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Abstract

Symmetry is ubiquitous in architecture, across both time and place. Automated
architectural symmetry detection (ASD) from a data source is not only an in-
triguing inquiry in its own right, but also a step towards creation of semantically
rich building and city information models with applications in architectural de-
sign, construction management, heritage conservation, and smart city develop-
ment. While recent advances in sensing technologies provide inexpensive yet
high-quality architectural 3D point clouds, existing methods of ASD from these
data sources suffer several weaknesses including noise sensitivity, inaccuracy, and
high computational loads. This paper aims to develop a novel derivative-free opti-
mization (DFO)-based approach for effective ASD. It does so by firstly transform-
ing ASD into a nonlinear optimization problem involving architectural regularity
and topology. An in-house ODAS (Optimization-based Detection of Architec-
tural Symmetries) approach is then developed to solve the formulated problem
using a set of state-of-the-art DFO algorithms. Efficiency, accuracy, and robust-
ness of ODAS are gauged from the experimental results on nine sets of real-life
architectural 3D point clouds, with the computational time for ASD from 1.4 mil-
lion points only 3.7 seconds and increasing in a sheer logarithmic order against
the number of points. The contributions of this paper are three-fold. Firstly, for-
mulating ASD as a nonlinear optimization problem constitutes a methodological
innovation. Secondly, the provision of up-to-date, open source DFO algorithms
allows benchmarking in the future development of free, fast, accurate, and robust
approaches for ASD. Thirdly, the ODAS approach can be directly used to develop
building and city information models for various value-added applications.
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1. Introduction

Symmetry is omnipresent in architecture beyond any epochal, functional, and
cultural differences (Fletcher and Fletcher, 1905; Steadman, 1983). Types of ar-
chitectural symmetries include reflection, translation, rotation, uniform scaling,
and their combinations. These are not accidental but instead often result from
considerations of function, mechanics, economics, manufacture, and aesthetics
(Fletcher and Fletcher, 1905; Mitra et al., 2013). Architectural symmetries often
comply with strong co-hierarchical correlations such as collinearity, reflection,
and perpendicularity (Zhang et al., 2013) to form a symmetry hierarchy (Wang
et al., 2011) embodying rich geometric regularities and topological semantics
(Lowe, 1987; Xu et al., 2017, 2018; He et al., 2018).

Recent advances in sensing technology such as LiDAR (Light Detection and
Ranging) and photogrammetry have given rise to inexpensive but fine 3D point
clouds of buildings and cities (Mallet and Bretar, 2009; Tang et al., 2010). Ap-
plied to 3D point clouds, architectural symmetry detection (ASD) has the poten-
tial to reveal useful geometric fundamentals for understanding the architecture
represented. These geometric fundamentals could be further used, e.g., for reg-
istering volumetric, online open BIM components (Xue et al., 2018, 2019b), to
develop semantically rich building information models (BIMs) (Eastman et al.,
2011; Chen et al., 2018). Properly scaled up, BIMs can be used to form 3D
digital city models, increasingly referred to as city information models (CIMs)
(Toschi et al., 2017). Semantically rich BIMs and CIMs, so-called ‘digital twins’,
can have innovative applications in areas such as architectural and urban design
(Chiaradia, 2009; Haunert, 2012), heritage conservation, construction manage-
ment (Volk et al., 2014), geophysics (Nghiem et al., 1992), remote sensing (Wei-
dner and Förstner, 1995; Wu et al., 2018), transportation (Ferraz et al., 2016),
autonomous robotics (Bajcsy et al., 2018), and smart and resilient city develop-
ment (Birkmann et al., 2016).

However, while researchers have developed approaches for detecting general
symmetries, architectural symmetries included, ASD from 3D point clouds of un-
controlled, real-world architecture remains very challenging. Current approaches
for ASD suffer several weaknesses including noise sensitivity (Brown, 1983), high
computational loads (Berner et al., 2008), and production of inaccurate results
(Lipman et al., 2010), as discussed in greater detail later. As a result, the valuable
semantic information contained in architectural symmetries is often unrecognized
and unexploited in digital BIM and CIM creation (Van Kaick et al., 2011; Volk
et al., 2014; Chen et al., 2018).

