

Personalized Walkability Assessment for Pedestrian Paths

An As-built BIM Approach Using Ubiquitous Augmented Reality (AR) Smartphone and Deep Transfer Learning

> CRIOCM'18, Guiyang, China 22 May 2018

> > Anna Zetkulic

on behalf of Xue, F. Chiaradia, A.J.F. Webster, C.J. Liu, D. Xu, J. & Lu, W.S.

Introduction

An As-built BIM Approach

A Pilot Study

Discussion & Future Work

Section 1 INTRODUCTION

1.1 Smart city, personalized walkability

Smart city development

il ab

- Settled by the government of many modern cities
- Over 200 cities in China
- Smart living/ transportation
 - Aims at making life more efficient, more controllable, economical, productive, integrated and sustainable ^[1]
 - A pillar of smart city
- Personalized walkability
 - Meeting individual walking requirements of residents
 - Essential for smart living in smart cities
 - Demanding automatic (real-time, cheap) assessment
- To handle the possible changes in paths F Xue et al.: Personalized walkability assessment, 24-27 Aug 2018, CRIOCM

The rising of smart cities around the world *Photo source: siemens.com*

Personalized walkability for smart living *Photo source: pixarba.com*

1.2 Existing methods for Personalized Walkability Assessment (PWA)

₫a

iLab

Existing assessment methods suffers from (at least one)

Level of details

Automation of assessment

Personalized requirements

♦ So, we propose an as-built BIM approach for addressing the difficulties

Method	Input	Process by	Level of detail	Automation	Personalized	Example
Observational Audits	Walking Characteristics	Human experts	****☆	*	X	[2]
	StreetView (e.g., Google)	Human experts	****	**	X	[3]
GIS-based	GPS records	Computers	**	****	**	[4]
As-built BIM	3D point clouds	Smartphone & computer	★★★☆	★★★★☆	****	_

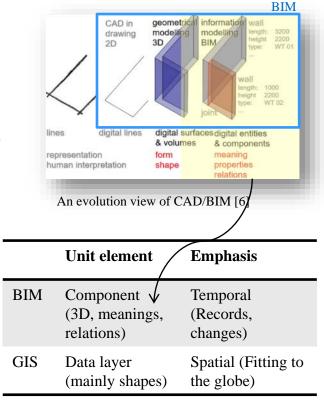
iLab

1.3 As-built BIM

BIM (building information model/modeling)
 A <u>digital representation</u> of physical & functional <u>characteristics</u> of a <u>facility</u>. ^[5]

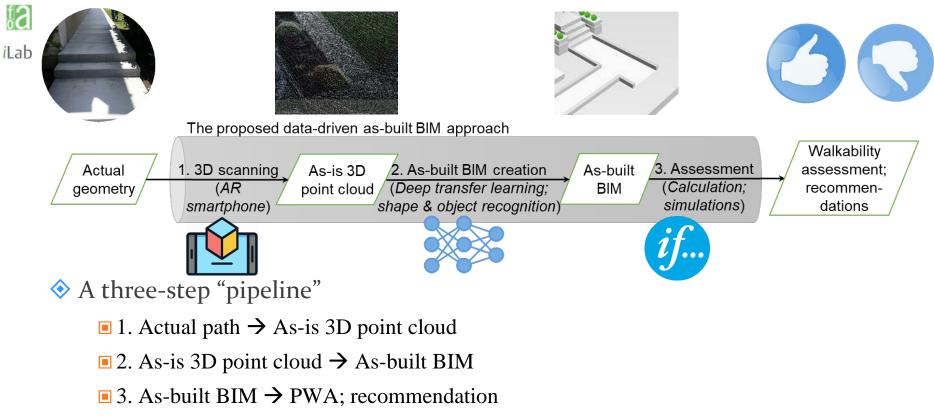
A shared ... resource for information about a facility, forming a reliable basis <u>for decisions</u> during its life cycle from inception onward. ^[5]

Evolved from CAD (computer-aided design) ^[6]


♦ Why BIM, not GIS?

