLES OF DATA AND RESULTS OF LEARNING 191

Naive Bayes Classifier

Class 0: Prior probability = 0.5
A1: Normal Distribution. Mean = 50.4556 StandardDev = 5.2841

WeightSum = 1740 Precision = 0.4265306122448979
A2: Normal Distribution. Mean = 1.0188 StandardDev = 0.1557

WeightSum = 1740 Precision = 4.8687212103746397E-4
A3: Normal Distribution. Mean = 845.4133 StandardDev = 165.8667

WeightSum = 1740 Precision = 14.698139655172413
A4: Normal Distribution. Mean = 1.1252 StandardDev = 0.341

WeightSum = 1740 Precision = 0.0013090101322599194
A5: Normal Distribution. Mean = 5581.2359 StandardDev = 1062.31

WeightSum = 1740 Precision = 5.098496240601504
A6: Normal Distribution. Mean = 1.0177 StandardDev = 0.2476

WeightSum = 1740 Precision = 9.092975431530495E-4
A7: Normal Distribution. Mean = 545.3688 StandardDev = 803.2476

WeightSum = 1740 Precision = 81.51020408163265
A8: Normal Distribution. Mean = 0.2234 StandardDev = 5.6679

WeightSum = 1740 Precision = 0.05582411059757479
...
A206: Normal Distribution. Mean = 1.0171 StandardDev = 0.0649

WeightSum = 1740 Precision = 0.0015540015384615388

Class 1: Prior probability = 0.5
A1: Normal Distribution. Mean = 50.1061 StandardDev = 5.4521

WeightSum = 1740 Precision = 0.4265306122448979
A2: Normal Distribution. Mean = 1.0045 StandardDev = 0.1532

WeightSum = 1740 Precision = 4.8687212103746397E-4
A3: Normal Distribution. Mean = 792.9393 StandardDev = 190.5492

WeightSum = 1740 Precision = 14.698139655172413
A4: Normal Distribution. Mean = 0.9749 StandardDev = 0.3073

WeightSum = 1740 Precision = 0.0013090101322599194
A5: Normal Distribution. Mean = 5633.6625 StandardDev =1024.5525

WeightSum = 1740 Precision = 5.098496240601504
A6: Normal Distribution. Mean = 1.0401 StandardDev = 0.2506

WeightSum = 1740 Precision = 9.092975431530495E-4
A7: Normal Distribution. Mean = -31.8546 StandardDev = 677.081

WeightSum = 1740 Precision = 81.51020408163265
A8: Normal Distribution. Mean = 0.0055 StandardDev = 4.1143

WeightSum = 1740 Precision = 0.05582411059757479
...
A206: Normal Distribution. Mean = 0.9873 StandardDev = 0.061

WeightSum = 1740 Precision = 0.0015540015384615388

Figure B.7: Instance-specific result of the NaiveBayes classifier for the FSP
instance TA082, training data shown in Table B.6

192 EXAMPLES OF DATA AND RESULTS OF LEARNING

Table B.7: The test data and the summation of predicted labels of the as-
signments of the “following” relationship in the FSP instance TA082 (19800
rows × (206 columns of normalized attributes + 1 column of summations of
labels))

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 · · · A206 Σ label

56.9 1.07 1065.25 1.08 5215 0.74 766 1.42 0.03 1.74 20 0.83 · · · 1.02 2
53.3 0.94 984.54 0.92 7033 1.35 541 0.71 0.02 0.57 24 1.20 · · · 0.98 2
56.9 1.04 1065.25 1.79 6440 1.04 766 1.55 0.03 1.19 20 0.50 · · · 1.11 0
54.6 0.96 596.05 0.56 6187 0.96 494 0.64 0.03 0.84 40 2.00 · · · 0.90 3
56.9 1.21 1065.25 1.23 5728 0.81 766 -2.61 0.03 -1.29 20 0.56 · · · 1.03 0
47.0 0.83 865.00 0.81 7071 1.23 -293 -0.38 -0.03 -0.78 36 1.80 · · · 0.97 3
56.9 1.35 1065.25 1.53 6575 1.28 766 2.58 0.03 -1.26 20 0.65 · · · 1.03 3
42.2 0.74 694.03 0.65 5154 0.78 297 0.39 -0.03 -0.79 31 1.55 · · · 0.97 0
56.9 1.38 1065.25 1.67 5751 0.96 766 -1.24 0.03 -0.42 20 0.43 · · · 1.22 0
41.2 0.72 638.56 0.60 6012 1.05 -616 -0.80 -0.08 -2.38 46 2.30 · · · 0.82 3
56.9 0.92 1065.25 1.60 3089 0.57 766 2.24 0.03 1.32 20 0.34 · · · 1.06 0
62.1 1.09 664.89 0.62 5442 1.76 342 0.45 0.02 0.76 59 2.95 · · · 0.94 3
56.9 0.93 1065.25 1.89 6380 1.08 766 1.99 0.03 1.90 20 0.71 · · · 1.08 0
61.3 1.08 562.85 0.53 5896 0.92 384 0.50 0.02 0.53 28 1.40 · · · 0.93 2
56.9 1.16 1065.25 1.28 7915 1.35 766 -6.03 0.03 -0.42 20 0.20 · · · 1.00 1
49.1 0.86 832.68 0.78 5850 0.74 -127 -0.17 -0.08 -2.38 99 4.95 · · · 1.00 2
56.9 1.04 1065.25 1.69 7147 1.42 766 0.48 0.03 1.68 20 2.86 · · · 1.06 3
54.9 0.96 630.62 0.59 5037 0.70 1609 2.10 0.02 0.60 7 0.35 · · · 0.94 1
56.9 0.96 1065.25 1.75 3966 0.78 766 -1.52 0.03 -1.45 20 0.27 · · · 1.01 2
59.2 1.04 609.12 0.57 5096 1.28 -503 -0.66 -0.02 -0.69 74 3.70 · · · 0.99 2
56.9 1.31 1065.25 1.29 6154 0.76 766 -0.43 0.03 -0.19 20 0.24 · · · 1.03 0
43.6 0.77 828.46 0.78 8064 1.31 -1787 -2.33 -0.17 -5.17 84 4.20 · · · 0.97 3
56.9 1.16 1065.25 1.78 6223 1.16 766 2.61 0.03 1.19 20 1.54 · · · 1.06 1
49.3 0.87 596.93 0.56 5386 0.87 294 0.38 0.03 0.84 13 0.65 · · · 0.94 2
56.9 1.31 1065.25 1.67 5461 1.12 766 1.20 0.03 0.55 20 0.50 · · · 1.14 1
43.5 0.76 637.00 0.60 4873 0.89 637 0.83 0.06 1.82 40 2.00 · · · 0.88 2
56.9 1.23 1065.25 1.06 7010 1.37 766 9.01 0.03 -1.10 20 0.29 · · · 1.04 2
46.4 0.82 1006.88 0.95 5100 0.73 85 0.11 -0.03 -0.91 68 3.40 · · · 0.96 1
56.9 1.17 1065.25 1.45 6639 0.88 766 -0.84 0.03 -1.45 20 0.24 · · · 1.00 0
48.5 0.85 733.52 0.69 7518 1.13 -917 -1.20 -0.02 -0.69 85 4.25 · · · 1.00 3
56.9 1.06 1065.25 1.19 6758 0.89 766 -0.89 0.03 -1.29 20 0.57 · · · 1.01 0
53.8 0.95 896.48 0.84 7622 1.13 -861 -1.12 -0.03 -0.78 35 1.75 · · · 0.99 3
56.9 1.05 1065.25 1.63 6415 1.07 766 -0.74 0.03 -1.03 20 0.51 · · · 1.04 0
54.1 0.95 654.62 0.61 6015 0.94 -1031 -1.35 -0.03 -0.97 39 1.95 · · · 0.96 3
56.9 1.01 1065.25 1.41 7126 1.40 766 0.55 0.03 1.00 20 1.82 · · · 1.08 2
56.1 0.99 755.67 0.71 5082 0.71 1396 1.82 0.03 1.00 11 0.55 · · · 0.93 1
56.9 1.08 1065.25 0.79 6098 1.17 766 6.23 0.03 -1.23 20 0.25 · · · 1.01 1
52.7 0.93 1345.08 1.26 5217 0.86 123 0.16 -0.03 -0.82 79 3.95 · · · 0.99 3
56.9 1.01 1065.25 1.23 5634 0.79 766 -0.34 0.03 -0.68 20 0.34 · · · 1.00 1
56.3 0.99 867.25 0.81 7151 1.27 -2264 -2.96 -0.05 -1.48 58 2.90 · · · 1.00 3

...
...

...
...

...
...

...
...

...
...

...
...

. . .
...

...
50.6 1.20 784.36 0.97 6265 1.06 1551 -21.85 0.03 0.58 51 4.64 · · · 1.03 0
42.3 0.84 812.22 1.04 5933 0.95 -71 -0.05 0.05 1.71 11 0.22 · · · 0.97 3

EXAMPLES OF DATA AND RESULTS OF LEARNING 193

Table B.8: The weights (or summations of Σ label) according to Table B.7
(which generated the figure (i) in Figure 6.2)

Job Weight by Job Weight by Job Weight by
Id the SPOT Id the SPOT Id the SPOT

0 104 35 84 70 120
1 85 36 244 71 83
2 143 37 227 72 210
3 187 38 291 73 247
4 48 39 197 74 18
5 252 40 255 75 40
6 199 41 206 76 251
7 155 42 27 77 196
8 118 43 207 78 71
9 28 44 236 79 197

10 138 45 174 80 259
11 273 46 42 81 110
12 119 47 110 82 202
13 76 48 6 83 134
14 100 49 3 84 221
15 257 50 215 85 244
16 251 51 100 86 171
17 270 52 122 87 265
18 70 53 198 88 66
19 184 54 292 89 48
20 281 55 262 90 190
21 192 56 294 91 241
22 179 57 222 92 160
23 264 58 54 93 277
24 232 59 181 94 123
25 102 60 192 95 192
26 87 61 48 96 136
27 224 62 225 97 77
28 249 63 148 98 106
29 129 64 81 99 39
30 58 65 165
31 109 66 166
32 100 67 40
33 103 68 11
34 81 69 85

194 EXAMPLES OF DATA AND RESULTS OF LEARNING

Table B.9: An example of adding the weights of a predicted permutation
and an NEH permutation (where the three columns of weights present the
figures (i), (ii) and (iii) in Figure 6.2, respectively)

Job Weight by Job Weight by Job Weight by

Id SPOT NEH Sum Id SPOT NEH Sum Id SPOT NEH Sum

0 32 69 101 35 23 71 94 70 39 34 73
1 24 72 96 36 80 62 142 71 22 26 48
2 46 64 110 37 76 43 119 72 70 29 99
3 57 81 138 38 97 97 194 73 82 83 165
4 10 3 13 39 63 70 133 74 3 23 26
5 86 87 173 40 87 91 178 75 8 2 10
6 66 49 115 41 68 52 120 76 85 42 127
7 48 65 113 42 4 14 18 77 62 50 112
8 37 67 104 43 69 82 151 78 17 30 47
9 5 25 30 44 78 89 167 79 64 63 127

10 45 92 137 45 53 21 74 80 89 10 99
11 94 76 170 46 9 27 36 81 36 93 129
12 38 55 93 47 35 37 72 82 67 58 125
13 18 35 53 48 1 0 1 83 43 53 96
14 27 47 74 49 0 1 1 84 72 60 132
15 88 38 126 50 71 75 146 85 81 90 171
16 84 85 169 51 29 59 88 86 52 79 131
17 93 73 166 52 40 88 128 87 92 54 146
18 16 36 52 53 65 84 149 88 15 77 92
19 56 95 151 54 98 17 115 89 12 13 25
20 96 96 192 55 90 80 170 90 58 28 86
21 59 57 116 56 99 99 198 91 79 86 165
22 54 48 102 57 73 15 88 92 49 33 82
23 91 19 110 58 13 22 35 93 95 74 169
24 77 66 143 59 55 45 100 94 41 18 59
25 30 44 74 60 60 41 101 95 61 6 67
26 26 11 37 61 11 56 67 96 44 39 83
27 74 61 135 62 75 31 106 97 19 8 27
28 83 98 181 63 47 78 125 98 33 94 127
29 42 40 82 64 21 4 25 99 6 7 13
30 14 5 19 65 50 16 66
31 34 20 54 66 51 68 119
32 28 24 52 67 7 9 16
33 31 46 77 68 2 12 14
34 20 32 52 69 25 51 76

Appendix C Original Data of Figures and
Tables

Table C.1: Original data of Figure 1.4 (D. S. Johnson & McGeoch, 2002, p. 376)
Heuristic % excess over the HK bound Normalized time (s)

Spacefill 34.56 0.02
Strip 30.75 0.01
Karp-20 29.34 0.85
NI 26.50 1.71
NN 24.79 0.28
CHCI 20.73 0.83
Greedy 16.42 0.20
FI 13.35 2.59
Savings 12.03 0.24
CCA 11.73 1129
AppChristo 11.05 0.44
Christo-S 9.81 1.04
GENI-10 5.89 823
2-Opt-JM 4.70 1.41
3-Opt-JM 2.88 1.50
LK-JM 2.00 2.06
Tabu-SC-SC 1.48 18830
MLLK-.1N 1.18 12.75
CLK-ABCC-N 0.90 63.91
Helsgaun.1N 0.69 1840

195

196 ORIGINAL DATA OF FIGURES

Table C.2: Original data of Figure 5.1
n’ cov (%) d̄ Timeoverall (s) TimeL (s)

25 98.462 2.006 6.10 0.09
50 98.725 1.963 6.15 0.14

100 98.646 1.908 6.23 0.22
200 98.612 1.876 6.42 0.40
400 98.616 1.867 6.92 0.85
800 98.619 1.859 8.51 2.34

8-NN† 98.477 1.842 — —
†: The 8-nearest-neighbor-first candidate set in HyFlex,

with no modification by SPOT algorithms.

