

THE UNIVERSITY OF HONG KONG 香港大學 faculty of architecture 建築學院

Workshops at Zhejiang University of Finance & Economics

Demystifying BIM & Innovation

Frank Xue and Tan Tan

Department of Real Estate and Construction, University of Hong Kong

18 October 2018

What BIM is, really

BIM innovations at iLab, HKU

Barriers to systematic BIM adoption

12

iLab

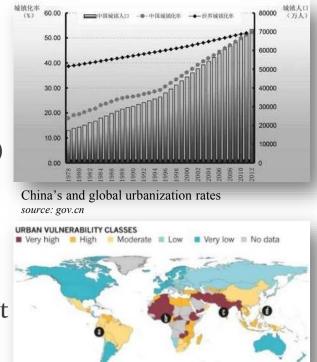
Aim and scope

- ♦ Aim of this presentation
 - To revisit the concepts about BIM 审
 - To discuss BIM innovations
 - To identify practical barriers
 To share several recent studies
 To demystify & promote BIM
- Scope
 - Extension: BIM and stakeholders
 - Intention: Semantics and collaboration

审视基础概念 探讨创新 识别现实阻力 分享若干新进展 推广BIM

目的

花畴 外延:BIM及利益相关者 内涵:语义及协作


Section 1 WHAT BIM IS, REALLY

4

1.1 Background

- ♦ Global urbanization 全球城镇化
 - By 2050, 65% world's population will live in cities (WHO, 2015); Irreversible; Even faster in China
 - Good for human development in general
- Leads to urban vulnerability (a.k.a. 'urban diseases')
 - 'Dead' space/landscape, low familiarity with surroundings,
 - Poor waste treatment, environment (air, water) pollution,
 - Heritage destruction, aging town blocks, inefficient traffic,
 - Disasters (earthquake, climate change), resource crisis, ...
- Demands smarter and more resilient development
 - (a) Smarter decision supports in multiple disciplines
 - (b) On basis of accurate, timely urban semantics

Global urban vulnerability level (Birkmann et al, 2016) *source: nature.com*

1.1 Background (cont.)

◇ Construction is known as a "backward industry" 建筑业
 ■ Low productivity, labor-intensive (v.s. aging workers)

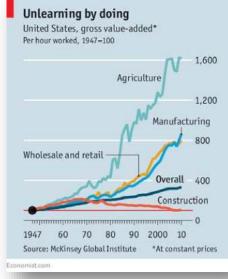
■ Fatality, occupational hazards, management (*e.g.*, cost overrun)

A consensus of global research institutes (e.g., Harty et al., 2007)

Effective (productive, automatic, age friendly) and efficient (safer, profitable, on-time, sustainable) industry

♦ Meets new information communication tech. (ICT) 机遇

Computing power


Urban big data

iLab

- 。 BIM, RFID, LiDAR, GPS, UAV, CV, VR/AR, smart phones...
- Three "V"s: Volume, velocity, & variety

Calls for a collaboration data hub: BIM

Xue, F., & Tan, T. (2018). Demystifying BIM & innovation. (ZUFE Workshops-2018, Hangzhou, China)

USA's gross value-added by sectors *source: economist.com*

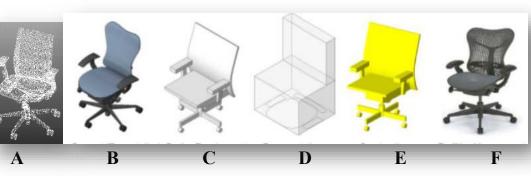
Recent advances in ICT

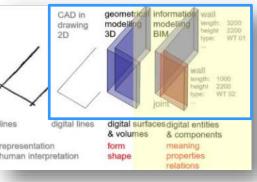
1.2 BIM

◆ BIM (building information model/modeling) 定义
 ■ A <u>digital representation</u> of physical & functional <u>characteristics</u> of a <u>facility</u>. (NIBS, 2015)

A shared ... resource for information about a facility, forming a reliable basis for decisions during its life cycle from inception onward. (NIBS, 2015)

Evolved from CAD (computer-aided design) (Penttilä, 2007)

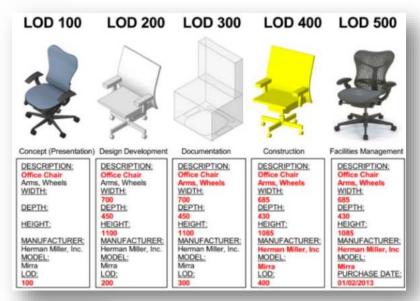

♦ Essence 本质


Urban semantics database ("I")

Component (unit facility) based

"Family" and "instance"

♦ A quiz: Which is *not* BIM?