This paper proposes a novel derivative-free optimization (DFO)-based ap-
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proach for fast, accurate, and robust ASD from 3D point clouds. DFO is a subclass
of mathematical optimization which has been successfully applied to many chal-
lenging problems in science and engineering (Conn et al., 2009), including protein
structure prediction (Nicosia and Stracquadanio, 2008), aircraft wing design (Lee
et al., 2008), and design of new materials (Miskin and Jaeger, 2013). In this pa-
per, seven state-of-the-art DFO algorithms are selected and benchmarked for ASD
in various real-world architectural styles. This is the first research gauging DFO
algorithms systematically for ASD, to the best of our knowledge.

2. Existing approaches to detection of symmetries from 3D point clouds

Over the years, researchers have developed different approaches for detecting
general symmetries, including architectural symmetries, from 3D point clouds.
Xue et al. (2019a) suggested three categories according to methodology: (i) pair-
wise voting-clustering, (ii) heuristic feature matching, and (iii) parameter opti-
mization. A summary comparison of these approaches in terms of methodol-
ogy, accuracy, efficiency, and compatible symmetry types is contained in Table 1.
In general, heuristic feature matching methods are faster, but pairwise voting-
clustering and parameter optimization methods have greater accuracy and com-
patibility with different types of symmetries (Schnabel et al., 2007; De Berg et al.,
2008; Szeliski, 2010; Xue et al., 2019a).

Table 1: Three categories of general symmetry detection method for point clouds

Type of approach Methodology Accuracy (less Efficiency Types of
geometric error) (using less time) symmetries

1. Pairwise voting- Collection of pairwise votes of all ++ − All (++)
clustering the points in the parameter space
2. Heuristic feature Matching features (E.g., lines, − ++ Limited (−)
matching planes, spheres) to infer symmetries
3. Parameter Solving abstracted optimization ++ + All (++)
optimization models over the parameter space
++: Very satisfactory; +: satisfactory; −: not satisfactory.

Pairwise voting-clustering methods focus on the correspondence, primarily
based on the Hough-like transformation parameter space (Hough, 1959). Given a
cloud of n points, the core technology of pairwise voting-clustering is the collec-
tion of ‘votes’ from the O(n2) combinatorial pairs of the points in the parameter
space, where the most voted parameter settings approximately represent the sym-
metries. In developing this approach, Mitra et al. (2006) first applied Atallah
(1985)’s voting-clustering to 3D point clouds, later extending it to architectural
models and symmetrization based design (Mitra and Pauly, 2008). Recent ad-
vances include detection of dense local symmetry correspondences based on the
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subspace symmetry (Alexander et al., 2011), the use of wavelet convolution in-
stead of points (Cicconet et al., 2017), and Lie-algebra voting with improved ro-
bustness in arbitrary 3D point clouds (Shi et al., 2016). However, voting-clustering
approaches have limitations in processing the point clouds of real-life architecture,
mainly owing to the inherited bias and proneness to noise of the Hough-like trans-
form (Brown, 1983), ineffective recognition of local symmetries due to loss of
correlation information during voting (Bokeloh et al., 2009), low efficiency (ex-
ponential to the number of parameters), and unaffordable time consumption given
point clouds consisting of millions of points (Berner et al., 2008).

Heuristic feature matching methods detect symmetries indirectly by match-
ing a collection of local geometric features through heuristic rules (or pre-trained
models). From a line, plane, sphere, or other such geometric feature can natu-
rally be inferred the locations and tilts of its dual symmetries; a planar rectangle,
for example, naturally has two reflection symmetries. Examples of this approach
include matching of feature points (Berner et al., 2008), feature lines and their
repetitive patterns (Bokeloh et al., 2009; Lin et al., 2015), boundary-tracing (Sam-
path and Shan, 2007), and other pre-defined features (Forsyth and Ponce, 2012;
Schnabel et al., 2007). GlobFit (Li et al., 2011) and RAPter (Monszpart et al.,
2015) apply preliminary architectural regularities, for example, emphasizing the
adjacent planes with angles of 90◦ and 60◦ on building envelopes. While heuris-
tic feature matching approaches are efficient in handling a large number of local
symmetries with arbitrary structures (Kerber et al., 2012), they are by their na-
ture primarily confined to the heuristic rules of the point clouds, and require an
abundance of suitable features (Lipman et al., 2010).