ORIGINAL DATA OF FIGURES 197

Table C.3: Original data of Table 5.10
PHunter64bit SPOT-PHunter

No. 0 No. 2 No. 6 No. 7 No. 8 No. 0 No. 2 No. 6 No. 7 No. 8

31 48194.9 6796.5 52510.6 66916.3 21221065.6 48194.9 6804.4 52950.5 67107.7 21429281.3
runs 48194.9 6813.4 52771.2 66689.6 21221065.6 48194.9 6801.5 52809.9 66790.8 21429281.3

48194.9 6825.0 52590.9 66686.0 21221065.6 48194.9 6802.1 52950.5 66606.4 21419868.0
48194.9 6799.4 52839.1 66841.1 21221065.6 48194.9 6807.9 52950.5 66790.8 21429281.3
48194.9 6820.1 52904.3 66693.0 21221065.6 48194.9 6805.7 52827.3 66606.4 21419868.0
48194.9 6808.4 52923.5 67025.8 21221065.6 48194.9 6802.3 53047.6 66606.4 21429281.3
48194.9 6812.4 52538.9 66722.6 21221065.6 48194.9 6802.1 52950.5 66606.4 21419868.0
48194.9 6824.0 53200.3 67073.3 21221065.6 48194.9 6803.4 52552.2 66606.4 21419868.0
48194.9 6805.0 52777.0 66887.8 21221065.6 48194.9 6803.7 52613.4 66606.4 21419868.0
48194.9 6813.3 52844.5 66704.0 21221065.6 48194.9 6804.6 52732.5 66728.0 21419868.0
48194.9 6820.2 53000.0 67272.9 21221065.6 48194.9 6804.8 52950.5 66894.9 21402829.4
48194.9 6817.2 53004.3 66700.4 21221065.6 48194.9 6803.4 52552.2 66790.8 21419868.0
48194.9 6819.6 52760.6 66744.5 21221065.6 48194.9 6801.5 52950.5 66606.4 21429281.3
48194.9 6797.5 52717.4 66749.6 21221065.6 48194.9 6801.5 53140.4 66790.8 20957289.4
48194.9 6811.6 52544.4 66487.7 21221065.6 48194.9 6801.5 52706.7 66790.8 21419868.0
48194.9 6810.3 52593.0 66699.4 21221065.6 48194.9 6804.6 52872.4 66606.4 21377588.8
48194.9 6812.6 52830.1 66490.6 21221065.6 48194.9 6802.8 52950.5 66606.4 21429281.3
48194.9 6809.9 52973.0 66655.8 21221065.6 48194.9 6801.5 52872.7 66790.8 21429281.3
48194.9 6815.3 52877.4 66960.9 21221065.6 48194.9 6804.7 52641.9 66790.8 21419868.0
48194.9 6805.0 52835.2 66910.3 21221065.6 48194.9 6802.1 52950.5 66393.5 21429281.3
48194.9 6812.4 52636.8 66801.1 21221065.6 48194.9 6802.1 52970.9 66606.4 21419868.0
48194.9 6801.6 52952.6 66930.1 21221065.6 48194.9 6803.7 53146.2 66606.4 21402829.4
48194.9 6810.1 52874.6 66635.1 21221065.6 48194.9 6802.4 52732.5 66614.9 21377588.8
48194.9 6829.8 52716.8 66978.5 21221065.6 48194.9 6802.4 52976.0 66614.9 21419868.0
48194.9 6824.8 53130.0 67164.0 21221065.6 48194.9 6802.4 52872.7 66606.4 21419868.0
48194.9 6814.8 52672.1 67072.4 21221065.6 48194.9 6803.7 52552.2 66606.4 21419868.0
48194.9 6799.2 52693.7 67305.3 21221065.6 48194.9 6802.4 53152.4 66606.4 21429281.3
48194.9 6818.3 52613.4 67100.0 21221065.6 48194.9 6802.1 52950.5 66790.8 21419868.0
48194.9 6807.2 52919.8 66987.9 21221065.6 48194.9 6807.9 52796.1 66606.4 21429281.3
48194.9 6823.2 52873.4 66760.7 21221065.6 48194.9 6804.9 52834.1 66606.4 21377588.8
48194.9 6820.4 52976.5 66826.0 21221065.6 48194.9 6802.1 52634.3 66790.8 21402829.4

Min 48194.9 6796.5 52510.6 66487.7 21221065.6 48194.9 6801.5 52552.2 66393.5 20957289.4
Med 48194.9 6812.6 52835.2 66826.0 21221065.6 48194.9 6802.4 52872.7 66606.4 21419868.0
Max 48194.9 6829.8 53200.3 67305.3 21221065.6 48194.9 6807.9 53152.4 67107.7 21429281.3

One-way ANOVA† No. 0 No. 2 No. 6 No. 7 No. 8

F —‡ 35.95 1.21 15.14 210.25
p — 0.00 0.28 0.00 0.00

†: Factor: PHunter64bit = 1, SPOT-PHunter = 2.
‡: Exactly the same.

198 ORIGINAL DATA OF FIGURES

Table C.4: Original data of Figure 5.3
Source Hyper-heuristic Score on each test instance Overall

(alphabetical) No. 0 No. 2 No. 6 No. 7 No. 8 score

Results† of ACO-HH 0 0 2 2 0 4
CHeSC 2011 AdaptHH 6 8 3 5 10 32
(on a 32-bit Ant-Q 0 0 0 0 0 0
Java) AVEG-Nep 0 0 0 0 0 0

DynILS 1 1 0 0 4 6
EPH 6 6 6 8 1 27
GenHive 0 0 0 1 0 1
GISS 0 0 0 0 0 0
HAEA 1 0 0 0 6 7
HAHA 0 0 0 0 0 0
ISEA 0 0 0 0 8 8
KSATS-HH 0 0 0 0 0 0
MCHH-S 0 0 0 0 0 0
ML 1 2 0 4 0 7
NAHH 0 0 4 0 5 9
PHunter32bit 6 4 5 3 0 18
SA-ILS 0 0 0 0 0 0
SelfSearch 0 0 0 0 3 3
VNS-TW 6 3 1 0 2 12
XCJ 0 0 0 0 0 0

Experiments PHunter64bit 6 5 10 6 0 27
in thesis SPOT-PHunter 6 10 8 10 0 34
(†: Solutions were available at: http://www.asap.cs.nott.ac.uk/external/chesc2011/
raw-results.html.)

http://www.asap.cs.nott.ac.uk/external/chesc2011/raw-results.html
http://www.asap.cs.nott.ac.uk/external/chesc2011/raw-results.html

ORIGINAL DATA OF FIGURES 199

Table C.5: Original data of Figure 6.3
Algorithm n’ r (%) Timeoverall TimeL

Average Std dev (s) (s)

SPOT 10 65.759 5.088 8.77 2.76
(direct) 20 69.711 3.387 9.28 3.27

30 71.514 2.822 11.43 5.42
40 72.409 2.497 17.53 11.52
50 72.970 2.542 31.87 25.85

SPOT 10 68.951 3.022 8.80 2.79
(weighted 20 71.052 2.283 9.36 3.35
permutation) 30 71.703 2.045 11.45 5.44

40 72.151 2.020 17.61 11.60
50 72.367 2.102 31.89 25.88

longest-total-time-first 52.207 — < 0.01

NEH 66.636 — < 0.01

Avg of random NEHs 66.145 2.181 < 0.01

200 ORIGINAL DATA OF FIGURES

Table C.6: Original data of Figure 6.4 (Significant values of p in bold)
Group Instance % excess over best-known Run time (ms)

Base LLH New LLH F p Base LLH New LLH

No. 5 0 7.043 6.656 170.90 0.00 1.76 1.64
versus 1 6.510 6.188 115.81 0.00 1.70 1.87
No. 5’ 2 6.126 5.701 215.11 0.00 1.67 1.59

3 5.742 5.513 61.40 0.00 1.62 1.79
4 6.149 5.800 151.12 0.00 1.51 1.75

Avg 6.314 5.972 0.00 1.65 1.73

No. 6 0 5.589 5.250 176.63 0.00 102.95 103.49
versus 1 5.127 4.867 95.50 0.00 108.27 104.44
No. 6’ 2 4.824 4.475 164.49 0.00 101.42 101.35

3 4.633 4.468 37.20 0.00 102.77 103.04
4 4.810 4.438 226.30 0.00 98.36 99.17

Avg 4.997 4.700 0.00 102.75 102.30

No. 9 0 5.651 5.586 6.48 0.01 4.82 5.15
versus 1 5.097 5.016 10.24 0.00 4.73 4.93
No. 9’ 2 4.807 4.750 4.99 0.03 4.71 4.71

3 4.565 4.507 5.20 0.02 4.82 4.99
4 5.043 4.986 4.80 0.03 4.65 4.63

Avg 5.033 4.969 0.02 4.75 4.88

No. 10 0 5.730 5.679 3.96 0.05 5.12 4.90
versus 1 5.170 5.130 2.65 0.10 5.17 4.76
No. 10’ 2 4.878 4.843 1.87 0.17 4.56 4.88

3 4.621 4.577 3.23 0.07 5.12 4.82
4 5.113 5.053 5.12 0.02 4.46 4.56

Avg 5.102 5.056 0.08 4.88 4.78

ORIGINAL DATA OF FIGURES 201

Table C.7: Original data of Table 6.13 (Significant values of p in bold)
PHunter64bit SPOT-PHunter

No. 1 No. 3 No. 8 No. 10 No. 11 No. 1 No. 3 No. 8 No. 10 No. 11

31 6238 26794 6326 11419 26603 6218 26792 6303 11355 26591
runs 6264 26847 6353 11381 26626 6242 26752 6326 11371 26659

6217 26806 6353 11346 26615 6249 26810 6323 11343 26614
6248 26822 6350 11358 26602 6226 26755 6326 11333 26616
6211 26800 6344 11397 26638 6248 26815 6325 11360 26560
6248 26842 6353 11359 26593 6242 26801 6323 11365 26579
6226 26827 6353 11350 26600 6242 26776 6350 11359 26659
6239 26818 6350 11319 26629 6277 26783 6353 11359 26640
6247 26859 6350 11389 26609 6238 26814 6331 11359 26572
6229 26783 6366 11375 26603 6247 26811 6350 11368 26596
6241 26868 6350 11391 26587 6252 26784 6350 11375 26586
6252 26841 6350 11360 26608 6234 26768 6303 11378 26659
6265 26770 6335 11365 26616 6259 26783 6329 11340 26585
6258 26843 6353 11355 26621 6267 26773 6314 11323 26635
6238 26815 6353 11396 26640 6231 26773 6323 11352 26584
6256 26760 6363 11402 26683 6228 26784 6310 11393 26659
6241 26824 6350 11379 26603 6247 26784 6323 11364 26628
6258 26776 6350 11382 26625 6241 26774 6303 11373 26611
6248 26778 6350 11415 26610 6213 26790 6303 11359 26586
6261 26792 6344 11346 26626 6256 26820 6325 11359 26544
6234 26820 6363 11359 26629 6261 26814 6353 11359 26677
6250 26858 6325 11359 26622 6233 26830 6323 11359 26567
6246 26843 6350 11330 26603 6238 26789 6303 11359 26601
6262 26855 6347 11351 26603 6238 26850 6350 11359 26624
6226 26868 6353 11362 26601 6248 26817 6309 11373 26634
6246 26770 6323 11392 26643 6251 26778 6333 11319 26611
6276 26849 6366 11389 26593 6239 26772 6326 11355 26566
6238 26852 6353 11389 26608 6238 26814 6318 11381 26604
6254 26810 6350 11400 26603 6221 26814 6350 11395 26636
6235 26836 6353 11421 26603 6232 26840 6303 11359 26586
6215 26811 6353 11370 26643 6242 26825 6303 11329 26577

Min 6211 26760 6323 11319 26587 6213 26752 6303 11319 26544
Med 6246 26822 6350 11375 26609 6242 26790 6323 11359 26604
Max 6276 26868 6366 11421 26683 6277 26850 6353 11395 26677

One-way ANOVA† No. 1 No. 3 No. 8 No. 10 No. 11

F 0.36 11.47 47.44 7.51 1.21
p 0.55 0.00 0.00 0.01 0.28

†: Factor: PHunter64bit = 1, SPOT-PHunter = 2.

