A Derivative-free Optimization Approach for Automated As-built 3D Modelling

F Xue
RAP
Dept of REC, HKU

18 August 2017
Outline

1. Background & Opportunity

2. As-built Modeling via Optimization

3. Discussion & Future Research
Section 1

BACKGROUND & OPPORTUNITY
1.1 As-built 3D modeling of civil infrastructures

As-built models [1]

- Increasingly important for AEC/FM†
 - Construction management
 - Facility management
 - Built env. conservation
 - Business with VR/AR, etc.
- See as-planned, as-designed, as-demolished BIM[2]

Popular technologies (surface modeling)

- Photogrammetry (videogrammetry)
- Point cloud
- 3D Geographic information system
- Others (statistical rules, deep learning[3], etc.)

†: Architecture, Engineering and Construction/ Facilities Management
1.1 Final goal: Semantically rich as-built BIM

- **BIM** (building information model, narrow sense)\(^2\)
 - The digital representation of physical and functional characteristics of a facility
 - A shared knowledge resource for information about a facility serving as a reliable basis for decisions making

- **Two types of semantic information in BIM**\(^2, 4-5\)
 - **Attributes** of an individual construction component
 - geometric (\textit{e.g.}, size, position, shape, & textures)
 - non-geometric (\textit{e.g.}, type, material, & functions)
 - **Relationships** between components
 - \textit{E.g.}, dependency, topology, and joints

A word cloud of BIM (Source: advenser.com)

An evolution view of CAD model/BIM \(^6\)
1.1 Final goal: Semantically rich as-built BIM

- **Semantically rich as-built BIM**
 - In addition to the surface of the building envelope
 - Advancing the knowledge frontiers of
 - Smart city applications
 - Healthy aging scenarios
 - Robotics and computer vision
 - Artificial intelligence, *etc.*
 - Downward compatibility
 - Methods and technologies *should* also work with as-built 3D building models
 - Relating standards
 - LOD (CityGML level of details\([7]\)), IFC\([8]\), *etc.*
Two categories of methods (for both)

- Data-driven: On (pre-processed) point clouds or images
 - Poisson mesh surface, RANSAC planes/spheres, edge detection, image segmentation, etc.
- Model-driven: Recognizing & fitting the known (BIM) components against the data
 - Evolutionary fitting of components, context-based region growing, VR of pipes/ribbons...
1.2 The limitations

- Limitations of existing methods
 - Data-driven
 - Unsatisfactory semantic/abstraction discovery
 - Huge model size
 - Automation level of modeling
 - Tedious and error-prone manual work
 - High requirement on measurement data
 - Expensive equipment
 - Model-driven
 - Ad-hoc project setting/ context
 - Poor reusability

- Thinking out of the box
 - Exposing the modeling process to general decision science/OR study
1.3 Derivative-free Optimization in OR

- Optimization (a.k.a. Mathematical programming)
 - the selection of a *best* element (with regard to some criteria) from *some* set of available alternatives.

- Nonlinear optimization
 - When *objective function* or some *constraints* are nonlinear

- Derivative-free Optimization (DFO) [9]
 - *Objective function* or *constraints* are unknown
 - E.g., model selection, parameter tuning in simulations
 - Especially when function is *very expensive* or *unanalyzable*
 - Challenging (*NP*-hard), but achieved significant success
 - In applied science and engineering such as *molecular biology* and *material sciences*

\[
\max f : \mathbb{R}^n \rightarrow \mathbb{R}
\]

An example of optimization

†: Operations Research
F Xue: Auto as-built 3D modeling, HK PolyU, 17 Aug 2017
1.3 Derivative-free Optimization methods

A long list of off-the-peg algorithms for solving optimization problems as a black-box:

- Surrogate methods
 - CMA-ES (Covariance matrix adaptation with evolution strategy) \[^{11}\] and its variants are competitive

- Trust-region methods

- Metaheuristics (GA, PSO, VNS, etc.)