Semantically richer than GIS for PWA

♦ As-built (or as-is) BIM


■ As-designed \rightarrow as-planned \rightarrow *as-built* \rightarrow as-demolished

Actual, current (real-time) conditions for PWA

Section 2 AN AS-BUILT BIM APPROACH

2.1 The conceptual framework

2.2 Technical details under the hood of Step 2

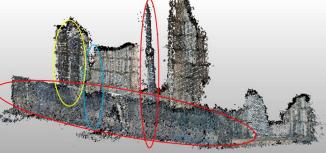
- ♦ Step 2: As-is 3D point cloud → As-built BIM
 - 2.1 Deep transfer learning ^[7-8]
 - $_{\circ}~$ As-is 3D point cloud \rightarrow Semantically segmented points
 - *Method*: Pre-trained deep learning models (PointNet)
 - 2.2 Object modeling

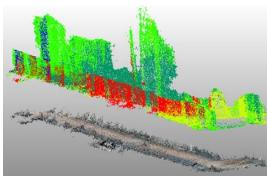
iLab

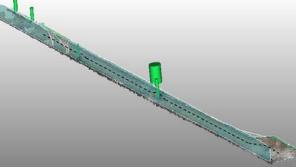
- \circ Segmented points \rightarrow 3D objects with meanings (semantic)
- Data-driven shape fitting
- Method: Improved RANSAC ^[9]
- 2.3 As-built BIM creation
 - $_{\circ}$ 3D objects \rightarrow complete BIM with topology and relations
 - \circ Model-driven
 - \circ *Method*: Global optimization with constraints ^[10]

Section 3 A PILOT STUDY

AROUND HKU

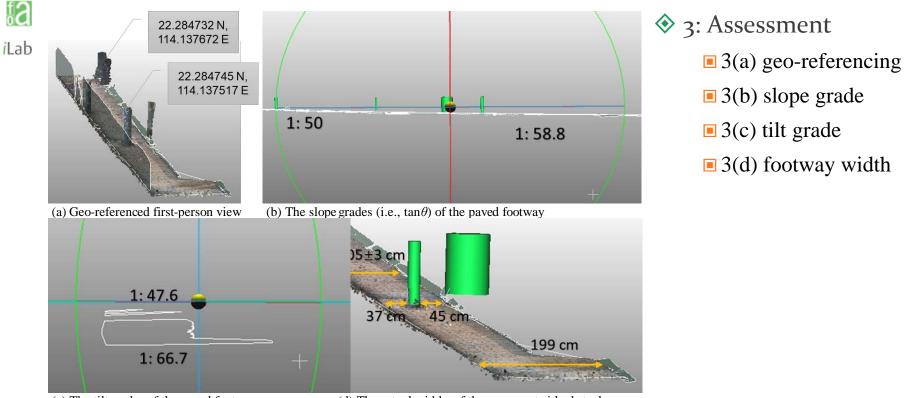

3.1 A street scene near HKU


iLab



(a) A scene of Bonham Road, Hong Kong

(b) As-is cloud of 569,344 points through AR scanning


(a) 3D point classification (*e.g.*, the points labeled as (b) As-built BIM consisting of semantic objects (walls "manmade terrain" were detached as the pavement) omitted in this view)

A narrow path
1(a)
Guardrail

Obstacles

1: Phone scanning
1(b) point cloud
2: As-built BIM
2(a) segment
2(b) modeling
2(b) BIM

3.2 Analysis for PWA

(c) The tilt grades of the paved footway

(d) The actual widths of the pavement with obstacles

Examples of five types of pedestrians

Walking	Calculated		Тур	e of pedestrian	S	
characteristic	value	Wheelchair &	Stroller 🕁	Luggage 🛍	Senior 😔	Exercise 🛪
No. of steps	0	OK	OK	OK	OK	OK
Slope grade [*]	1:50.0~58.8	OK	OK	OK	OK	OK
Tilt grade [†]	1:47.6~66.7	OK	OK	OK	OK	OK
Footway width [‡]	45~199 cm	Failed	Limited	Limited	OK	OK
Clearance	Good	OK	OK	OK	OK	OK
Overall walkability (the worst)		Failed	Limited	Limited	OK	OK

*: Reference maximum slope grade: 1:8~12 (wheelchairs);

†: Reference maximum tilt grade of pavement: 1:15 (wheelchairs);

: Reference minimum width: 70~90 cm (wheelchairs), 40~70 cm (strollers), and 30~60 cm (baggage).

Recommendation on possible obstacle removal

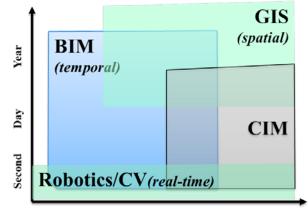
Major obstacles	Minor obstacles	Inoffensive obstacles
Light pole	(None)	Meter pole, drainage pipe #1, #2, and concrete trace on the wall

F Xue et al.: Personalized walkability assessment, 24-27 Aug 2018, CRIOCM

₫a

iLab

Section 4 DISCUSSION & FUTURE WORK


4.1 Discussion

₫a

iLab

♦ The proposed as-built BIM approach was confirmed

- Can be automatic
 - Real-time
 - Inexpensive
- Rich details
- Personalized
- Could be useful for other applications, too (see right)
- ♦ Yet still preliminary in
 - Test data set
 - Deep learning model
 - 3D object fine-tuning for better BIM
 - Completion and automation in PWA analysis