An evolution view of CAD/BIM (Penttilä, 2007)

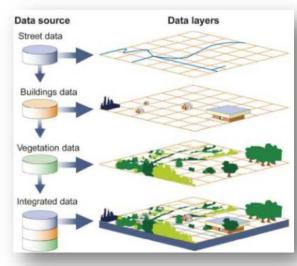
1.2 Semantics focused in BIM

- Ъ ◆ BIM LOD (Level of Development) iLab Previously "Level of Detail" ■ LOD 100: For concept presentation Arch. ■ LOD 200: For design development Eng. • LOD 300: For 2D documentation Const. LOD 350 construction 3D documents ■ LOD 400: For construction stage **O&M** ■ LOD 500: For facilities management Demo. Focused semantics $\langle \bullet \rangle$
 - Temporal development 时间进展
 - Abstracted family > exact geometry

What is called LOD Source: PracticalBIM.net

No LOD : Data only data, needs processing to info., then to BIM

1.2 GIS – For comparison


- GIS (geographic information system)
 - A computer system for capturing, storing, checking, and displaying data related to <u>positions</u> on <u>Earth's surface</u> (NGS, 2012)
 "I" "G"
 - Evolved from DBMS (database management system)

♦ Essence

- Urban semantics database ("I")
- Data tables (layers) based
 - Independent objects (rows) in each table
 - A few discussion on component-based GIS, too

A quiz: Which is **not** GIS? Which are **not** BIM?

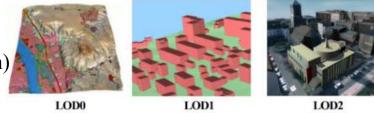
GIS interpretation Source: US Government Accountability Office

E

F

D

1.2 Semantics focused in GIS – For comparison


- ♦ GIS LOD (Level of Detailing)
 - Defined in CityGML (by Open GIS Consortium)
 - LOD0 : Region and landscape
 - LOD1 : + Prismatic buildings model (flat roof)
 - LOD2 : + Roof and thematic surfaces
 - LOD3 : + Detailed exterior (wall and roof)
 - LOD4 : + Interior (indoor)
- Focused semantics

iLab

Spatial details

- Exact geometry > abstracted concepts
- BIM/GIS integration

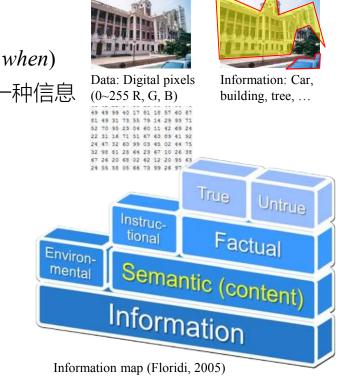
Xue, F., & Tan, T. (2018). Demystifying BIM & innovation. (20FE Workshops-2018, Hangzhou, China)

BIM-GIS integration Source: ESRI.com

1.3 The "I": Information & semantics

Information is the meaning of data (Rowley & Hartley, 2017)

- Abstracted, inferred from data
- Answering interrogative questions (*what, who, where, when*)
- Semantics is a subset of information (Floridi, 2005)语义是一种信息
- ♦ Urban semantics


₫a

iLab

- Geometric / Non-geometric facts:
 - Size, location / function, materials, history, etc.

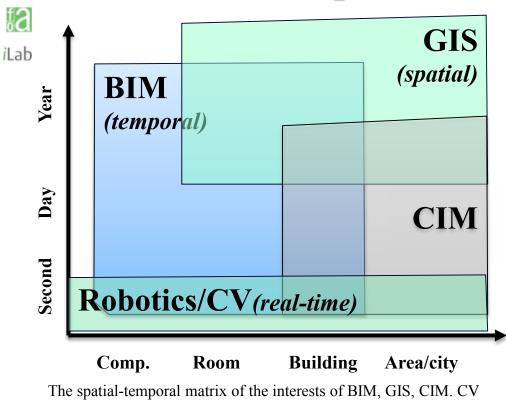
Instructions (how-to):

Manufacturing, installation, access, etc.