202 ORIGINAL DATA OF FIGURES

Table C.8: Original data of Figure 6.5
Source Hyper-heuristic Score on each test instance Overall

(alphabetical) No. 1 No. 3 No. 8 No. 10 No. 11 score

Results† of ACO-HH 3 0 0 1 0 4
CHeSC 2011 AdaptHH 10 5 5 9 3 32
(on a 32-bit Ant-Q 0 0 0 0 0 0
Java) AVEG-Nep 0 0 0 0 0 0

DynILS 0 0 0 0 0 0
EPH 2 3 4 0 4 13
GenHive 0 0 1 0 2 3
GISS 0 0 0 0 0 0
HAEA 0 0 2 0 1 3
HAHA 0 0 0 0 0 0
ISEA 0 0 0 0 0 0
KSATS-HH 0 0 0 0 0 0
MCHH-S 0 0 0 0 0 0
ML 5.5 8 8 3 5 29.5
NAHH 5.5 8 0 4 0 17.5
PHunter32bit 0 1.5 0 2 0 3.5
SA-ILS 0 0 0 0 0 0
SelfSearch 0 0 0 0 0 0
VNS-TW 1 4 6 5 10 26
XCJ 0 0 0 0 0 0

Experiments PHunter64bit 4 1.5 3 6 6 20.5
in thesis SPOT-PHunter 8 8 10 9 8 43
(†: Solutions were available at: http://www.asap.cs.nott.ac.uk/external/chesc2011/
raw-results.html.)

http://www.asap.cs.nott.ac.uk/external/chesc2011/raw-results.html
http://www.asap.cs.nott.ac.uk/external/chesc2011/raw-results.html

References

Aaronson, S. (2005, March). Guest column: NP-complete problems and phys-

ical reality. SIGACT News, 36(1), 30–52. doi:10.1145/1052796.1052804

Aha, D. W., Kibler, D., & Albert, M. K. (1991, January). Instance-based

learning algorithms. Machine Learning, 6(1), 37–66. doi:10 . 1023 / A :

1022689900470

Ahuja, R. K., Ergun, O., Orlin, J. B., & Punnen, A. P. (2002). A survey of very

large-scale neighborhood search techniques. Discrete Applied Mathemat-

ics, 123(1-3), 75–102. doi:10.1016/S0166-218X(01)00338-9

Aickelin, U., Burke, E. K., & Li, J. (2009, April). An evolutionary squeaky

wheel optimization approach to personnel scheduling. IEEE Transac-

tions on Evolutionary Computation, 13(2), 433–443. doi:10.1109/TEVC.

2008.2004262

Allahverdi, A., & Al-Anzi, F. S. (2002, July). Using two-machine flowshop

with maximum lateness objective to model multimedia data objects

scheduling problem for WWW applications. Comput. Oper. Res. 29(8),

971–994. doi:10.1016/S0305-0548(00)00097-6

Applegate, D. L., Bixby, R. E., Chvátal, V., & Cook, W. J. (2006). The traveling

salesman problem: a computational study. Princeton Series in Applied

Mathematics. Princeton, NJ, USA: Princeton University Press.

203

http://dx.doi.org/10.1145/1052796.1052804
http://dx.doi.org/10.1023/A:1022689900470
http://dx.doi.org/10.1023/A:1022689900470
http://dx.doi.org/10.1016/S0166-218X(01)00338-9
http://dx.doi.org/10.1109/TEVC.2008.2004262
http://dx.doi.org/10.1109/TEVC.2008.2004262
http://dx.doi.org/10.1016/S0305-0548(00)00097-6

204 REFERENCES

Applegate, D. L., Bixby, R. E., Chvátal, V., Cook, W. J., Espinoza, D. G.,

Goycoolea, M., & Helsgaun, K. (2009). Certification of an optimal

TSP tour through 85,900 cities. Operations Research Letters, 37(1), 11–

15. doi:10.1016/j.orl.2008.09.006

Applegate, D. L., Bixby, R. E., Chvátal, V., & Cook, W. J. (2001). TSP cuts

which do not conform to the template paradigm. In M. Jünger & D. Nad-

def (Eds.), Computational combinatorial optimization (Vol. 2241, pp. 261–

304). Lecture Notes in Computer Science. London, UK: Springer-Verlag.

doi:10.1007/3-540-45586-8 7

Ausiello, G., Protasi, M., Marchetti-Spaccamela, A., Gambosi, G., Crescenzi,

P., & Kann, V. (1999). Complexity and approximation: combinatorial opti-

mization problems and their approximability properties (1st). Secaucus, NJ,

USA: Springer-Verlag New York, Inc. doi:10.1007/978-3-642-58412-1

Babb, J., & Currie, J. (2008, July). The brachistochrone problem: mathematics

for a broad audience via a large context problem. The Montana Mathemat-

ics Enthusiast, 5(3), 169–184. Retrieved April 4, 2012, from http://www.

math.umt.edu/tmme/vol5no2and3/TMME vol5nos2and3 a1 pp.

169 184.pdf

Bader El Den, M., & Poli, R. (2009, May). Grammar-based genetic program-

ming for timetabling. In 2009 IEEE congress on evolutionary computation

(cec’09) (pp. 2532–2539). doi:10.1109/CEC.2009.4983259

Barnhart, C., Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W. P., &

Vance, P. H. (1998, March). Branch-and-price: column generation for

solving huge integer programs. Operations Research, 46(3), 316–329.

doi:10.1287/opre.46.3.316

http://dx.doi.org/10.1016/j.orl.2008.09.006
http://dx.doi.org/10.1007/3-540-45586-8_7
http://dx.doi.org/10.1007/978-3-642-58412-1
http://www.math.umt.edu/tmme/vol5no2and3/TMME_vol5nos2and3_a1_pp.169_184.pdf
http://www.math.umt.edu/tmme/vol5no2and3/TMME_vol5nos2and3_a1_pp.169_184.pdf
http://www.math.umt.edu/tmme/vol5no2and3/TMME_vol5nos2and3_a1_pp.169_184.pdf
http://dx.doi.org/10.1109/CEC.2009.4983259
http://dx.doi.org/10.1287/opre.46.3.316

REFERENCES 205

Bentley, J. J. (1992). Fast algorithms for geometric traveling salesman prob-

lems. OSAR Journal on Computing, 4, 387–411. doi:10.1287/ijoc.4.4.387

Bernoulli, J. (1696, June). Problema novum ad cuius solutionem Mathematici

invitantur. Acta Eruditorum, 15, 264–269.

Bernstein, M. (1987, January). Finding heuristics for flowshop scheduling.

SIGART Newsletter, (99), 32–33. doi:10.1145/24667.24670

Birattari, M. (2009). Tuning metaheuristics: a machine learning perspective (J.

Kacprzyk, Ed.). Studies in Computational Intelligence. Berlin, Germany:

Springer-Verlag. doi:10.1007/978-3-642-00483-4

Blum, A. L., & Rivest, R. L. (1992). Training a 3-node neural network is NP-

complete. Neural Networks, 5(1), 117–127. doi:10.1016/S0893-6080(05)

80010-3

Blum, C., & Roli, A. (2003, September). Metaheuristics in combinatorial

optimization: overview and conceptual comparison. ACM Computer

Survey, 35(3), 268–308. doi:10.1145/937503.937505

Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm intelligence: from nat-

ural to artificial systems. Santa Fe Institute Studies in the Sciences of Com-

plexity. New York, NY, USA: Oxford University Press. Retrieved April

4, 2012, from http://books.google.com.hk/books?id=PvTDhzqMr7cC

Bose, I., & Mahapatra, R. K. (2001). Business data mining — a machine

learning perspective. Information & Management, 39(3), 211–225. doi:10.

1016/S0378-7206(01)00091-X

Boyan, J., & Moore, A. (2000). ‘‘STAGE” learning for local search. Neural

computing surveys, 3, 35–38. Retrieved April 4, 2012, from http://ftp.

icsi.berkeley.edu/ftp/pub/ai/jagota/vol3 1.pdf

http://dx.doi.org/10.1287/ijoc.4.4.387
http://dx.doi.org/10.1145/24667.24670
http://dx.doi.org/10.1007/978-3-642-00483-4
http://dx.doi.org/10.1016/S0893-6080(05)80010-3
http://dx.doi.org/10.1016/S0893-6080(05)80010-3
http://dx.doi.org/10.1145/937503.937505
http://books.google.com.hk/books?id=PvTDhzqMr7cC
http://dx.doi.org/10.1016/S0378-7206(01)00091-X
http://dx.doi.org/10.1016/S0378-7206(01)00091-X
http://ftp.icsi.berkeley.edu/ftp/pub/ai/jagota/vol3_1.pdf
http://ftp.icsi.berkeley.edu/ftp/pub/ai/jagota/vol3_1.pdf

206 REFERENCES

Boyan, J. (1998, August). Learning evaluation functions for global optimization.

(Doctoral dissertation, Robotics Institute, Carnegie Mellon University,

Pittsburgh, PA, USA). Retrieved April 4, 2012, from http://www.ri.

cmu.edu/publication view.html?pub id=2954

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1983). Classification

and regression trees. Wadsworth Statistics / Probability series. Belmont,

CA, USA: Wadsworth Publishing Co. Inc.

Brown, D. E., Pittard, C. L., & Park, H. (1996). Classification trees with optimal

multivariate decision nodes. Pattern Recognition Letters, 17(7), 699–703.

doi:10.1016/0167-8655(96)00033-5

Burke, E. K., Hyde, M., & Kendall, G. (2006). Evolving bin packing heuristics

with genetic programming. In Proceedings of the 9th international confer-

ence on parallel problem solving from nature (ppsn’06) (Vol. 4193, pp. 860–

869). Lecture Notes in Computer Science. Germany: Springer-Verlag.

doi:10.1007/11844297 87

Burke, E. K., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E., & Qu, R. (2010).

Hyper-heuristics: a survey of the state of the art (tech. rep. No. NOTTCS-TR-

SUB-0906241418-2747). School of Computer Science and Information

Technology, University of Nottingham. Nottingham NG8 1BB, UK.

Retrieved April 4, 2012, from http://www.cs.nott.ac.uk/∼gxo/papers/

hhsurvey.pdf

Burke, E. K., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., & Woodward, J. R.

(2010). A classification of hyper-heuristic approaches. In M. Gendreau

& J.-Y. Potvin (Eds.), Handbook of metaheuristics (Vol. 146, pp. 449–468).

International Series in Operations Research & Management Science.

Springer US. doi:10.1007/978-1-4419-1665-5 15

http://www.ri.cmu.edu/publication_view.html?pub_id=2954
http://www.ri.cmu.edu/publication_view.html?pub_id=2954
http://dx.doi.org/10.1016/0167-8655(96)00033-5
http://dx.doi.org/10.1007/11844297_87
http://www.cs.nott.ac.uk/~gxo/papers/hhsurvey.pdf
http://www.cs.nott.ac.uk/~gxo/papers/hhsurvey.pdf
http://dx.doi.org/10.1007/978-1-4419-1665-5_15

REFERENCES 207

Burke, E. K., Hyde, M., Kendall, G., & Woodward, J. (2007). Automatic

heuristic generation with genetic programming: evolving a jack-of-all-

trades or a master of one. In Proceedings of the 9th annual conference

on genetic and evolutionary computation (gecco’07) (pp. 1559–1565). New

York, NY, USA: ACM. doi:10.1145/1276958.1277273

Burke, E. K., Kendall, G., Newall, J., Hart, E., Ross, P., & Schulenburg, S. (2003).

Hyper-heuristics: an emerging direction in modern search technology.

In F. Glover & G. Kochenberger (Eds.), Handbook of metaheuristics (Vol.

57, pp. 457–474). International Series in Operations Research & Man-

agement Science. Springer New York. doi:10.1007/0-306-48056-5 16

Burke, E. K., Petrovic, S., & Qu, R. (2006, April). Case-based heuristic selection

for timetabling problems. J. of Scheduling, 9(2), 115–132. doi:10.1007/

s10951-006-6775-y

Campbell, H. G., Dudek, R. A., & Smith, M. L. (1970). A heuristic algorithm

for the n job, m machine sequencing problem. Management Science,

16(10), B630–B637. doi:doi:10.1287/mnsc.16.10.B630

Ceberio, J., Irurozki, E., Mendiburu, A., & Lozano, J. A. (2012). A review

on estimation of distribution algorithms in permutation-based combi-

natorial optimization problems. Progress in Artificial Intelligence, 1(1),

103–117. doi:10.1007/s13748-011-0005-3

Černý, V. (1985, January). Thermodynamical approach to the traveling sales-

man problem: an efficient simulation algorithm. Journal of Optimization

Theory and Applications, 45(1), 41–51. doi:10.1007/BF00940812

Chan, C. Y., Xue, F., Ip, W. H., & Cheung, C. F. (2012, January). A hyper-

heuristic inspired by pearl hunting. In Y. Hamadi & M. Schoenauer

(Eds.), Learning and intelligent optimization (pp. 349–353). Lecture Notes

http://dx.doi.org/10.1145/1276958.1277273
http://dx.doi.org/10.1007/0-306-48056-5_16
http://dx.doi.org/10.1007/s10951-006-6775-y
http://dx.doi.org/10.1007/s10951-006-6775-y
http://dx.doi.org/doi:10.1287/mnsc.16.10.B630
http://dx.doi.org/10.1007/s13748-011-0005-3
http://dx.doi.org/10.1007/BF00940812

208 REFERENCES

in Computer Science. Springer-Verlag. doi:10.1007/978-3-642-34413-

8 26

Clark, P., & Niblett, T. (1989). The CN2 induction algorithm. Machine Learning,

3, 261–283. doi:10.1007/BF00116835

Cohen, W. W. (1995). Fast effective rule induction. In Proceedings of the twelfth

international conference on machine learning (ml95) (pp. 115–123). Tahoe

City, CA, USA. Retrieved April 4, 2012, from http://www.cs.cmu.edu/

∼wcohen/postscript/ml-95-ripper.ps

Colorni, A., Dorigo, M., & Maniezzo, V. (1992). Distributed optimization by

ant colonies. In F. J. Varela & P. Bourgine (Eds.), Towards a practice of

autonomous systems: proceedings of the first european conference on artificial

life (pp. 134–142). Cambridge, MA, USA: MIT Press.