- Hyper-heuristics, data mining

- … and Monte Carlo

Comparison of algorithms for BBOB-2009 (Black-Box Optimization Benchmarking, higher is better) \[^{10}\]
1.4 An opportunity

The questions

- *Can the model generation be generally solved by DFO methods?*
 - *If true, can semantic data be discovered at the same time?*

If all true, we can

- Map between a typical problem in AEC/FM and a class of powerful algorithms in OR
 - Also expose as-built model generation to many other nonlinear methodologies
- Discover semantic (abstraction) information
Section 2

AS-BUILT MODELING AS OPTIMIZATION
2.1 A meta-model of as-built 3D modeling

Given a reference measurement, a set of parametric components.

A meta-model of constrained optimization is from such a formulation:

\[
\begin{align*}
\text{max } f(X) \\
\text{s. t. } C(X) \leq 0
\end{align*}
\]

- The **variables** \((X)\) are the parameters of the components;
- The **objective function** \((f)\) is to maximize the similarity (or minimize dissimilarity) between the 3D model (as combinations of the parametric components) and the measurement; and
- The **constraints** \((C)\) over the variables are the topological relationships between components.

Meta-: Abstraction

- from Greek prefix \(μετά\)-, “beyond”
2.1 The framework: A bird’s-eye view

The full framework (using photo measurement as an example)

- Input 1: Reference measurements (photos)
- Input 2: Semantic and parametric components
- Process: Systematically finding the fittest model by solving meta-model with DFO methods
- Output: A semantic as-built model
2.1 Formulation of the meta-model

- **The variables**
 - \(X_i = <cl, l, s, r_z> \) for each \(i \)-th component instance
 - \(cl \): class, \(l \): location, \(s \): scaling, \(r_z \): rotation-z

- **The objective function** \(^{[12]}\) (similarity between \(A \) & \(\hat{A} \))
 - \(SSIM = \text{structure} \cdot \text{luminance} \cdot \text{contrast} = \frac{(2\mu_{\hat{A}}\mu_A+c_1)(2\sigma_{\hat{A}A}+c_2)}{(\mu_{\hat{A}}^2+\mu_A^2+c_1)(\sigma_{\hat{A}}^2+\sigma_{A}^2+c_2)} \)

- **Similarity** = 1 - MSE = 1 - \(\frac{1}{n} \sum_{i=1}^{n} (\hat{A}_i - A_i)^2 \)

- **The constraints**
 - \(C(X) = \{C_{l}(X_i)\} \cup \{C_{R}(X_i, X_j), i \neq j\} \),
 - \(C_{l} \): about individual component \(X_i \)
 - \(C_{R} \): the topological relationships between any \((i\text{-th}, j\text{-th})\) components
2.1 Details of the topological relationships

- Topological relationships
 - Categories
 - Adjacency: ON_TOP_OF, BELOW, NEXT_TO, ...
 - Separation: SEPERATED
 - Containment: CONTAINS_ON, CONTAINS_IN
 - Intersection: INTERSECTS_WITH
 - Connectivity: CONNECTS_TO

- Semantic definition
 - Adding properties like scaling and topological relationships to their SketchUp dictionaries
 - E.g., ON_TOP_OF, BELOW, CONTAINS_ON, etc.
2.2 A pilot: A demolished building at campus

The pilot case

- A demolished baroque-style two-storey building
 - Once occupied by School of Tropical Medicine and School of Pathology, HKU

Input: A photo

Preparing parametric components

- Only apparent (>1m) components
 - 1 door portico, 1 tree (unknown type), 2 storeys of walls (...)
 - 5 identical windows on 1/F, 4 on G/F (all unknown types)

- 7 components were collected from 3D Warehouse of SketchUp
 - With a keyword filter “baroque”
 - With limited (3) pairs of conflicting components
 - Adjustment: Removing extra parts, alignment
2.2 The problem