1.3 The "I": Target (factual) semantics (Chen et al., 2018b)

III State Stat

iLab


LdD			
		Geometric	Non-geometric
Xue. F.	Construction	 Site information (coordinate's data and layout) Building spaces (floor, zones, rooms, openings) Utility lines Dimension of building components 	 Construction materials (status, quality, category, manufacturer) Precast elements (quality, category, manufacturer) Equipment attributes (ID, type, status) Financial data Location of labor, materials, and machine Project performance data Construction schedule Construction activity status Site environment
	Operation & maintenance (O&M) & Tan, T. (2018). Den	 Building services (location, relationship) Building spaces (floor, zones, rooms, openings) Utility lines Specification of exterior enclosure products Furnishing https://workshop.com/stifying BIM & Innovation. (ZUFE Workshop) 	 Building services (identification number, manufacturer) Status of mechanical, electrical, & plumbing equipment Maintenance record Indoor environment Attributes of replaced components Maintenance status Maintenance schedule Operation records

12

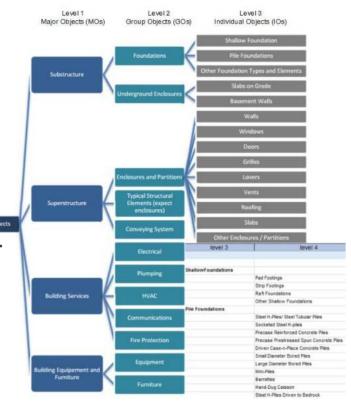
1.3 The "I": List of semantics standards (Wang et al., 2018)

Research/ industry	Application Scenario	Object Parameters
Pratt (2004)	BIM object contents exchange	Functional type; Geometry; Attributes; Relations between objects; Behavioural rules.
Belsky et al. (2016)	Semantic enrichment for BIM objects	Function; Geometry; Material; Identity; Aggregation relationships; Composition relationships.
Chen and Wu (2013)	Parametric BIM object modelling	Basic Object Data (Identification, Classification, Geometry, Quantities, and Phasing); Representation data (Material)
Open <u>Geo</u> spatial Consortium (OGC, 2007)	Object data description in CityGML for virtual 3D city and landscape	Geometrical, Topological, Semantic, and Appearance properties.
Autodesk Revit (2017)	Modelling and professional analysis (e.g. thermal)	Identification (number, name, type, description); Classification (OmniClass code and description); Geometry; Material; Quantities; Manufacturer; Cost; Phasing; LEED, Thermal and Structural Properties, etc.
RI <u>BA</u> , UK (2014)	Object data description defined in NBS BIM Object Standard	Authorship, Identification (name, Uniclass code, and product link), Manufacturer, NBS description, and reference, etc.
NIBS, USA (2012)	Information Collection via Cobie to improve handover to owner- operator	Authorship, Identification (created by, category, Description, type, code, etc.) Manufacturer, Warranty, Geometry, Material
CI <u>BSE</u> , UK (2016)	Product description for manufacturer defined in Product Data Templates(PDTs)	Manufacturer, Construction, Application, Dimension, Performance, Electrical, Controls, Sustainability, Operations a Maintenance

1.3 The "I": Comparison to other technologies

♦ BIM, GIS, CIM, Robotics/CV Complementary and overlapping • On the same urban objects With focused semantics Integrated urban semantics is then Digital twin of the built environment Recognizable by machines ♦ For smarter city applications ■ 4D, *n*D, temporal (building): BIM ■ 4D, *n*D, temporal (area): CIM Spatial analysis (area): GIS

Real-time control: Robotics/CV



1.4 The "B": Universal vs. local

- iLab
- ♦ Facilities in architecture is universal
 - Substructure
 - Superstructure
 - Building services
 - Equipment and furniture
 - Site, etc.
- ♦ Building/BIM subjects to local regulations, e.g.
 - Eurocode 3 Design of steel structures General rules and rules for buildings
 - CPR 305/2011 Construction Products Regulation

■ GB/T50002-2013 建筑模数协调标准

One size does not fit all'
Xue, F., & Tan, T. (2018). Demystifying BIM & innovation. (ZUFE Workshops-2018, Hangzhou, China)