Cook, W. J., & Seymour, P. (2003, July). Tour merging via branch-decomposition.

INFORMS Journal on Computing, 15(3), 233–248. doi:10.1287/ijoc.15.3.

233.16078

Cotta, C., & Troya, J. M. (2003, April). Embedding branch and bound within

evolutionary algorithms. Applied Intelligence, 18(2), 137–153. doi:10 .

1023/A:1021934325079

Croes, G. A. (1958, December). A method for solving traveling-salesman

problems. Operations Research, 6(6), 791–812. doi:10.1287/opre.6.6.791

Crowston, W. B., Glover, F., Thompson, G. L., & Trawick, J. D. (1963). Proba-

bilistic and parametric learning combinations of local job shop scheduling rules.

ONR Research Memorandum. Pittsburgh, PA, USA: Defense Technical

Information Center.

Cruz-Reyes, L., Gómez-Santillán, C., Pérez-Ortega, J., Landero, V., Quiroz, M.,

& Ochoa, A. (2012, March). Algorithm selection: from meta-learning to

http://dx.doi.org/10.1007/978-3-642-34413-8_26
http://dx.doi.org/10.1007/978-3-642-34413-8_26
http://dx.doi.org/10.1007/BF00116835
http://www.cs.cmu.edu/~wcohen/postscript/ml-95-ripper.ps
http://www.cs.cmu.edu/~wcohen/postscript/ml-95-ripper.ps
http://dx.doi.org/10.1287/ijoc.15.3.233.16078
http://dx.doi.org/10.1287/ijoc.15.3.233.16078
http://dx.doi.org/10.1023/A:1021934325079
http://dx.doi.org/10.1023/A:1021934325079
http://dx.doi.org/10.1287/opre.6.6.791

REFERENCES 209

hyper-heuristics. In V. M. Koleshko (Ed.), Intelligent systems (Chap. 4,

pp. 77–102). Rijeka, Croatia: InTech. doi:10.5772/2350

Culberson, J. C. (1998, June). On the futility of blind search: an algorithmic

view of “no free lunch”. Evolutionary Computation, 6(2), 109–127. doi:10.

1162/evco.1998.6.2.109

Dannenbring, D. G. (1977, July). An evaluation of flow shop sequencing

heuristics. Management Science, 23(11), 1174–1182. Retrieved from http:

//www.jstor.org/stable/2630656

Davis, M. (1965). The undecidable: basic papers on undecidable propositions, un-

solvable problems and computable functions. Hewlett, New York, NY, USA:

Raven Press.

Denzinger, J., Fuchs, M., & Fuchs, M. (1997). High performance ATP systems

by combining several AI methods. In Proceedings of the 15th international

joint conference on artifical intelligence — volume 1 (pp. 102–107). IJCAI9́7.

San Francisco, CA, USA: Morgan Kaufmann Publishers Inc. Retrieved

April 4, 2012, from http://pages.cpsc.ucalgary.ca/∼denzinge/papers/

Denzinger.SR-96-09.ps.gz

Denzinger, J., & Offermann, T. (1999). On cooperation between evolution-

ary algorithms and other search paradigms. In Proceedings of the 1999

congress on evolutionary computation (cec’99) (pp. 2317–2324). doi:10 .

1109/CEC.1999.785563

de Werra, D., & Hertz, A. (1989). Tabu-search techniques: a tutorial and an

application to neural networks. OR Spektrum, 11(3), 131–141. doi:10.

1007/BF01720782

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs.

Numerische Mathematik, 1, 269–271. doi:10.1007/BF01386390

http://dx.doi.org/10.5772/2350
http://dx.doi.org/10.1162/evco.1998.6.2.109
http://dx.doi.org/10.1162/evco.1998.6.2.109
http://www.jstor.org/stable/2630656
http://www.jstor.org/stable/2630656
http://pages.cpsc.ucalgary.ca/~denzinge/papers/Denzinger.SR-96-09.ps.gz
http://pages.cpsc.ucalgary.ca/~denzinge/papers/Denzinger.SR-96-09.ps.gz
http://dx.doi.org/10.1109/CEC.1999.785563
http://dx.doi.org/10.1109/CEC.1999.785563
http://dx.doi.org/10.1007/BF01720782
http://dx.doi.org/10.1007/BF01720782
http://dx.doi.org/10.1007/BF01386390

210 REFERENCES

Dorigo, M., & Gambardella, L. M. (1997a). Ant colonies for the travelling

salesman problem. Biosystems, 43(2), 73–81. doi:10.1016/S0303-2647(97)

01708-5

Dorigo, M., & Gambardella, L. M. (1997b). Ant colony system: a cooperative

learning approach to the traveling salesman problem. IEEE Transactions

on Evolutionary Computation, 1(1), 53–66. doi:10.1109/4235.585892

Dorigo, M., Maniezzo, V., & Colorni, A. (1991). Positive feedback as a search

strategy (tech. rep. No. 91-016). Dipartimento di Elettronica, Politecnico

di Milano. Milan, Italy. Retrieved April 4, 2012, from http://citeseerx.

ist.psu.edu/viewdoc/summary?doi=10.1.1.52.6342

Eiben, A. E., Hinterding, R., & Michalewicz, Z. (1999, July). Parameter control

in evolutionary algorithms. IEEE Transactions on Evolutionary Computa-

tion, 3(2), 124–141. doi:10.1109/4235.771166

Eiben, A. E., & Smith, J. E. (2003). Introduction to evolutionary computing.

Natural Computing Series. Berlin, Germany: Springer-Verlag. Retrieved

April 4, 2012, from http://www.cs.vu.nl/∼gusz/ecbook/ecbook.html

Fan, W., & Xue, F. (2006). Optimize cooperative agents with organization

in distributed scheduling system. In K. L. De-Shuang Huang & G. W.

Irwin (Eds.), Computational intelligence (Vol. 4114, pp. 502–509). Lecture

Notes in Artificial Intelligence. Germany: Springer-Verlag. doi:10.1007/

978-3-540-37275-2 61

Feo, T. A., & Resende, M. G. C. (1989). A probabilistic heuristic for a com-

putationally difficult set covering problem. Operations Research Letters,

8(2), 67–71. doi:10.1016/0167-6377(89)90002-3

http://dx.doi.org/10.1016/S0303-2647(97)01708-5
http://dx.doi.org/10.1016/S0303-2647(97)01708-5
http://dx.doi.org/10.1109/4235.585892
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.52.6342
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.52.6342
http://dx.doi.org/10.1109/4235.771166
http://www.cs.vu.nl/~gusz/ecbook/ecbook.html
http://dx.doi.org/10.1007/978-3-540-37275-2_61
http://dx.doi.org/10.1007/978-3-540-37275-2_61
http://dx.doi.org/10.1016/0167-6377(89)90002-3

REFERENCES 211

Feo, T. A., & Resende, M. G. C. (1995). Greedy randomized adaptive search

procedures. Journal of Global Optimization, 6, 109–133. doi:10 . 1007 /

BF01096763

Fisher, R. A. (1936). The use of multiple measurements in taxonomic prob-

lems. Annals of Eugenics, 7(2), 179–188. doi:10.1111/j.1469-1809.1936.

tb02137.x

French, A. P., Robinson, A. C., & Wilson, J. M. (2001, November). Using a hy-

brid genetic-algorithm/branch and bound approach to solve feasibility

and optimization integer programming problems. Journal of Heuristics,

7(6), 551–564. doi:10.1023/A:1011921025322

Fukunaga, A. S. (2008, March). Automated discovery of local search heuristics

for satisfiability testing. Evolutionary Computation, 16(1), 31–61. doi:10.

1162/evco.2008.16.1.31

Gama, J. (1999). Discriminant trees. In Proceedings of the sixteenth international

conference on machine learning (icml’99) (pp. 134–142). San Francisco, CA,

USA: Morgan Kaufmann Publishers Inc. Retrieved April 4, 2012, from

http://www.liaad.up.pt/∼jgama/ml99.ps.gz

Gambardella, L. M., & Dorigo, M. (1995). Ant-Q: a reinforcement learning

approach to the traveling salesman problem. In A. Prieditis & S. Russell

(Eds.), Machine learning: proceedings of the twelfth international conference

on machine learning (pp. 252–260). San Francisco, CA: Morgan Kaufmann

Publishers. Retrieved April 4, 2012, from http://www.idsia.ch/∼luca/

ml95.pdf

Garey, M. R., & Johnson, D. S. (1979). Computers and intractability; a guide to

the theory of NP-completeness. New York, NY, USA: W. H. Freeman & Co.

doi:10.1137/1024022

http://dx.doi.org/10.1007/BF01096763
http://dx.doi.org/10.1007/BF01096763
http://dx.doi.org/10.1111/j.1469-1809.1936.tb02137.x
http://dx.doi.org/10.1111/j.1469-1809.1936.tb02137.x
http://dx.doi.org/10.1023/A:1011921025322
http://dx.doi.org/10.1162/evco.2008.16.1.31
http://dx.doi.org/10.1162/evco.2008.16.1.31
http://www.liaad.up.pt/~jgama/ml99.ps.gz
http://www.idsia.ch/~luca/ml95.pdf
http://www.idsia.ch/~luca/ml95.pdf
http://dx.doi.org/10.1137/1024022

212 REFERENCES

Garey, M. R., Johnson, D. S., & Sethi, R. (1976, May). The complexity of

flowshop and jobshop scheduling. Mathematics of operations research,

1(2), 117–129. doi:10.1287/moor.1.2.117

Gendreau, M., & Potvin, J.-Y. (2010). Handbook of metaheuristics (2nd) (F. S.

Hillie, Ed.). International Series in Operations Research & Management

Science. New York, NY, USA: Springer Science+Business Media. doi:10.

1007/978-1-4419-1665-5

Gerdts, M. (2012). Optimal control of ODEs and DAEs. Göttingen, Germany:

Walter De Gruyter Inc. doi:10.1515/9783110249996

Glover, F. (1986). Future paths for integer programming and links to artificial

intelligence. Computers & Operations Research, 13(5), 533–549. doi:10.

1016/0305-0548(86)90048-1

Glover, F., & Laguna, M. (1997). Tabu search. Kluwer Academic Publishers.

doi:10.1007/978-1-4615-6089-0

Gomes, C. P., & Selman, B. (1997). Algorithm portfolio design: theory vs.

practice. In Proceedings of the thirteenth conference on uncertainty in artifi-

cial intelligence (pp. 190–197). UAI9́7. San Francisco, CA, USA: Morgan

Kaufmann Publishers Inc. Retrieved April 4, 2012, from http://dl.acm.

org/citation.cfm?id=2074226.2074249

Grefenstette, J. J. (1986, January). Optimization of control parameters for

genetic algorithms. IEEE Transactions on Systems, Man and Cybernetics,

16(1), 122–128. doi:10.1109/TSMC.1986.289288

Gupta, J. N. D. (1975). A search algorithm for the generalized flowshop

scheduling problem. Computers & Operations Research, 2(2), 83–90. doi:10.

1016/0305-0548(75)90011-8

http://dx.doi.org/10.1287/moor.1.2.117
http://dx.doi.org/10.1007/978-1-4419-1665-5
http://dx.doi.org/10.1007/978-1-4419-1665-5
http://dx.doi.org/10.1515/9783110249996
http://dx.doi.org/10.1016/0305-0548(86)90048-1
http://dx.doi.org/10.1016/0305-0548(86)90048-1
http://dx.doi.org/10.1007/978-1-4615-6089-0
http://dl.acm.org/citation.cfm?id=2074226.2074249
http://dl.acm.org/citation.cfm?id=2074226.2074249
http://dx.doi.org/10.1109/TSMC.1986.289288
http://dx.doi.org/10.1016/0305-0548(75)90011-8
http://dx.doi.org/10.1016/0305-0548(75)90011-8

REFERENCES 213

Gutin, G., & Glover, F. (2005). Further extension of the TSP assign neighbor-

hood. Journal of Heuristics, 11(5-6), 501–505. doi:10.1007/s10732-005-

3487-y

Hackley, C. W. (1847). Elementary course of geometry. New York, NY, USA:

Harper & Brothers, Publishers. Retrieved April 4, 2012, from http :

//www.google.com.hk/books?id=jWILAAAAYAAJ

Hall, M. A. (1999, April). Correlation-based feature selection for machine learning.