Comp. Room Building Area/city The spatial-temporal matrix of the interests of BIM, GIS, CIM. CV

4.2 On-going and future work

♦ Semantic prioritization

iLab

Identifying available urban semantics Confirming most demanded semantics Data-driven 3D object modeling • Geometric regularity, e.g., symmetry Interactive machine learning ♦ Model-driven as-built BIM creation • New semantic registration methods More adaptive objects Everyday smartphone APP **•** To make an impact

- [1] European Commission (2014). Smart living. https://ec.europa.eu/docsroom/documents/13407/attachments/2/translations/en/renditions/native
- [2] Sun, G., Webster, C., and Chiaradia, A. (2017). Objective assessment of station approach routes: Development and reliability of an audit for walking environments around metro stations in China. Journal of Transport & Health, 4: 191-207.
- [1] [3] Griew, P., Hillsdon, M., Foster, C., Coombes, E., Jones, A., and Wilkinson, P. (2013). Developing and testing a street audit tool using Google Street View to measure environmental supportiveness for physical activity. International Journal of Behavioral Nutrition and Physical Activity, 10(1): 103
 - [4] Carlson, J. A., Saelens, B. E., Kerr, J., Schipperijn, J., Conway, T. L., Frank, L. D., Chapman, J. E., Glanz, K., Cain, K. L., and Sallis, J. F. (2015). Association between neighborhood walkability and GPS-measured walking, bicycling and vehicle time in adolescents. Health & Place, 32: 1-7.
 - 5] National Institute of Building Sciences. (2015). National Building Information Modeling Standard. Version 3, Retrieved from https://www.nationalbimstandard.org/
 - [6] Penttilä, H. (2007). Early architectural design and BIM. Computer-Aided Architectural Design Futures (CAADFutures 2007), 291-302.
 - [7] Qi, C. R., Su, H., Mo, K., and Guibas, L. J. (2017). Pointnet: Deep learning on point sets for 3D classification and segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition: 652-660. doi:10.1109/CVPR.2017.16
 - [8] Hackel, T., Savinov, N., Ladicky, L., Wegner, J. D., Schindler, K., and Pollefeys, M. (2017). Semantic3D.Net: A new large-scale point cloud classification benchmark. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2017(IV-1-W1): 91-98.
 - [9] Chen, K., Lu, W., Xue, F., Tang, P., and Li, L. H. (2018). Automatic building information model reconstruction in high-density urban areas: Augmenting multi-source data with architectural knowledge. Automation in Construction, 93: 22-34.
 - [10] Xue, F., Lu, W., and Chen, K. (2018). Automatic generation of semantically rich as-built building information models using 2D images: A derivative-free optimization approach. Computer-Aided Civil and Infrastructure Engineering, in press, doi:10.1111/mice.12378.
 - Chen, K., Lu, W., Xue, F., Tang, P., & Li, L. H. (2018a). Automatic building information model reconstruction in high-density urban areas: Augmenting multi-source data with architectural knowledge. Automation in Construction, 93, 22-34.
 - Chen, K., Lu, W. S., Xue, F, Zheng, L. Z., & Liu, D. D. (2018b). Smart Gateway for Bridging BIM and Building. In Proceedings of the 21st International Symposium on Advancement of Construction Management and Real Estate (pp. 1307-1316). Springer, Singapore.
 - Harty, C., Goodier, C. I., Soetanto, R., Austin, S., Dainty, A. R., & Price, A. D. (2007). The futures of construction: a critical review of construction future studies. Construction Management and Economics, 25(5), 477-493.
 - Gröger, G., Kolbe, T., & Czerwinski, A. (2007). Candidate OpenGIS CityGML Implementation Specification (City Geography Markup Language). Open Geospatial Consortium Inc, OGC.
 - National Geographic Society. (2012). GIS (geographic information system). http://www.nationalgeographic.org/encyclopedia/geographic-information-system-gis/
 - Niu, Y., Lu, W., Xue, F., Liu D., Chen, K., Fang, D., & Anumba, C. (2018). Towards the "Third Wave": An SCO-enabled occupational health and safety management system for construction, Safety Science, Under review
- F Xue et a Rowfey, J. (2009). The wisdom hierarchy. Teplesentations of the DIKW hierarchy. Journal of information science, 33(2), 163-180.
 - _____

THE UNIVERSITY OF HONG KONG 香港大學 **faculty of architecture** 建築學院

Thank You ! 谢谢!