A taxonomy template for all BIM objects (Lu et al., 2017)

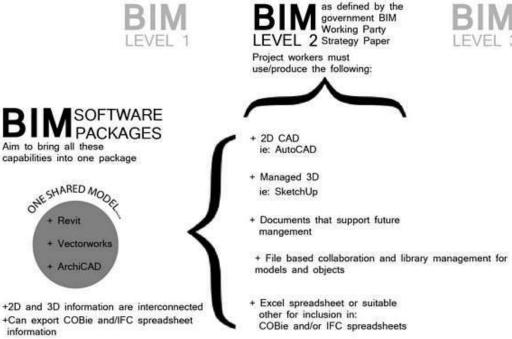
1.5 The "M": Model or modeling?

♦ As "model" 模型

₫a

iLab

- A semantic database with a 3D/nD presentation
- ♦ As "modeling" 建模
 - A more general process
- ♦ Life-cycle of "M"
 - As-required BIM
 - As-designed BIM
 - As-planned BIM
 - As-built (or as-is) BIM
 - As-altered BIM
 - As-demolished BIM



1.5 The "M": BIM software = Revit?

- ₿**∂** iLab
- Semantics and files for BIM
 2D CAD
 3D structured objects
 - PDF/Excel/IFC/ODBC DB
- Revit is a "glue" software
- Other "glue" includes
 - ArchiCAD
 - Vectorworks
 - SketchUp

Gloden

By 2016 any government funded

projects or public projects over

£5mil will have to comply to:

Facets of the process of BIM Source: thelandmarkpractice.com

1.5 The "M": BIM Standards

- National standards
 - NBIMS-US v3
 - ISO 19650 Organization of information about construction works – Information management using building information modelling
 - GB/T51212-2016 建筑工程信息模型应用统一标准
- Industry/stakeholder needs adapted standards
 - Architectural design
 - Engineering design
 - Quantity surveying
 - Construction
 - Operation & Management

1.6 Recap of BIM demystification

♦ BIM

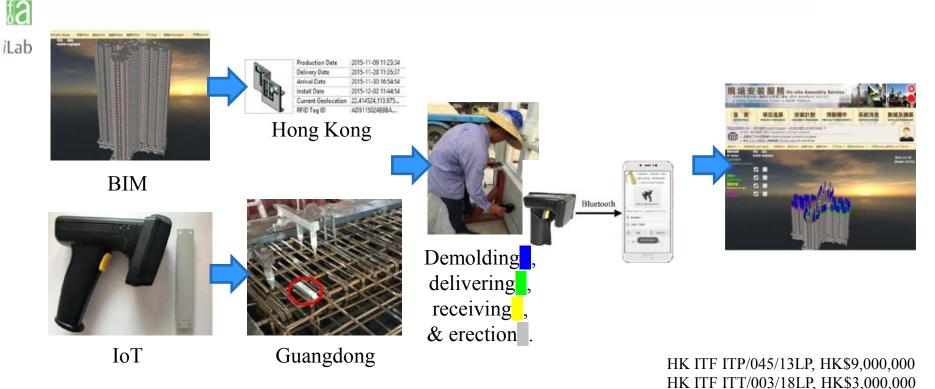
iLab

- Information infrastructure for construction & urbanization
- Foundation of collaborations
- More on concept/knowledge than on geometry
- Localization for each nation
- Localization for each stakeholder/industry
- Either a model or a process
- Variants in different stage of a building
- Many supporting software and formats