(Doctoral dissertation, Department of Computer Science, University

of Waikato, Hamilton, NewZealand). Retrieved April 4, 2012, from

http://www.cs.waikato.ac.nz/∼mhall/thesis.pdf

Held, M., & Karp, R. M. (1970, December). The traveling-salesman problem

and minimum spanning trees. Operations Research, 18(6), 1138–1162.

doi:10.1287/opre.18.6.1138

Heller, J. (1960, April). Some numerical experiments for an M x J flow shop

and its decision-theoretical aspects. Operations Research, 8(2), 178–184.

doi:10.1287/opre.8.2.178

Helsgaun, K. (2000). An effective implementation of the Lin-Kernighan trav-

eling salesman heuristic. European Journal of Operational Research, 126(1),

106–130. doi:10.1016/S0377-2217(99)00284-2

Helsgaun, K. (2009). General k-opt submoves for the Lin-Kernighan TSP

heuristic. Mathematical Programming Computation, 1, 119–163. doi:10.

1007/s12532-009-0004-6

Hilario, M., Kalousis, A., Nguyen, P., & Woznica, A. (2009, September). A

data mining ontology for algorithm selection and meta-mining. In V.

Podpečan, N. Lavrač, J. N. Kok & J. de Bruin (Eds.), Proceedings of the

2009 european conference on machine learning and principles and practice

http://dx.doi.org/10.1007/s10732-005-3487-y
http://dx.doi.org/10.1007/s10732-005-3487-y
http://www.google.com.hk/books?id=jWILAAAAYAAJ
http://www.google.com.hk/books?id=jWILAAAAYAAJ
http://www.cs.waikato.ac.nz/~mhall/thesis.pdf
http://dx.doi.org/10.1287/opre.18.6.1138
http://dx.doi.org/10.1287/opre.8.2.178
http://dx.doi.org/10.1016/S0377-2217(99)00284-2
http://dx.doi.org/10.1007/s12532-009-0004-6
http://dx.doi.org/10.1007/s12532-009-0004-6

214 REFERENCES

of knowledge discovery in databases (ecml pkdd 2009) (pp. 76–87). Bled,

Slovenia. Retrieved April 4, 2012, from http://www.ecmlpkdd2009.

net/wp-content/uploads/2008/09/service-oriented-knowledge-

discovery 2.pdf#page=82

Holland, J. H. (1992). Adaptation in natural and artificial systems: an introduc-

tory analysis with applications to biology, control and artificial intelligence.

Cambridge, MA, USA: MIT Press.

Ho, N. B., & Tay, J. C. (2005, September). Evolving dispatching rules for

solving the flexible job-shop problem. In The 2005 IEEE congress on

evolutionary computation (Vol. 3, pp. 2848–2855). doi:10.1109/CEC.2005.

1555052

Hsiao, P.-C., Chiang, T.-C., & Fu, C. (2011, September). A variable neigh-

borhood search-based hyperheuristic for corss-domain optimization

problems in CHeSC 2011 competition. (p. 89). The OR Society. Notting-

ham, UK.

Huberman, B. A., Lukose, R. M., & Hogg, T. (1997, January). An economics

approach to hard computational problems. Science, 275(5296), 51–54.

doi:10.1126/science.275.5296.51

Hunt, J. E., & Cooke, D. E. (1996, April). Learning using an artificial immune

system. Journal of Network and Computer Applications, 19(2), 189–212.

doi:10.1006/jnca.1996.0014

Hutchinson, J. E. (1981). Fractals and self-similarity. Indiana University Math-

ematics Journal, 30(5), 713–747. Retrieved April 4, 2012, from http://

maths.anu.edu.au/∼john/Assets/Research%20Papers/fractals self-

similarity.pdf

http://www.ecmlpkdd2009.net/wp-content/uploads/2008/09/service-oriented-knowledge-discovery_2.pdf#page=82
http://www.ecmlpkdd2009.net/wp-content/uploads/2008/09/service-oriented-knowledge-discovery_2.pdf#page=82
http://www.ecmlpkdd2009.net/wp-content/uploads/2008/09/service-oriented-knowledge-discovery_2.pdf#page=82
http://dx.doi.org/10.1109/CEC.2005.1555052
http://dx.doi.org/10.1109/CEC.2005.1555052
http://dx.doi.org/10.1126/science.275.5296.51
http://dx.doi.org/10.1006/jnca.1996.0014
http://maths.anu.edu.au/~john/Assets/Research%20Papers/fractals_self-similarity.pdf
http://maths.anu.edu.au/~john/Assets/Research%20Papers/fractals_self-similarity.pdf
http://maths.anu.edu.au/~john/Assets/Research%20Papers/fractals_self-similarity.pdf

REFERENCES 215

Hutter, F., Hoos, H. H., Leyton-Brown, K., & Stützle, T. (2009, September).

ParamILS: an automatic algorithm configuration framework. Journal

of Artificial Intelligence Research, 36(1), 267–306. Retrieved April 4, 2012,

from http://www.jair.org/media/2861/live-2861-4703-jair.pdf

Ibaraki, T., & Muroga, S. (1970, January). Adaptive linear classifier by linear

programming. IEEE Transactions on Systems Science and Cybernetics, 6(1),

53–62. doi:10.1109/TSSC.1970.300329

Ignall, E., & Schrage, L. (1965, June). Application of the Branch and Bound

technique to some flow-shop scheduling problems. Operations Research,

13(3), 400–412. doi:10.1287/opre.13.3.400

Jakobović, D., Jelenković, L., & Budin, L. (2007). Genetic programming heuris-

tics for multiple machine scheduling. In Proceedings of the 10th euro-

pean conference on genetic programming (eurogp’07) (Vol. 4445, pp. 321–

330). Lecture Notes in Computer Science. Germany: Springer-Verlag.

doi:10.1007/978-3-540-71605-1 30

John, G. H., & Langley, P. (1995). Estimating continuous distributions in

Bayesian classifiers. In Proceedings of the eleventh conference on uncertainty

in artificial intelligence (uai’95) (pp. 338–345). San Francisco, CA, USA:

Morgan Kaufmann Publishers Inc. Retrieved April 4, 2012, from http:

//dl.acm.org/citation.cfm?id=2074158.2074196

Johnson, D. S., & McGeoch, L. A. (1997). Traveling salesman problem: a

case study in local optimization. In E. H. L. Aarts & J. K. Lenstra

(Eds.), Local search in combinatorial optimization (Chap. 8, pp. 215–310).

London, UK: John Wiley and Sons. Retrieved April 4, 2012, from http:

//www2.research.att.com/∼dsj/papers/TSPchapter.pdf

http://www.jair.org/media/2861/live-2861-4703-jair.pdf
http://dx.doi.org/10.1109/TSSC.1970.300329
http://dx.doi.org/10.1287/opre.13.3.400
http://dx.doi.org/10.1007/978-3-540-71605-1_30
http://dl.acm.org/citation.cfm?id=2074158.2074196
http://dl.acm.org/citation.cfm?id=2074158.2074196
http://www2.research.att.com/~dsj/papers/TSPchapter.pdf
http://www2.research.att.com/~dsj/papers/TSPchapter.pdf

216 REFERENCES

Johnson, D. S., & McGeoch, L. A. (2002). Experimental analysis of heuristics

for STSP. In G. Gutin & A. P. Punnen (Eds.), The traveling salesman

problem and its variations (Chap. 9, pp. 369–443). New York, NY, USA:

Kluwer Academic Publishers. doi:10.1007/b101971

Johnson, S. M. (1954). Optimal two- and three-stage production schedules

with setup times included. Naval Research Logistics Quarterly, 1(1), 61–68.

doi:10.1002/nav.3800010110

Joslin, D. E., & Clements, D. P. (1999, May). ‘‘squeaky wheel” optimization.

Journal of Artificial Intelligence Research, 10(1), 353–373. Retrieved April

4, 2012, from http://www.jair.org/media/561/live-561-1759-jair.pdf

Kadioglu, S., Malitsky, Y., Sellmann, M., & Tierney, K. (2010). Isac – instance-

specific algorithm configuration. In Proceedings of 19th European con-

ference on artificial intelligence (ecai 2010) (pp. 751–756). Amsterdam,

Netherlands: IOS Press. Retrieved April 4, 2012, from http://www.itu.

dk/people/kevt/papers/isac-ecai2010.pdf

Kanda, J., Carvalho, A., Hruschka, E., & Soares, C. (2011, August). Selection of

algorithms to solve traveling salesman problems using meta-learning.

International Journal of Hybrid Intelligent Systems, 8(3), 117–128. doi:10.

3233/HIS-2011-0133

Karp, R. M. (1972). Reducibility among combinatorial problems. In R. E.

Miller & J. W. Thatcher (Eds.), Complexity of computer computations

(pp. 85–103). New York, NY, USA: Plenum Press. doi:10.1007/978-

1-4684-2001-2 9

Kassim, H. O., & Cadbury, R. G. (1996). The place of the computer in chemi-

cal engineering education. Computers & Chemical Engineering, 20, Sup-

http://dx.doi.org/10.1007/b101971
http://dx.doi.org/10.1002/nav.3800010110
http://www.jair.org/media/561/live-561-1759-jair.pdf
http://www.itu.dk/people/kevt/papers/isac-ecai2010.pdf
http://www.itu.dk/people/kevt/papers/isac-ecai2010.pdf
http://dx.doi.org/10.3233/HIS-2011-0133
http://dx.doi.org/10.3233/HIS-2011-0133
http://dx.doi.org/10.1007/978-1-4684-2001-2_9
http://dx.doi.org/10.1007/978-1-4684-2001-2_9

REFERENCES 217

plement 2, S1341–S1346. European Symposium on Computer Aided

Process Engineering 6. doi:10.1016/0098-1354(96)00230-X

Keller, R. E., & Poli, R. (2007, September). Linear genetic programming

of parsimonious metaheuristics. In 2007 IEEE congress on evolutionary

computation (cec 2007) (pp. 4508–4515). doi:10.1109/CEC.2007.4425062

Keller, R. E., & Poli, R. (2008). Cost-benefit investigation of a genetic-programming

hyperheuristic. In Proceedings of the evolution artificielle, 8th international

conference on artificial evolution (ea’07) (Vol. 4926, pp. 13–24). Lecture

Notes in Computer Science. Germany: Springer-Verlag. doi:10.1007/

978-3-540-79305-2 2

Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings

of IEEE international conference on neural networks (Vol. 4, pp. 1942–1948).

IEEE Press. doi:10.1109/ICNN.1995.488968

Kennedy, J., Eberhart, R., & Shi, Y. (2001). Swarm intelligence. San Diego, CA:

Morgan Kaufmann Publishers.

Kim, B.-I., & Wy, J. (2010). Last two fit augmentation to the well-known

construction heuristics for one-dimensional bin-packing problem: an

empirical study. The International Journal of Advanced Manufacturing

Technology, 50, 1145–1152. doi:10.1007/s00170-010-2572-z

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983, May). Optimization by

simulated annealing. Science, 220(4598), 671–680. doi:10.1126/science.

220.4598.671

Kleunen, J. P. C. (1976). Computers and operations research: a survey. Com-

puters & Operations Research, 3(4), 327–335. doi:10.1016/0305-0548(76)

90015-0

http://dx.doi.org/10.1016/0098-1354(96)00230-X
http://dx.doi.org/10.1109/CEC.2007.4425062
http://dx.doi.org/10.1007/978-3-540-79305-2_2
http://dx.doi.org/10.1007/978-3-540-79305-2_2
http://dx.doi.org/10.1109/ICNN.1995.488968
http://dx.doi.org/10.1007/s00170-010-2572-z
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1016/0305-0548(76)90015-0
http://dx.doi.org/10.1016/0305-0548(76)90015-0

218 REFERENCES

Knuth, D. E., & Moore, R. W. (1975). An analysis of alpha-beta pruning.

Artificial Intelligence, 6(4), 293–326. doi:10.1016/0004-3702(75)90019-3

Ko, K.-I., & Friedman, H. (1982). Computational complexity of real functions.

Theoretical Computer Science, 20(3), 323–352. doi:10.1016/S0304-3975(82)

80003-0

Koonce, D. A., & Tsai, S.-C. (2000). Using data mining to find patterns in

genetic algorithm solutions to a job shop schedule. Comput. Ind. Eng.

38(3), 361–374. doi:10.1016/S0360-8352(00)00050-4

Kotsiantis, S. B. (2007, October). Supervised machine learning: a review of

classification techniques. Informatica, 31(3), 249–268. Retrieved April 4,

2012, from http://www.informatica.si/vol31.htm#No3

Kotsiantis, S. B., Zaharakis, I. D., & Pintelas, P. E. (2006, November). Machine

learning: a review of classification and combining techniques. Artificial

Intelligence Review, 26(3), 159–190. doi:10.1007/s10462-007-9052-3

Koza, J. R. (1992). Genetic programming: on the programming of computers by

means of natural selection. Cambridge, MA, USA: MIT Press.

