基于领域特定语义度量的价值管理研讨会的 自动引导技术

Automated Facilitation Techniques in Value Management Workshops based on Domain-Specific Semantic Metrics

Fan XUE 薛帆

24th Apr 2015, 南京

领域特定语义度量 价值管理研讨会 自动引导技术

Background & Opportunity

Domain-Specific Metrics for Text

Auto-Facilitation Techniques

Demo & Cases

......

Discussion & Future Works

Section 1 BACKGROUND & OPPORTUNITY

1.1 Introduction: Value Management

✤ Value Management (VM, or VE)

"to maximize the performance of an organization from the board room to the shop floor." (Lester, 2014)

ĭ Small VM problems encountered everyday, IMO

× Quality v.s. price: A Toyota or a BMW? (e.g., P/P Ratio, R-C)

× Eggs in baskets: Failsafe, hedge, MPF, etc.

✤ VM workshop

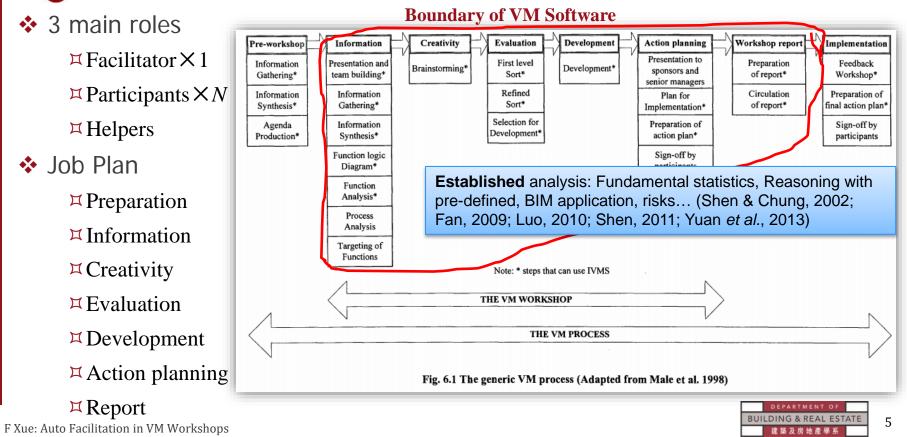
¤ For early stage of big/mega project

× Usually aims at: 1) Increase function; 2) reduce cost

 \times 1.6 \times benefits,

 \times 2.0 \times projects on-time,

 \times 1.9 \times projects on-budget F Xue: Auto Facilitation in VM Workshops


(From www.photobucket.com)

(From www.valuebaseddesign.com)

1.2 VM Workshop: Roles, Job Plan & Software

1.3 VM Software: DSS or MIS

- Decision Support System (DSS)
 - □ Definition by characteristics (Sprague, 1980)
 - \times For: easy use by upper level, non-computer managers
 - \times From: less well structured problem
 - \times By: data analytic techniques
 - \times With: flexibility / adaptability to tolerant environment
 - ≍ Examples: Airfare pricing, customers behavior analysis (e.g. US TV series *House of Cards*)
- DSS v.s. Management Information System (MIS)

 - \blacksquare The latter focuses on efficient storage/ management

(From www. myihub.com)

Problems

In Creativity: Not enough / comprehensive / in-depth ideas
In following phases: Too many ineffective ideas to handle

Objectives

 \blacksquare Increase the quantity and quality of ideas

Subject to

Responsibilities of attendants

- 1. Quantification 2 Auto-facilitation
- 2. Auto-facilitation

(From www. katerawlings.com)

Section 2 DOMAIN-SPECIFIC METRICS FOR TEXT

- Semantics
 - ^I From ancient Greek: "σημαντικός", sign
 - ^ILinguistic semantics: human expression

- ✤ WordNet®
 - □ Princeton Univ.: 1985 current □ Version 3.1: 155k words in 118k synsets **¤中文版:东大计算机 / 台湾国立**

Hamburger

κός", <i>significant</i> xpression through language.	 Hamburger (an inhabitant of Hamburg) direct hypernym: German (a person of German nationality) sister term German (a person of German nationality) East German (a native/inhabitant of the f Bavarian (a native/inhabitant of Bavaria)
nt	 derivationally related form Hamburg (a port city in northern Germany c River that was founded by Chalemagne in
8k <i>synsets</i>	
玉 立 entity	0.395
inanimate-ol	bject 0.167
natural-obje	ct 0.0163
A fragment of knowledge structure of WordNet geological-fo	rmation 0.00176
0.000113 natural-elevation	shore 0.0000836
0.0000189 hill	coast 0.0000216 UILDING & REAL ESTATE 9

2.2 Semantic Metrics (Domain-Free)

Similarity

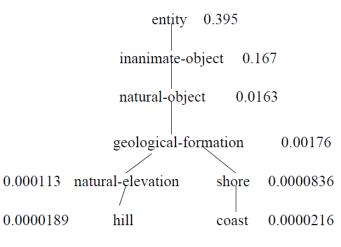
More closely connected → more similar

Metrics

Path: Inverse of (path length + 1)
× sim(hill, coast) = 1/(1+4) = 0.20

Kesnik (1995):