Many standards

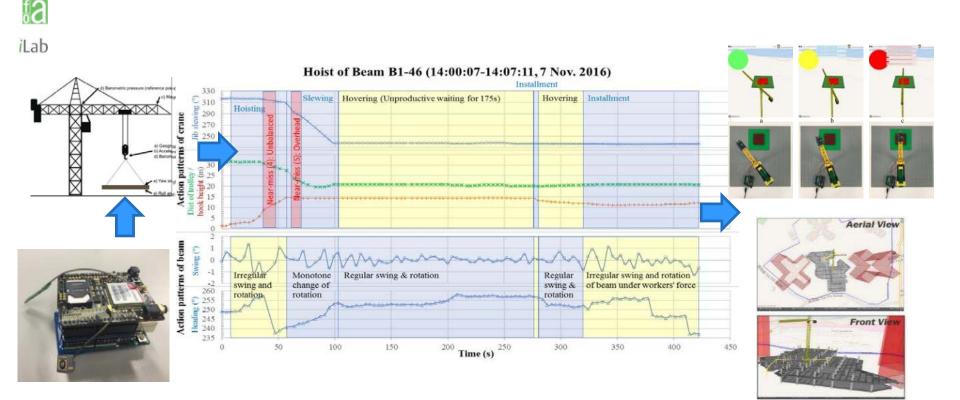
Section 2 BIM INNOVATIONS AT ILAB, HKU

2.1 Innovation


- ♦ Innovation
 - A buzzword that has over 40 definitions
 - The essence, to me, it is combination
 - $_{\odot}~$ "There is nothing new under the sun." (Ecclesiastes 1:9)
 - \blacksquare E.g., Swiss Army knife = knife + scissors + bottle opener + ...

Swiss Army knife Source: Wikipedia.org

- E.g., Theory of relativity = Lorentz transformations + relative space & time
- ♦ For business, an innovation is
 - Idea (brainstorming, many infeasible)
 - Product (realized)
 - $_{\odot}~$ Most innovations go here
 - Process (a systematic alternative comprising many new products)
 - $_{\odot}~$ Very difficult to make it happen, e.g., the overall BIM-centric business model


2.1 Case 1: Progress monitoring = BIM + IoT

Project video available at : https://www.youtube.com/watch?v=n8IRrweePIc

Xue, F., & Tan, T. (2018). Demystifying BIM & innovation. (ZUFE Workshops-2018, Hangzhou, China)

2.2 Case 1: Safety management = BIM + IoT (Niu et al., 2018)

2.3 Case 2: Semantic registration = BIM + PCD registration

♦ A dilemma of urban semantics in BIM/GIS ■ *Inadequacy*: Poor semantics in the models Overload: Rich online open BIM/GIS resources • With fact-nongeometric & instructional Semantic registration

Registering semantics to low LOD models

Input 1: Geometric measurement

Input 2: Semantic components

Performance metrics

₫a

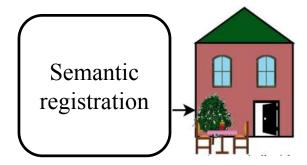
iLab

Computational time

Precision = true positive / registered

Recall = true positive / actual Xue, F., & Tan, T. (2018). Demystifying BIM & innovation. (ZUFE Workshops-2018, Hangzhou, China)

Google Map/Earth? ~LOD2



Custom Wood, Epic All-Wood Double-Hung Picture JELD-WEN Windows and

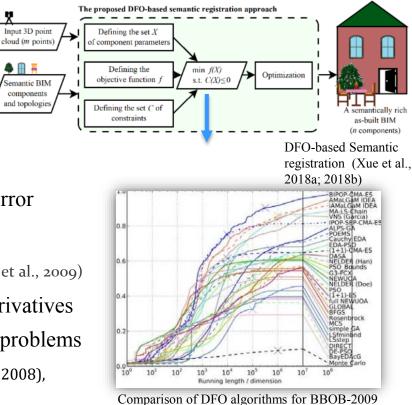
All-Wood Stationary Casement Window JELD-WEN Windows and

BIMobject.com has >300,000 parametric BIM objects

Semantic registration as a process

HK GRF 17201717, HK\$450,000 HK GRF 17200218, HK\$520,000 24

2.4 Case 3: Automatic modeling = Case 2 + algorithm


- Semantic registration is a decision task
 Can be automated through optimization
- Problem formulation (Xue et al., 2018a)