Kriegel, H.-P., Kröger, P., Schubert, E., & Zimek, A. (2008). A general frame-

work for increasing the robustness of PCA-based correlation clustering

algorithms. In Proceedings of the 20th international conference on scien-

tific and statistical database management (ssdbm ’08) (Vol. 5069, pp. 418–

435). Lecture Notes in Computer Science. Germany: Springer-Verlag.

doi:10.1007/978-3-540-69497-7 27

Kwak, C., & Yih, Y. (2004, February). Data-mining approach to production

control in the computer-integrated testing cell. IEEE Transactions on

Robotics And Automation, 20(1), 107–116. doi:10.1109/TRA.2003.819595

http://dx.doi.org/10.1016/0004-3702(75)90019-3
http://dx.doi.org/10.1016/S0304-3975(82)80003-0
http://dx.doi.org/10.1016/S0304-3975(82)80003-0
http://dx.doi.org/10.1016/S0360-8352(00)00050-4
http://www.informatica.si/vol31.htm#No3
http://dx.doi.org/10.1007/s10462-007-9052-3
http://dx.doi.org/10.1007/978-3-540-69497-7_27
http://dx.doi.org/10.1109/TRA.2003.819595

REFERENCES 219

Lachenbruch, P. A., & Goldstein, M. (1979). Discriminant analysis. Biometrics,

35(1), 69–85. doi:10.2307/2529937

Lawler, E. L., & Wood, D. E. (1966, August). Branch-and-bound methods: a

survey. Operations Research, 14(4), 699–719. doi:10.1287/opre.14.4.699

Le Cessie, S., & Van Houwelinge, J. C. (1992). Ridge estimators in logistic

regression. Applied Statistics, 41(1), 191–201. doi:10.2307/2347628

Lee, C.-Y., Piramuthu, S., & Tsai, Y.-K. (1997). Job shop scheduling with a ge-

netic algorithm and machine learning. International Journal of Production

Research, 35(4), 1171–1191. doi:10.1080/002075497195605

Leyton-Brown, K., Nudelman, E., Andrew, G., McFadden, J., & Shoham,

Y. (2003). A portfolio approach to algorithm select. In Proceedings of

the 18th international joint conference on artificial intelligence (pp. 1542–

1543). IJCAI’03. Acapulco, Mexico: Morgan Kaufmann Publishers Inc.

Retrieved April 4, 2012, from http://robotics.stanford.edu/∼eugnud/

papers/portfolio-IJCAI.pdf

Li, L., Ju, S., & Zhang, Y. (2008, October). Improved ant colony optimization

for the traveling salesman problem. In 2008 international conference

on intelligent computation technology and automation (icicta) (pp. 76–80).

doi:10.1109/ICICTA.2008.265

Lindner, G., & Studer, R. (1999). AST: support for algorithm selection with a

CBR approach. In J. Zytkow & J. Rauch (Eds.), Principles of data mining

and knowledge discovery (Vol. 1704, pp. 418–423). Lecture Notes in Com-

puter Science. Germany: Springer. doi:10.1007/978-3-540-48247-5 52

Lin, S. (1965, December). Computer solutions of the traveling salesman

problem. Bell System Technical Journal, 44(10), 2245–2269. Retrieved

http://dx.doi.org/10.2307/2529937
http://dx.doi.org/10.1287/opre.14.4.699
http://dx.doi.org/10.2307/2347628
http://dx.doi.org/10.1080/002075497195605
http://robotics.stanford.edu/~eugnud/papers/portfolio-IJCAI.pdf
http://robotics.stanford.edu/~eugnud/papers/portfolio-IJCAI.pdf
http://dx.doi.org/10.1109/ICICTA.2008.265
http://dx.doi.org/10.1007/978-3-540-48247-5_52

220 REFERENCES

April 4, 2012, from http : //www.alcatel - lucent . com /bstj/ vol44 -

1965/articles/bstj44-10-2245.pdf

Lin, S., & Kernighan, B. W. (1973). An effective heuristic algorithm for the

travelling-salesman problem. Operations Research, 21, 498–516. doi:10.

1287/opre.21.2.498

Liu, H., & Motoda, H. (2001). Instance selection and construction for data mining.

Norwell, MA, USA: Kluwer Academic Publishers.

Li, X., & Olafsson, S. (2005). Discovering dispatching rules using data mining.

Journal of Scheduling, 8(6), 515–527. doi:10.1007/s10951-005-4781-0

Lobjois, L., & Lemaı̂tre, M. (1998). Branch and bound algorithm selection

by performance prediction. In Proceedings of the fifteenth national/tenth

conference on artificial intelligence/innovative applications of artificial in-

telligence (pp. 353–358). AAAI ’98/IAAI ’98. Menlo Park, CA, USA:

American Association for Artificial Intelligence. Retrieved April 4, 2012,

from http://aaaipress.org/Papers/AAAI/1998/AAAI98-050.pdf

Lobo, F. G., & Goldberg, D. E. (2004, December). The parameter-less genetic

algorithm in practice. Inf. Sci. Inf. Comput. Sci. 167(1-4), 217–232. doi:10.

1016/j.ins.2003.03.029

Lourenço, H., Martin, O., & Stützle, T. (2003). Iterated local search. In F.

Glover & G. Kochenberger (Eds.), Handbook of metaheuristics (Chap.

11, Vol. 57, pp. 320–353). International Series in Operations Research

& Management Science. New York, NY, USA: Springer New York.

doi:10.1007/0-306-48056-5 11

Mandelbrot, B. (1967, May). How long is the coast of Britain? statistical

self-similarity and fractional dimension. Science, 156(3775), 636–638.

doi:10.1126/science.156.3775.636

http://www.alcatel-lucent.com/bstj/vol44-1965/articles/bstj44-10-2245.pdf
http://www.alcatel-lucent.com/bstj/vol44-1965/articles/bstj44-10-2245.pdf
http://dx.doi.org/10.1287/opre.21.2.498
http://dx.doi.org/10.1287/opre.21.2.498
http://dx.doi.org/10.1007/s10951-005-4781-0
http://aaaipress.org/Papers/AAAI/1998/AAAI98-050.pdf
http://dx.doi.org/10.1016/j.ins.2003.03.029
http://dx.doi.org/10.1016/j.ins.2003.03.029
http://dx.doi.org/10.1007/0-306-48056-5_11
http://dx.doi.org/10.1126/science.156.3775.636

REFERENCES 221

Marinakis, Y., Migdalas, A., & Pardalos, P. M. (2005a). A hybrid genetic-

GRASP algorithm using Lagrangean relaxation for the traveling sales-

man problem. Journal of Combinatorial Optimization, 10, 311–326. doi:10.

1007/s10878-005-4921-7

Marinakis, Y., Migdalas, A., & Pardalos, P. M. (2005b, December). Expanding

neighborhood GRASP for the traveling salesman problem. Computa-

tional Optimization and Applications, 32(3), 231–257. doi:10.1007/s10589-

005-4798-5

Markovitch, S., & Rosenstein, D. (2002, October). Feature generation using

general constructor functions. Machine Learning, 49(1), 59–98. doi:10.

1023/A:1014046307775

McCallum, A., & Nigam, K. (1998). A comparison of event models for Naive

Bayes text classification. In Proceedings of aaai-98 workshop on learning

for text categorization (pp. 41–48). Madison, WI, USA: AAAI Press. Re-

trieved April 4, 2012, from http://www.aaai.org/Papers/Workshops/

1998/WS-98-05/WS98-05-007.pdf

Merrill, A. S. (1919, January). An isoperimetric problem with variable end-

points. American Journal of Mathematics, 41(1), 60–78. doi:10 . 2307 /

2370478

Miller, D. L., & Pekny, J. F. (1995). A staged primal-dual algorithm for perfect

b-matching with edge capacities. ORSA Journal on Computing, 7(3), 298–

320. doi:10.1287/ijoc.7.3.298

Milor, L., & Sangiovanni-Vincentelli, A. L. (1994, June). Minimizing produc-

tion test time to detect faults in analog circuits. Computer-Aided Design

of Integrated Circuits and Systems, IEEE Transactions on, 13(6), 796–813.

doi:10.1109/43.285252

http://dx.doi.org/10.1007/s10878-005-4921-7
http://dx.doi.org/10.1007/s10878-005-4921-7
http://dx.doi.org/10.1007/s10589-005-4798-5
http://dx.doi.org/10.1007/s10589-005-4798-5
http://dx.doi.org/10.1023/A:1014046307775
http://dx.doi.org/10.1023/A:1014046307775
http://www.aaai.org/Papers/Workshops/1998/WS-98-05/WS98-05-007.pdf
http://www.aaai.org/Papers/Workshops/1998/WS-98-05/WS98-05-007.pdf
http://dx.doi.org/10.2307/2370478
http://dx.doi.org/10.2307/2370478
http://dx.doi.org/10.1287/ijoc.7.3.298
http://dx.doi.org/10.1109/43.285252

222 REFERENCES

Mısır, M., Verbeeck, K., Causmaecker, P. D., & Vanden Berghe, G. (2012).

An intelligent hyper-heuristic framework for CHeSC 2011. In Sixth

international conference on learning and intelligent optimization (lion 6).

Lecture Notes in Computer Science. Springer.

Mladenović, N., & Hansen, P. (1997). Variable neighborhood search. Com-

puters & Operations Research, 24(11), 1097–1100. doi:10.1016/S0305-

0548(97)00031-2

Moscato, P., & Cotta, C. (2003). A gentle introduction to memetic algorithms.

In F. Glover & G. Kochenberger (Eds.), Handbook of metaheuristics (Vol.

57, pp. 105–144). International Series in Operations Research & Manage-

ment Science. New York, NY, USA: Springer New York. doi:10.1007/0-

306-48056-5 5

Mühlenbein, H., Bendisch, J., & Voigt, H.-M. (1996). From recombination

of genes to the estimation of distributions II. continuous parameters.

In PPSN IV: proceedings of the 4th international conference on parallel

problem solving from nature (pp. 188–197). London, UK: Springer-Verlag.

doi:10.1007/3-540-61723-X 983

Mühlenbein, H., & Mahnig, T. (1999, December). Fda — a scalable evolution-

ary algorithm for the optimization of additively decomposed functions.

Evolutionary Computation, 7(4), 353–376. doi:10.1162/evco.1999.7.4.353

Mühlenbein, H., & Paaß, G. (1996). From recombination of genes to the

estimation of distributions I. binary parameters. In PPSN IV: proceedings

of the 4th international conference on parallel problem solving from nature

(pp. 178–187). London, UK: Springer-Verlag. doi:10.1007/3-540-61723-

X 982

http://dx.doi.org/10.1016/S0305-0548(97)00031-2
http://dx.doi.org/10.1016/S0305-0548(97)00031-2
http://dx.doi.org/10.1007/0-306-48056-5_5
http://dx.doi.org/10.1007/0-306-48056-5_5
http://dx.doi.org/10.1007/3-540-61723-X_983
http://dx.doi.org/10.1162/evco.1999.7.4.353
http://dx.doi.org/10.1007/3-540-61723-X_982
http://dx.doi.org/10.1007/3-540-61723-X_982

REFERENCES 223

Murthy, S. K. (1998). Automatic construction of decision trees from data:

a multi-disciplinary survey. Data Mining and Knowledge Discovery, 2,

345–389. doi:10.1023/A:1009744630224

Nawaz, M., Enscore, E. E., & Ham, I. (1983). A heuristic algorithm for the

m-machine, n-job flow-shop sequencing problem. Omega, 11(1), 91–95.

doi:10.1016/0305-0483(83)90088-9

Nemhauser, G. L., & Wolsey, L. A. (1988). Integer and combinatorial optimization.

New York, NY, USA: Wiley-Interscience.

Ochoa, G., Hyde, M., Curtois, T., Vázquez-Rodrı́guez, J. A., Walker, J., Gen-

dreau, M., . . . Burke, E. K. (2012). HyFlex: a benchmark framework for

cross-domain heuristic search. LNCS, 7245, 136–147. doi:10.1007/978-

3-642-29124-1 12

Ochoa, G., Vázquez-Rodrı́guez, J. A., Petrovic, S., & Burke, E. K. (2009). Dis-

patching rules for production scheduling: a hyper-heuristic landscape

analysis. In Proceedings of the eleventh conference on congress on evolu-

tionary computation (cec’09) (pp. 1873–1880). Piscataway, NJ, USA: IEEE

Press. doi:10.1109/CEC.2009.4983169

Olafsson, S., & Li, X. (2010). Learning effective new single machine dis-

patching rules from optimal scheduling data. International Journal of

Production Economics, 128(1), 118–126. doi:10.1016/j.ijpe.2010.06.004

Palmer, D. S. (1965). Sequencing jobs through a multi-stage process in the

minimum total time – a quick method of obtaining a near optimum.

OR, 16(1), 101–107. doi:doi:10.2307/3006688

Papadimitriou, C. H. (1977). The Euclidean travelling salesman problem is

NP-complete. Theoretical Computer Science, 4(3), 237–244. doi:10.1016/

0304-3975(77)90012-3

http://dx.doi.org/10.1023/A:1009744630224
http://dx.doi.org/10.1016/0305-0483(83)90088-9
http://dx.doi.org/10.1007/978-3-642-29124-1_12
http://dx.doi.org/10.1007/978-3-642-29124-1_12
http://dx.doi.org/10.1109/CEC.2009.4983169
http://dx.doi.org/10.1016/j.ijpe.2010.06.004
http://dx.doi.org/doi:10.2307/3006688
http://dx.doi.org/10.1016/0304-3975(77)90012-3
http://dx.doi.org/10.1016/0304-3975(77)90012-3

224 REFERENCES

Papadimitriou, C. H., & Steiglitz, K. (1982). Combinatorial optimization: al-

gorithms and complexity. Upper Saddle River, NJ, USA: Prentice-Hall,

Inc.