× sim = ½ × Information of common
× sim(hill, coast) = -ln(0.00176)=6.34**


¤Lin (1998): √ √ √

 \times sim = Info of common / Info of description

```
\times sim(hill, coast) =
```

 $2 \times \ln(0.00176) / (\ln(0.000189) + \ln(0.0000216)) = 0.59$

× Best correlated (p=0.834) to linguistic experts F Xue: Auto Facilitation in VM Workshops

2.3 Metrics with Domain Data

Wikipedia

¤ Open, high-quality encyclopedia

¤4,853,000+ articles (English)

- Fan et al (2014) Has adopted Wikipedia to reweight domain words from common English to improve text search
- In this research

 $\Xi P'(w) = P(w) \times \frac{P(w|\text{theme in Wiki})}{P(w|\text{Wiki})} \times \frac{N_{\text{Wiki}}}{N_{\text{theme in Wiki}}}$

WIKIPEDIA The Free Encyclopedia

Section 3 OUR PART, PROGRESS & FUTURE WORKS

Main users

≍ Gammon Construction Ltd.
≍ Also: HA, WHS, 3PL
❖ Hardware/service support

¤HKU

- Data support (partial)
 ¤HA, Gammon, WHS
- Main functions
 - Real-time supervision
 - ¤ Data-capturing
 - ¤ Real-time (events) feedback

Baseline 1 (RFID Plan A)

Baseline 2 (RFID Plan B)

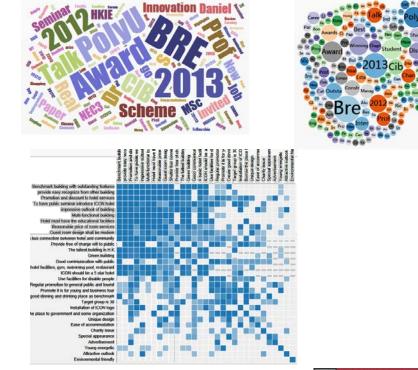
^I Add new data gathering and instructions to on-site labors/operators

 \times Receiving: where to store; Erection: show target position;...

 $rac{}$ Try to automate some processes

Estimated KPIs:

- □ Paper work: -20- -50%;


Space utilization: +10-30%; On-site WIP inventory: -5-10%

Done:

- ¤ User requirements
- Module/Function design
- \bowtie UI design (<u>Demo 2</u>)
- \square Function implementation (1/3)
- ¤ Function test (1/3)
- In Progress
- Next 4 months
 - Release Alpha test version
- **Construction pilot practice (Apr.)** F Xue: Auto Facilitation in VM Workshops

Yet Another Section **SHARING OF TWO NEW PAPERS**

- Fan, S. (2009). The effect of using group decision support systems on the processes and outcomes of value management studies. PhD Thesis, HKPU
- Fan, H., Xue, F., and Li, H. (2014). "Project-Based As-Needed Information Retrieval from Unstructured AEC Documents." Journal of Management in Engineering 31.1
- Leacock, C., & Chodorow, M. (1998). Combining local context and WordNet similarity for word sense identification. WordNet: An electronic lexical database,49(2), 265-283.
- Lester, A. (2014) Value Management, In Project Management, Planning and Control (Sixth Edition), Chap. 35, pp. 341-343, doi:10.1016/B978-0-08-098324-0.00035-4.
- Luhn, H. P. (1958). A business intelligence system. IBM Journal of Research and Development, 2(4), 314-319. doi: 10.1147/rd.24.0314
- Luo, X. (2010). A knowledge-based electronic meeting system for implementing value management in construction briefing. PhD Thesis, HKPU
- Resnik, P. (1995). Using information content to evaluate semantic similarity in a taxonomy. In Proceedings of the 14th International Joint Conference on Artificial Intelligence, 448–453.
- Shen, Q., & Chung, J. K. (2002). A group decision support system for value management studies in the construction industry. International Journal of Project Management, 20(3), 247-252. doi: 10.1016/S0263-7863(01)00076-X
- Shen, W. (2011). A BIM-based Pre-occupancy Evaluation Platform (PEP) for facilitating designer-client communication in the early design stage. PhD Thesis, HKPU
- Sprague, R. H. (1980). A framework for the development of decision support systems. MIS quarterly, 4(4), 1-26.
- Wu, Z., & Palmer, M. (1994, June). Verbs semantics and lexical selection. In Proceedings of the 32nd annual meeting on Association for Computational Linguistics? (pp. 133-138). Association for Computational Linguistics.
- Yuan, Z., Shen, G., Chung, K., & Ramly, Z. (2013) A Study of Virtual Value Management Workshop: Identifying Risks of Its Implementation. ICCREM 2013: pp. 712-724. doi: 10.1061/9780784413135.067

Thank You !

DEPARTMENT OF BUILDING & REAL ESTATE 建築及房地產學系