19

iLab

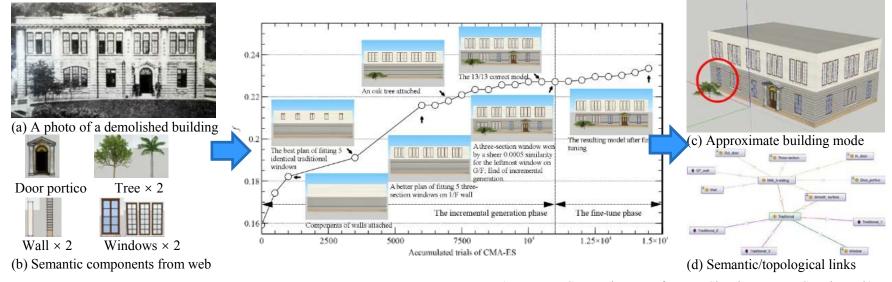
- Input 1: E.g., 3D point cloud
- *Variables (X)*: transformation parameters
- *Objective function (f)*: minimum geometric error
- Constraints (C): Topological regularity
- Derivative-free optimization (DFO) (Conn et al., 2009)
 - Solves problems comprising too complex derivatives
 - Succeeded in many science and engineering problems
 - E.g., Protein folding (Nicosia & Stracquadanio, 2008), aircraft wing design (Lee, et al., 2008)

Xue, F., & Tan, T. (2018). Demystifying BIM & innovation. (ZUFE Workshops-2018, Hangzhou, China)

(Auger et al., 2010) Source: Inria

2.4 An outdoor case (Xue et al., 2018a)

tЗ


iLab

♦ 2D photo + free BIM objects \rightarrow LOD₃/300 3D models

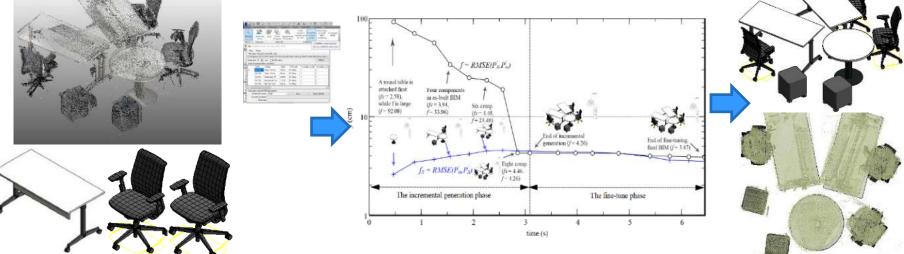
Automatic, error tolerant, recoverable from wrong objects

Segmentation-free, topological relationships involved

Time: 2.5h
Precision: 0.92
Recall: 0.92

Xue, F., & Tan, T. (2018). Demystifying BIM & innovation. (ZUFE Workshops-2018, Hangzhou, China) (Language: C++, Ruby; Data formats: SketchUp, Bmp, Google earth) 26

2.4 An indoor case (Xue et al., 2018b)


₫a

iLab

♦ Point cloud + BIM objects → LOD $_{4/500}$ indoor model

- Automatic, saved 98% time from manual modeling
- \blacksquare *RMSE* = 3.87cm, equal to experienced modelers

Time: 6.44s
Precision: 1.0
Recall: 1.0

(Language: C++, CLR; Data formats: Autodesk Revit, Stanford polygon)

Xue, F., & Tan, T. (2018). Demystifying BIM & innovation. (ZUFE Workshops-2018, Hangzhou, China)

👼 2.4 A demo video

2.5 Recap of innovation demystification

♦ Innovation

iLab

- Is combination, everywhere
- Concept, product, process (business perspective)
- BIM is an open urban semantic database
- BIM can connect to many construction hardware & software
 - New sensors (e.g., IoT)
 - New data processing (e.g., PCD registration)
 - New algorithms (e.g., DFO)
- But, process innovation is very difficult