Papadimitriou, C. H., & Vempala, S. (2006, February). On the approximability

of the traveling salesman problem. Combinatorica, 26(1), 101–120. doi:10.

1007/s00493-006-0008-z

Pelikan, M., Goldberg, D. E., & Cantú-Paz, E. (1999). BOA: the Bayesian opti-

mization algorithm. In W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon,

V. Honavar, M. Jakiela & R. E. Smith (Eds.), Proceedings of the genetic and

evolutionary computation conference (gecco-99) (Vol. 1, pp. 525–532). Or-

lando, FL, USA: Morgan Kaufmann Publishers. Retrieved April 4, 2012,

from http://archive.org/details/BoaTheBayesianOptimizationAlgorithm

Petersen, L., Minkkinen, P., & Esbensen, K. H. (2005). Representative sam-

pling for reliable data analysis: theory of sampling. Chemometrics and

Intelligent Laboratory Systems, 77(1-2), 261–277. doi:10.1016/j.chemolab.

2004.09.013

Pillay, N., & Banzhaf, W. (2007). A genetic programming approach to the gen-

eration of hyper-heuristics for the uncapacitated examination timetabling

problem. In Proceedings of the aritficial intelligence 13th portuguese con-

ference on progress in artificial intelligence (epia’07) (Vol. 4874, pp. 223–

234). Lecture Notes in Computer Science. Germany: Springer-Verlag.

doi:10.1007/978-3-540-77002-2 19

Poli, R., & Graff, M. (2009). There is a free lunch for hyper-heuristics, genetic

programming and computer scientists. In Proceedings of the 12th Euro-

pean conference on genetic programming (eurogp ’09) (Vol. 5481, pp. 195–

http://dx.doi.org/10.1007/s00493-006-0008-z
http://dx.doi.org/10.1007/s00493-006-0008-z
http://archive.org/details/BoaTheBayesianOptimizationAlgorithm
http://dx.doi.org/10.1016/j.chemolab.2004.09.013
http://dx.doi.org/10.1016/j.chemolab.2004.09.013
http://dx.doi.org/10.1007/978-3-540-77002-2_19

REFERENCES 225

207). Lecture Notes in Computer Science. Germany: Springer. doi:10.

1007/978-3-642-01181-8 17

Puchinger, J., & Raidl, G. (2005). Combining metaheuristics and exact algo-

rithms in combinatorial optimization: a survey and classification. In

J. Mira & J. Álvarez (Eds.), Artificial intelligence and knowledge engineering

applications: a bioinspired approach (Vol. 3562, pp. 113–124). Lecture Notes

in Computer Science. Germany: Springer. doi:10.1007/11499305 5

Punnen, A. P. (2004). The traveling salesman problem: applications, formula-

tions and variations. In G. Gutin & A. P. Punnen (Eds.), The traveling

salesman problem and its variations (Chap. 1, Vol. 12, pp. 1–28). Combina-

torial Optimization. Netherland: Springer. doi:10.1007/0-306-48213-4 1

Quinlan, J. R. (1993). C4.5: programs for machine learning. San Francisco, CA,

USA: Morgan Kaufmann Publishers Inc.

Raschke, R. L., Krishen, A. S., Kachroo, P., & Maheshwari, P. (2012). A com-

binatorial optimization based sample identification method for group

comparisons. Journal of Business Research. (to appear). doi:10.1016/j.

jbusres.2012.02.024

Reeves, C. R. (1995). A genetic algorithm for flowshop sequencing. Computers

& Operations Research, 22(1), 5–13. doi:10.1016/0305-0548(93)E0014-K

Reinartz, T. (2002, April). A unifying view on instance selection. Data Mining

and Knowledge Discovery, 6(2), 191–210. doi:10.1023/A:1014047731786

Reinelt, G. (1994). Candidate sets. In The traveling salesman: computational

solutions for TSP applications (Chap. 5, Vol. 840, pp. 381–412). Lecture

Notes in Computer Science. Berlin, Heidelberg: Springer-Verlag. doi:10.

1007/3-540-48661-5 5

http://dx.doi.org/10.1007/978-3-642-01181-8_17
http://dx.doi.org/10.1007/978-3-642-01181-8_17
http://dx.doi.org/10.1007/11499305_5
http://dx.doi.org/10.1007/0-306-48213-4_1
http://dx.doi.org/10.1016/j.jbusres.2012.02.024
http://dx.doi.org/10.1016/j.jbusres.2012.02.024
http://dx.doi.org/10.1016/0305-0548(93)E0014-K
http://dx.doi.org/10.1023/A:1014047731786
http://dx.doi.org/10.1007/3-540-48661-5_5
http://dx.doi.org/10.1007/3-540-48661-5_5

226 REFERENCES

Rennie, J. D., Shih, L., Teevan, J., & Karger, D. R. (2003). Tackling the poor

assumptions of Naive Bayes text classifiers. In Proceedings of the twentieth

international conference on machine learning (icml-2003) (pp. 616–623).

Washington DC, USA: AAAI Press. Retrieved April 4, 2012, from http:

//aaaipress.org/Papers/ICML/2003/ICML03-081.pdf

Reza Hejazi, S., & Saghafian, S. (2005). Flowshop-scheduling problems with

makespan criterion: a review. International Journal of Production Research,

43(14), 2895–2929. doi:10.1080/0020754050056417

Rice, J. R. (1976). The algorithm selection problem. In M. Rubinoff & M. C.

Yovits (Eds.), (Vol. 15, pp. 65–118). Advances in Computers. Elsevier.

doi:10.1016/S0065-2458(08)60520-3

Richardson, L. F. (1961). The problem of contiguity: an appendix to statis-

tic of deadly quarrels. General systems: Yearbook of the Society for the

Advancement of General Systems Theory, 6, 139–187.

Rish, I. (2001, November). An empirical study of the naive bayes classifier (tech.

rep. No. RC 22230 (W0111-014)). IBM Research Division. Yorktown

Heights, NY, USA. Retrieved April 4, 2012, from http://www.research.

ibm.com/people/r/rish/papers/RC22230.pdf

Rubinstein, R. Y. (1997). Optimization of computer simulation models with

rare events. European Journal of Operational Research, 99(1), 89–112. doi:10.

1016/S0377-2217(96)00385-2

Rubinstein, R. Y. (1999). The cross-entropy metod for combinatorial and con-

tinuous optimization. Methodology and Computing in Applied Probability,

1(2), 127–190. doi:10.1023/A:1010091220143

http://aaaipress.org/Papers/ICML/2003/ICML03-081.pdf
http://aaaipress.org/Papers/ICML/2003/ICML03-081.pdf
http://dx.doi.org/10.1080/0020754050056417
http://dx.doi.org/10.1016/S0065-2458(08)60520-3
http://www.research.ibm.com/people/r/rish/papers/RC22230.pdf
http://www.research.ibm.com/people/r/rish/papers/RC22230.pdf
http://dx.doi.org/10.1016/S0377-2217(96)00385-2
http://dx.doi.org/10.1016/S0377-2217(96)00385-2
http://dx.doi.org/10.1023/A:1010091220143

REFERENCES 227

Rudolph, G. (1994, January). Convergence analysis of canonical genetic algo-

rithms. IEEE Transactions on Neural Networks, 5(1), 96–101. doi:10.1109/

72.265964

Ruiz-Vanoye, J. A., Pérez-Ortega, J., R., R. A. P., Dı́az-Parra, O., Frausto-Solı́s,

J., Huacuja, H. J. F., . . . F., J. A. M. (2011). Survey of polynomial transfor-

mations between NP-complete problems. Journal of Computational and

Applied Mathematics, 235(16), 4851–4865. doi:10.1016/j.cam.2011.02.018

Sahni, S. (1974, December). Computationally related problems. SIAM Journal

on Computing, 3(4), 262–279. doi:10.1137/0203021

Sha, D. Y., & Liu, C.-H. (2005, June). Using data mining for due date assign-

ment in a dynamic job shop environment. The International Journal of Ad-

vanced Manufacturing Technology, 25(11), 1164–1174. doi:10.1007/s00170-

003-1937-y

Sima, Q. (2010). Records of the grand historian (2nd) (Y.-W. Wang, Ed.). The

Twenty-four Histories of Baina Edition. Taipei, Taiwan: Commercial

Press (Taiwan), Ltd. (Original work published 91B.C.).

Smith, D. E. (1929). A source book of mathematics (G. D. Walcott, Ed.). Source

Books in ths Histrory of the Sciences. New York, NY, USA: McGraw-

Hill Book Company, Inc. Retrieved April 4, 2012, from http://archive.

org/details/sourcebookinmath00smit

Smith-Miles, K. A. (2008a, December). Cross-disciplinary perspectives on

meta-learning for algorithm selection. ACM Computing Surveys, 41(1),

6:1–6:25. doi:10.1145/1456650.1456656

Smith-Miles, K. A. (2008b, June). Towards insightful algorithm selection for

optimisation using meta-learning concepts. In 2008 IEEE international

http://dx.doi.org/10.1109/72.265964
http://dx.doi.org/10.1109/72.265964
http://dx.doi.org/10.1016/j.cam.2011.02.018
http://dx.doi.org/10.1137/0203021
http://dx.doi.org/10.1007/s00170-003-1937-y
http://dx.doi.org/10.1007/s00170-003-1937-y
http://archive.org/details/sourcebookinmath00smit
http://archive.org/details/sourcebookinmath00smit
http://dx.doi.org/10.1145/1456650.1456656

228 REFERENCES

joint conference on neural networks (ijcnn 2008) (pp. 4118–4124). doi:10.

1109/IJCNN.2008.4634391

Smith, R. B. (1913). Carthage and the Carthaginians. London, UK: Longmans,

Green, and Co. Retrieved April 4, 2012, from http://www.archive.org/

details/CarthageAndTheCarthaginians

Soare, R. I. (1996, September). Computability and recursion. The Bulletin of

Symbolic Logic, 2(3), 284–321. doi:10.2307/420992

Ssu-ma, C. (1994). Sun tzu and Wu Ch’i (T.-f. Cheng, Z. Lu, W. H. Nienhauser

& R. Reynolds, Trans.). In W. H. Nienhauser (Ed.), The memoirs of pre-

han china (Chap. 5, Vol. 7, pp. 39–40). The Grand Scribe’s Records.

Bloomington, Indiana, USA: Indiana University Press. (Original work

published 91B.C.).

Stillwell, J. (2010). Mathematics and its history (3rd). Undergraduate Texts in

Mathematics. New York, NY, USA: Springer-Verlag. doi:10.1007/978-1-

4419-6053-5

Stützle, T. (1998). Local search algorithms for combinatorial problems — analysis,

improvements, and new applications. (Doctoral dissertation, Department

of Computer Science, University of Essex, Colchester, UK).

Stützle, T., & Hoos, H. H. (1997, April). MAX-MIN ant system and local

search for the traveling salesman problem. In Proceedings of the IEEE

international conference on evolutionary computation (icec’97) (pp. 309–314).

Indianapolis, IN, USA. doi:10.1109/ICEC.1997.592327

Suykens, J., & Vandewalle, J. (1999). Least squares support vector machine

classifiers. Neural Processing Letters, 9, 293–300. doi:10.1023/A:1018628609742

http://dx.doi.org/10.1109/IJCNN.2008.4634391
http://dx.doi.org/10.1109/IJCNN.2008.4634391
http://www.archive.org/details/CarthageAndTheCarthaginians
http://www.archive.org/details/CarthageAndTheCarthaginians
http://dx.doi.org/10.2307/420992
http://dx.doi.org/10.1007/978-1-4419-6053-5
http://dx.doi.org/10.1007/978-1-4419-6053-5
http://dx.doi.org/10.1109/ICEC.1997.592327
http://dx.doi.org/10.1023/A:1018628609742

REFERENCES 229

Taillard, E. (1990). Some efficient heuristic methods for the flow shop se-

quencing problem. European Journal of Operational Research, 47(1), 65–74.

doi:10.1016/0377-2217(90)90090-X

Taillard, E. (1993). Benchmarks for basic scheduling problems. European

Journal of Operational Research, 64(2), 278–285. doi:10.1016/0377-2217(93)

90182-M

Talukdar, S., Baerentzen, L., Gove, A., & De Souza, P. (1998, December).

Asynchronous teams: cooperation schemes for autonomous agents.

Journal of Heuristics, 4(4), 295–321. doi:10.1023/A:1009669824615

Tay, J. C., & Ho, N. B. (2008). Evolving dispatching rules using genetic pro-

gramming for solving multi-objective flexible job-shop problems. Com-

puters & Industrial Engineering, 54(3), 453–473. doi:10.1016/j.cie.2007.08.