Parameter optimization methods detect symmetries by perturbing the param-
eters for the optimal symmetry conditions, such as the maximal point correspon-
dence or the minimal root-mean-square distance (RMSD). For example, Kazhdan
(2007) exploits fast Fourier transform (FFT) and formalizes the optimal axis of
rotational symmetry; Raviv et al. (2010) present a parameter optimization method
for non-rigid 3D objects in general; Wang et al. (2016) detects repetition on fa-
cades using an energy optimization function; and Ecins et al. (2017) applied op-
timal difference on normal directions to detect symmetric objects in indoor point
clouds. Some recent heuristic matching methods, such as Globfit (Li et al., 2011)
and RAPter (Monszpart et al., 2015), incorporate parameter optimization in part.
However, many mathematical methods that guarantee ideal symmetry (or opti-
mality) cannot be applied to 3D point clouds of architectures due to the nonlinear
and expensive (time-consuming) symmetry conditions. In addition, the results of
ASD can be sensitive to the optimization algorithm’s settings.

DFO is a class of mathematical optimization (Conn et al., 2009). Although
the derivatives of an objective function contain information vital to finding the
best values, such derivatives in many complex science and engineering contexts
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such as molecular biology, material sciences, engineering modeling, as well as
parameter optimization for ASD, are often unavailable, unreliable, or impractical
to obtain (Rios and Sahinidis, 2013; Xue et al., 2018). In such circumstances,
DFO algorithms incorporate various meta-models of the search space (e.g., the
parameter space of symmetries) to carry out optimization. Examples of DFO
algorithms are variants of DIviding RECTangles (DIRECT) (Jones et al., 1993;
Rios and Sahinidis, 2013), and Covariance Matrix Adaptation Evolution Strategy
(CMAES) (Hansen and Ostermeier, 2001; Hansen, 2016), and their applications
include protein structure prediction (Nicosia and Stracquadanio, 2008), evolution-
ary aircraft wing design (Lee et al., 2008)), and optimal adaptation of new mate-
rials (Miskin and Jaeger, 2013). Xue et al. (2019a) applied CMAES to a building
rooftop point cloud, detecting the global reflection in about 100 seconds; however,
this application was still too time-consuming and failed to gauge the CMAES thor-
oughly and to test other DFO algorithms. Xue et al. (2018, 2019b) also applied
CMAES to the processing of low-resolution 2D images to reconstruct the outdoor
scene of a demolished building as well as a noisy indoor 3D point cloud for an
indoor furniture scene, at an RMSD of 3.87 cm in 6.44 seconds; though, the 3D
models of furniture were pre-determined for the test scenes. In summary, DFO
algorithms have shown strengths in the solution of challenging and expensive op-
timization problems (Conn et al., 2009), and thus have great potential in solving
the parameter optimization problem of ASD.

3. The proposed Optimization-based Detection of Architectural Symmetries

3.1. Problem formulation for architectural symmetry detection
Symmetry is an affine transformation that preserves points, straight lines, and

planes on the 3D Euclidean space (R3) (De Berg et al., 2008). General symmetry
detection is the process of finding the symmetry group G of a 3D point cloud C
(James, 1978):

G = 〈T , ◦〉,

T = {T |T (C) = C,T is affine on R3},

C = {p1, p2, . . . , pn} ⊂ R3, n > 0,

(1)

where G is the symmetry group, T is the set of perfect global symmetries, ◦ is
the function composition defined on T , i.e., (g ◦ f )(x) = g( f (x)), C is the the
3D point cloud, and n is the cardinality (number of points) of C. The perfect
global symmetry condition is T (C) = C in Eq. 1 (Mitra et al., 2006), i.e., a perfect
global symmetry keeps C invariant as a whole while transforming every point.
Alternatively, the perfect local (or partial) symmetry condition is that exists C′ ⊂
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C such that T (C′) = C′ (Mitra and Pauly, 2008). In the point clouds of real-
life architecture, there are inevitably instrumental, environmental, and calibration
errors. Thus, the perfect symmetry conditions are often relaxed to approximate
descriptors (Kazhdan, 2007; Mitra and Pauly, 2008), e.g.,

d(p,T,C) = ||T (p) − N(T (p),C)||, (2)

PCR =
1
n
| {p|p ∈ C, d(p,T,C) < ε · diagC} |, (3)

RMSD =

√
1
n

∑
p∈C

d(p,T,C)2, (4)

where N(p,C) in Eq. 2 denotes the nearest point of a point p in C, d(p,T,C)
measures the distance of p to C after a transform T , 0 < ε � 1 is a small error
tolerance, and diagC is the diagonal length of the bounding box of C. Eq. 3 de-
scribes the point correspondence rate (PCR) including those points that are still
very close to C after a transform T ; Eq. 4 indicates the well-known RMSD metric
of the whole cloud C after a transform T . If the symmetry plane or axis is known
perpendicular to the ground, Eq. 2 can be facilitated with horizontal slices of C
or equivalent indices on the z-axis (Xue et al., 2019a). In contrast, Eq. 3 is more
fundamental in geometry, while Eq. 4 and its variants such as mean-square error
is also effective for parameter optimization methods, such as in the pilot case in
Xue et al. (2019a).