Section 3 PRACTICAL BARRIERS TO BIM

References

- [1] Auger, A., Finck, S., Hansen, N., and Ros, R. (2010). BBOB 2009: Comparison tables of all algorithms on all noisy functions, INRIA.
- [2] Birkmann, J., Welle, T., Solecki, W., Lwasa, S., & Garschagen, M. (2016). Boost resilience of small and mid-sized cities. *Nature News*, 537(7622), 605.
- [3] Chen, K., Lu, W., Xue, F., Tang, P., & Li, L. H. (2018a). Automatic building information model reconstruction in high-density urban areas: Augmenting multi-source data with architectural knowledge. Automation in Construction, 93, 22-34.
- [4] Chen, K., Lu, W. S., Xue, F. Zheng, L. Z., & Liu, D. D. (2018b). Smart Gateway for Bridging BIM and Building. In Proceedings of the 21st International Symposium on Advancement of Construction Management and Real Estate (pp. 1307-1316). Springer, Singapore.
- [5] Conn, A. R., Scheinberg, K., & Vicente, L. N. (2009). Introduction to derivative-free optimization. SIAM.
- [6] Harty, C., Goodier, C. L. Soetanto, R., Austin, S., Dainty, A. R., & Price, A. D. (2007). The futures of construction: a critical review of construction future studies. Construction Management and Economics, 25(5), 477-493.
- [7] Gröger, G., Kolbe, T., & Czerwinski, A. (2007). Candidate OpenGIS CityGML Implementation Specification (City Geography Markup Language). Open Geospatial Consortium Inc, OGC.
- [8] Lee, D. S., Gonzalez, L. F., Periaux, J. & Srinivas, K. (2008), Robust design optimisation using multi-objective evolutionary algorithms. Computers & Fluids, 37(5), 565-583.
- [9] Lu, W., Chen, K., Wang, J., & Xue, F. (2017). Developing an Open Access BIM Objects Library: A Hong Kong Study. In Lean and Computing in Construction Congress-Volume 1: Proceedings of the Joint Conference on Computing in Construction. Heriot-Watt University.
- [10] National Institute of Building Sciences. (2015). National Building Information Modeling Standard. Version 3, Retrieved from https://www.nationalbimstandard.org/
- [11] National Geographic Society. (2012). GIS (geographic information system). http://www.nationalgeographic.org/encyclopedia/geographic-information-system-gis/
- [12] Nicosia, G. & Stracquadanio, G. (2008), Generalized pattern search algorithm for peptide structure prediction. Biophysical Journal, 95(10), 4988-4999.
- [13] Niu, Y., Lu, W., Xue, F., Liu D., Chen, K., Fang, D., & Anumba, C. (2018). Towards the "Third Wave": An SCO-enabled occupational health and safety management system for construction. Safety Science, 111, 213-223.
- [14] Penttilä, H. (2007). Early architectural design and BIM. Computer-Aided Architectural Design Futures (CAADFutures 2007), 291-302.
- [15] Rowley, J. (2007). The wisdom hierarchy: representations of the DIKW hierarchy. Journal of information science, 33(2), 163-180.
- [16] Rowley, J., & Hartley, R. (2017). Organizing knowledge: an introduction to managing access to information. Routledge.
- [17] Wang, J., Lu, W., Liu, D., & Xue, F. (2018). The Heterogeneity of BIM Objects in Different Construction Contexts. In Construction Research Congress 2018 (pp. 210-220).
- [18] World Health Organization. (2015). Global Report on Urban Health-Executive Summary. http://www.who.int/kobe centre/measuring/urban-global-report/en/
- [19] Xu, J., Chen, K., Xue, F., & Lu, W. (2018). 3D point clouds for architecture, engineering, construction, and operation: A SWOT analysis. Working paper
- [20] Xue, F., Lu, W., Chen, K. (2018a). Automatic generation of semantically rich as-built building information models using 2D images: A derivative-free optimization approach. Computer-Aided Civil and Infrastructure Engineering, in press. doi: 10.1111/mice.12378
- [21] Xue, F., Lu, W., Chen, K. & Zetkulic, A. (2018b). From 'semantic segmentation' to 'semantic registration': A derivative-free optimization-based approach for automatic generation of semantically rich as-built building information models (BIMs) from 3D point clouds. Journal of Computing in Civil Engineering. Under review
- [22] Xue, F., Chen, K., Lu, W. (2018c). Architectural Symmetry Detection from 3D Urban Point Clouds: A Derivative-Free Optimization (DFO) Approach. CIB W78 2018, accepted.
- [23] Xue, F., Chiaradia, A., Webster, C., Liu, D., Xu, J., Lu, W. (2018d). Personalized walkability assessment for pedestrian paths: An as-built BIM approach using ubiquitous augmented reality (AR) smartphone and deep transfer learning. Proceedings of the 23rd International Symposium on the Advancement of Construction Management and Real Estate. In press
- Zins, C. (2007). Conceptual approaches for defining data, information, and knowledge. Journal of the Association for Information Science and Technology, 58(4), 479-493. Xue, F., & Tan, T. (2018). Demystifying BIM & innovation. (ZUFE Workshops-2018, Hangzhou, China)

THANK YOU!