008

Thompson, S. K. (2002). Sampling (2nd). Wiley Series in Probability and Statis-

tics. New York, NY, USA: Wiley-Interscience. doi:10.1002/9781118162934

Tsutsui, S., Pelikan, M., & Goldberg, D. E. (2003, August). Using edge histogram

models to solve permutation problems with probabilistic model-building ge-

netic algorithms (tech. rep. No. 2003022). Illinois Genetic Algorithms Lab,

Department of General Engineering, University of Illinois at Urbana-

Champaign. Urbana, Illinois, USA. Retrieved April 4, 2012, from http:

//illigal.org/2003/04/20/using-edge-histogram-models-to-solve-

permutation-problems-with-probabilistic-model-building-genetic-

algorithms/

Turing, A. M. (1936). On computable numbers, with an application to the

Entscheidungsproblem. In Proceedings london mathematical society (Vol.

http://dx.doi.org/10.1016/0377-2217(90)90090-X
http://dx.doi.org/10.1016/0377-2217(93)90182-M
http://dx.doi.org/10.1016/0377-2217(93)90182-M
http://dx.doi.org/10.1023/A:1009669824615
http://dx.doi.org/10.1016/j.cie.2007.08.008
http://dx.doi.org/10.1016/j.cie.2007.08.008
http://dx.doi.org/10.1002/9781118162934
http://illigal.org/2003/04/20/using-edge-histogram-models-to-solve-permutation-problems-with-probabilistic-model-building-genetic-algorithms/
http://illigal.org/2003/04/20/using-edge-histogram-models-to-solve-permutation-problems-with-probabilistic-model-building-genetic-algorithms/
http://illigal.org/2003/04/20/using-edge-histogram-models-to-solve-permutation-problems-with-probabilistic-model-building-genetic-algorithms/
http://illigal.org/2003/04/20/using-edge-histogram-models-to-solve-permutation-problems-with-probabilistic-model-building-genetic-algorithms/

230 REFERENCES

42, 4, pp. 230–265). 2. Retrieved April 4, 2012, from http://www.cs.

virginia.edu/∼robins/Turing Paper 1936.pdf

van der Bruggen, L. J. J., Lenstra, J. K., & Schuur, P. C. (1993, August). Variable-

depth search for the single-vehicle pickup and delivery problem with

time windows. Transportation Science, 27(3), 298–311. doi:10.1287/trsc.

27.3.298

Vázquez-Rodrı́guez, J. A., & Ochoa, G. (2011). On the automatic discovery of

variants of the NEH procedure for flow shop scheduling using genetic

programming. 62(2), 381–396. doi:10.1057/jors.2010.132

Vázquez-Rodrı́guez, J. A., & Petrovic, S. (2010). A new dispatching rule based

genetic algorithm for the multi-objective job shop problem. Journal of

Heuristics, 16, 771–793. doi:10.1007/s10732-009-9120-8

Vilalta, R., & Drissi, Y. (2002). A perspective view and survey of meta-learning.

Artificial Intelligence Review, 18, 77–95. doi:10.1023/A:1019956318069

Virgil. (1893). The æneid of Vergil (J. Rhoades, Trans.). London, UK: Long-

mans, Green, and Co. (Original work published 29-19B.C.). Retrieved

April 4, 2012, from http : / / scans . library. utoronto . ca / pdf / 1 / 5 /

aeneidbooks16tra00virguoft/aeneidbooks16tra00virguoft.pdf

Virgil. (1904). Virgil’s Aeneid (C. E. Bennett, Ed.). Bennett’s Latin series. Boston,

MA: Allyn and Bacon. (Original work published 29-19B.C.). Retrieved

April 4, 2012, from http://archive.org/details/aeneid00virggoog

Wikipedia. (2012a). How long is the coast of britain? statistical self-similarity

and fractional dimension — wikipedia, the free encyclopedia. (page ver-

sion ID: 482513336). Retrieved April 4, 2012, from http://en.wikipedia.

org / w / index . php ? title = How Long Is the Coast of Britain % 3F

Statistical Self-Similarity and Fractional Dimension&oldid=482513336

http://www.cs.virginia.edu/~robins/Turing_Paper_1936.pdf
http://www.cs.virginia.edu/~robins/Turing_Paper_1936.pdf
http://dx.doi.org/10.1287/trsc.27.3.298
http://dx.doi.org/10.1287/trsc.27.3.298
http://dx.doi.org/10.1057/jors.2010.132
http://dx.doi.org/10.1007/s10732-009-9120-8
http://dx.doi.org/10.1023/A:1019956318069
http://scans.library.utoronto.ca/pdf/1/5/aeneidbooks16tra00virguoft/aeneidbooks16tra00virguoft.pdf
http://scans.library.utoronto.ca/pdf/1/5/aeneidbooks16tra00virguoft/aeneidbooks16tra00virguoft.pdf
http://archive.org/details/aeneid00virggoog
http://en.wikipedia.org/w/index.php?title=How_Long_Is_the_Coast_of_Britain%3F_Statistical_Self-Similarity_and_Fractional_Dimension&oldid=482513336
http://en.wikipedia.org/w/index.php?title=How_Long_Is_the_Coast_of_Britain%3F_Statistical_Self-Similarity_and_Fractional_Dimension&oldid=482513336
http://en.wikipedia.org/w/index.php?title=How_Long_Is_the_Coast_of_Britain%3F_Statistical_Self-Similarity_and_Fractional_Dimension&oldid=482513336

REFERENCES 231

Wikipedia. (2012b). NP (complexity) — wikipedia, the free encyclopedia.

(page version ID: 484061972). Retrieved April 4, 2012, from http://

en . wikipedia . org / w / index . php ? title = NP (complexity) &oldid =

484061972

Williamson, D. P., Hall, L. A., Hoogeveen, J. A., Hurkens, C. A. J., Lenstra, J. K.,

Sevast’janov, S. V., & Shmoys, D. B. (1997, April). Short shop schedules.

Operations Research, 45(2), 288–294. doi:10.1287/opre.45.2.288

Witten, I. H., & Frank, E. (2005). Data mining: practical machine learning tools

and techniques (2nd). Morgan Kaufmann Series in Data Management

Systems. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Woeginger, G. J. (2003). Combinatorial optimization — eureka, you shrink!

In M. Jünger, G. Reinelt & G. Rinaldi (Eds.), (Chap. Exact algorithms

for NP-hard problems: a survey, Vol. 2570, pp. 185–207). Lecture Notes

in Computer Science. New York, NY, USA: Springer-Verlag New York,

Inc. doi:10.1007/3-540-36478-1 17

Wolpert, D. H., & Macready, W. G. (1997, April). No free lunch theorems for

optimization. IEEE Transactions on Evolutionary Computation, 1(1), 67–82.

doi:10.1109/4235.585893

Woodhouse, R. (1964). A treatise on isoperimetrical problems and the calculus

of variations [A history of the calculus of variations in the eighteenth

century]. Bronx, NY, USA: AMS Chelsea Publishing. (Original work

published 1810).

Xue, F., Chan, C. Y., Ip, W. H., & Cheung, C. F. (2011). A learning-based

variable assignment weighting scheme for heuristic and exact searching

in Euclidean traveling salesman problems. NETNOMICS: Economic

http://en.wikipedia.org/w/index.php?title=NP_(complexity)&oldid=484061972
http://en.wikipedia.org/w/index.php?title=NP_(complexity)&oldid=484061972
http://en.wikipedia.org/w/index.php?title=NP_(complexity)&oldid=484061972
http://dx.doi.org/10.1287/opre.45.2.288
http://dx.doi.org/10.1007/3-540-36478-1_17
http://dx.doi.org/10.1109/4235.585893

232 REFERENCES

Research and Electronic Networking, 12, 183–207. doi:10.1007/s11066-011-

9064-7

Xue, F., & Fan, W. (2007). Multi-agent optimization design for multi-resource

job shop scheduling problems. In S. Huang, L. Heutte & M. Loog (Eds.),

Advanced intelligent computing theories and applications: with aspects of arti-

ficial intelligence (Vol. 4682, pp. 1193–1204). Lecture Notes in Computer

Science. Germany: Springer-Verlag. doi:10.1007/978-3-540-74205-0 123

Xu, L., Hutter, F., Hoos, H. H., & Leyton-Brown, K. (2008, June). SATzilla:

portfolio-based algorithm selection for SAT. Journal of Artificial Intel-

ligence Research, 32(1), 565–606. Retrieved April 4, 2012, from http :

//www.aaai.org/Papers/JAIR/Vol32/JAIR-3214.pdf

Xu, L., Krzyżak, A., & Suen, C. Y. (1992, June). Methods of combining multi-

ple classifiers and their applications to handwriting recognition. IEEE

Transactions on Systems, Man and Cybernetics, 22(3), 418–435. doi:10.1109/

21.155943

Yousef, M., Nebozhyn, M., Shatkay, H., Kanterakis, S., Showe, L. C., & Showe,

M. K. (2006). Combining multi-species genomic data for microRNA

identification using a naı̈ve bayes classifier. Bioinformatics, 22(11), 1325–

1334. doi:10.1093/bioinformatics/btl094

Zaki, M. J., Parthasarathy, S., Li, W., & Ogihara, M. (1997). Evaluation of

sampling for data mining of association rules. In Proceedings of the

7th international workshop on research issues in data engineering (ride ’97)

(pp. 42–50). Washington, DC, USA: IEEE Computer Society. doi:10.

1109/RIDE.1997.583696

http://dx.doi.org/10.1007/s11066-011-9064-7
http://dx.doi.org/10.1007/s11066-011-9064-7
http://dx.doi.org/10.1007/978-3-540-74205-0_123
http://www.aaai.org/Papers/JAIR/Vol32/JAIR-3214.pdf
http://www.aaai.org/Papers/JAIR/Vol32/JAIR-3214.pdf
http://dx.doi.org/10.1109/21.155943
http://dx.doi.org/10.1109/21.155943
http://dx.doi.org/10.1093/bioinformatics/btl094
http://dx.doi.org/10.1109/RIDE.1997.583696
http://dx.doi.org/10.1109/RIDE.1997.583696

REFERENCES 233

Zhang, G. P. (2000, November). Neural networks for classification: a survey.

IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications

and Reviews, 30(4), 451–462. doi:10.1109/5326.897072

Zhang, W., & Looks, M. (2005). A novel local search algorithm for the trav-

eling salesman problem that exploits backbones. In Proceedings of the

19th international joint conference on artificial intelligence (pp. 343–348).

IJCAI’05. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Retrieved April 4, 2012, from http://www.cs.wustl.edu/∼zhang/

publications/bgtsp.pdf

Zobolas, G. I., Tarantilis, C. D., & Ioannou, G. (2009). Minimizing makespan

in permutation flow shop scheduling problems using a hybrid meta-

heuristic algorithm. Computers & Operations Research, 36(4), 1249–1267.

doi:10.1016/j.cor.2008.01.007

http://dx.doi.org/10.1109/5326.897072
http://www.cs.wustl.edu/~zhang/publications/bgtsp.pdf
http://www.cs.wustl.edu/~zhang/publications/bgtsp.pdf
http://dx.doi.org/10.1016/j.cor.2008.01.007

	Dedication
	Abstract
	Publications
	Acknowledgements
	List of Tables
	List of Figures
	List of Symbols
	List of Acronyms
	Introduction to the SPOT Algorithm
	Optimizations from Ancient to Modern Times
	Combinatorial Optimization
	Research Motives and Background
	Objectives and Achievements of Thesis
	Objectives
	Achievements and contributions

	Outline of Thesis

	Literature Review
	Meta-Heuristics
	Well-known algorithms
	Sampling in meta-heuristics

	Hyper-Heuristics
	Heuristic selection approaches
	Heuristic generation approaches

	Supervised Learning
	Well-known classification techniques
	Sampling and attribute selection for supervised learning
	Meta-learning

	The SPOT Hyper-Heuristic
	An Overview of the SPOT Approach
	Formal Definitions
	Combinatorial optimization problem
	Hyper-heuristics
	The U/EA and the U/EA2 standards
	The SPOT hyper-heuristic
	Heuristic selection and heuristic generation

	Methodology of Developing a SPOT Hyper-Heuristic
	The design phase
	The run phase

	Discussion

	Java Implementation of the SPOT Hyper-Heuristic
	Supporting Libraries
	HyFlex
	Weka

	The Class Design
	Implementation in Java
	The class SPOT_ML
	The class SPOT

	Discussion

	Application I: The Traveling Salesman Problem Domain
	An Introduction to the TSP Domain
	Implementation of the TSP Domain in HyFlex
	Development of the SPOT for TSPs
	P1: Transformations and sampling
	P2: Parameter determination
	P3: The generation of new LLHs

	Experiments and Observations
	On the individual LLHs
	Comparisons with other hyper-heuristics

	Discussion

	Application II: The Permutation Flow-Shop Scheduling Problem Domain
	An Introduction to the FSP Domain
	Implementation of the FSP Domain in HyFlex
	The Development of a SPOT for the FSP
	P1: Transformations and sampling
	P2: Parameter determination
	P3: The generation of new LLHs

	Experiments and Observations
	On the individual LLHs
	Comparisons with other hyper-heuristics

	Discussion

	Discussion and Conclusions
	Discussion on the SPOT Methodology and Findings
	Principal findings
	Interpretation and implications of findings
	Interpretation in the context of the literature
	Limitations

	Conclusions

	Appendix A Suboptima of Training Instances
	Appendix B Examples of Data and Results of Learning
	Appendix C Original Data of Figures
	References