Meta-model of as a constrained optimization problem

- Minimize the dissimilarity
 - Between the projected image of model and the input photo
 - Similarity metric is the SSIM
- With respect to topological constraints
- Computational functions implemented on SketchUp (2016 Pro) Ruby API
 - Objective function interface
 - Variables as parameters (per component)
 - Manifolds (0, 1) + scaling (xyz) + location (xyz) + rotation (αβγ) = 4 ~ 6 variables
 - Constraints of topological relationships
- An invisible Ground object is placed at first

\[
\min f = \text{SSIM} \\
\text{s.t.} \quad \text{Semantic constraints of position, scaling, and ABOVE/ BELOW/ CONTAINS_ON for each component}
\]
2.2 A computational experiment

- **Automated generation**
 - 200 trials per target component
 - Two phases:
 - Incremental (11,000 trials)
 - Refinement (3,500 trials)
 - Time: 5,012.6s

- **Observation**
 - Fully automatic
 - Fault-tolerant (see the windows)
 - Semantic/grammar-enhanced

The automated optimization process of the proposed method with annotated SketchUp models in the test with 500 trials for fitting each component (The incremental generation phase: 1~11,000; The fine-tuning phase: 11,001~14,500)
2.2 Results and post-processing

- **Obtained**
 - The facade in the photo
 - Semantic links

- **Post-processing**
 - Manual completion
 - Copy & paste
 - Georeferencing and display in 3D

(a) Direct result: The façade in the photo
(b) The semantic links illustrated in Stanford Protégé (Circle denotes a component class and a diamond stands for an instance/object)
(c) Manually completed approximate model (~15 minutes)
(d) Georeferencing and illustration on Google Earth, near MTR Exit A (~5 minutes)
2.2 The number of trials is critical

- When increasing the number of trials per component 10 to 1,000
 - both the similarity and overall time cost were *monotonically* increasing
 - Similarity
 - From 0.16 to over 0.24
 - Correct components
 - From 4~5/13 to 12/13
 - Time cost: From 100+s to 10,000+s
 - Over 97% was consumed by BIM environment

The trends of similarity, overall time cost, and correctly generated components when changing the trails of CMA-ES for fitting each component
3.3 COBIMG & live demonstration

- A library COBIMG (constrained optimization-based BIM generator) is under development
 - A shared computational library with specific plugins for
 - SketchUp, Revit (soon), etc.
 - Multiple meta-models with various
 - Objective functions
 - Measurement types, and
 - Solving algorithms
 - Multiple modeling options
 - Ontology-guided, free discovery, finetuning, etc.
 - Extended the earlier pilot study
- Demo (Known sum of types for a quick demo)
Section 3
DISCUSSION & FUTURE RESEARCH
3.1 Discussion

Meta-modeling of as-built 3D modeling as constrained optimization
- Pros: General, simple, no explicit object recognition/segmentation (also challenging)
- Cons: A larger search space (slower), slow full projection, limited by pixels, less accurate

Semantic definitions of components
- Pros: Realized ‘grammar’ of components, simplified optimization
- Cons: Some manual work needed, subject to redefinition from a project to another

The framework as a whole
- Pros: High automation, linearly incremental time, reusing components and abstractions, less requirements on equipment, tolerant to errors, (hopefully) semantically rich
- Cons: Less accurate in geometry, still in its infancy
- Answers to the question: 1) True; 2) Applicable to some relations
 - Semantic recognition/segmentation is another pillar for semantic BIM
3.2 Future research

💎 Effectiveness
- More domains (e.g. infrastructures, etc.)
- Advanced DFO methods
- More objective functions
- On real BIM/CIM models instead of surface models

💎 Efficiency
- Efficient ways of manipulating point clouds (working…)
 - E.g., kd-tree, approximate kNN, convex hull, planar and object detection

💎 Extensions
- Shared component libraries for reusability (e.g., IFC-compatible)
- Handling other challenging AEC/FM problems
References

Thank You!