An octree is a well-known data structure for indexing and sampling large-scale
(e.g., up to one billion points) 3D point clouds (Meagher, 1982; Elseberg et al.,
2013). Because the best time complexity of computing Eq. 2 is O(log n) using the
up-to-date kdtree-based search, the time complexity of computing Eqs. 3 and 4 is
thus O(n log n), which is still too high for large-scale 3D point clouds.

This paper employs the octree structure for sampling a subset of weighted
feature points Cv ⊆ C, as demonstrated in Fig. 1, where each point p is associated
with a voxel (leaf node) of the octree and a weight wp representing the number of
points in the same voxel, thus Σp∈Cvwp = n. Whenever the maximum octree depth
δ increases by 1, the space of each voxel is evenly divided to 8 (i.e., 2 × 2 × 2)
new voxels, so that the diagonal diagv ∝ 0.5δ (Yamaguchi et al., 1984). Given a
large-scale point cloud C of a constant surface area (i.e., very dense points), the
cardinality of Cv is inversely proportional to the average cross-sectional area of
the voxels, i.e.,

|Cv| ∝ 1/diag2
v ∝ 4δ, δ � 1. (5)

The experimental results of a test case in Fig. 1 confirmed that the cardinality
obeyed an exponential equation

|Cv| = 4.8429 × 3.8478δ, R2 = 0.9947, (6)
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which validated the theoretical deduction based on the satisfactory R2, though
3.8478 was slightly less than 4 due to the point density. Therefore, |Cv| is bounded
at O(4δ) in general, and Eqs. 3 and 4 can thus be approximated in O(4δ log n),
respectively:

PCR′ =
1
n

∑
p∈Cv

wp, if d(p,T,C) < ε · diagC
0, otherwise

(7)

RMSD′ =

√
1
n

∑
p∈Cv

wp · d(p,T,C)2 (8)

Based on visual inspections of Fig. 1, a depth of 4 to 6 can approximately represent
the surface of an architecture, where the remaining points, i.e., C \ Cv, can be
confidently estimated by linear interpolation using the points and their weights in
Cv.

(a) δ = 1 (b) δ = 2 (c) δ = 3

(d) δ = 4 (e) δ = 5 (f) δ = 6

(g) δ = 7 (h) δ = 8 (i) δ = 9

Figure 1: Octree-based weighted feature point sampling for large-scale point clouds (δ stands for
the maximum octree depth and colors represent height ramp)

Regarding the geometry regularity and the topological relationships, the setTA
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of all architectural symmetries is a subset of the general symmetries T in Eq. 1:

TA =
{
T |Ag(T ) +At(T ) < εA,T ∈ T

}
⊆ T ,

Ag(T ) ≥ 0,
At(T ) ≥ 0,

(9)

where TA is the set of all architectural symmetries, Ag measures the violations
of geometric style, At indicates the violations of topology, and 0 ≤ εA � 1
represents a small threshold of error tolerance. The global and local architectural
symmetries can be similarly defined. Then the problem of the global ASD is:

min f (x) = fC(x) + ωA(x)

= 1 − PCR′ +
RMSD′

diagC
+ ω

(
Ag(x) +At(x)

)
s.t. x = (x1, x2, . . . , xm) ∈ Rm,

(10)

where the objective function f comprises of symmetry conditions (Eqs. 7 and 8 as
fC) and architectural style conditions (geometric style and topology in Eq. 9 asA),
ω ∈ R+ ∪ {0} is the relative weight ofA. In the formulated global ASD (Eq. 10),
the detection of various global architectural symmetries (e.g., reflection, transla-
tion, rotation, uniform scaling, and their combinations) is a unified problem. The
number m of parameters is usually 3 for either the plain axis of a reflection (e.g.,
of a plane ax + by + cz + 1 = 0 or its normal form [a, b, c]ᵀ) or the vector of trans-
lation, and 4 for the axis (3D line) of a rotation (Szeliski, 2010). In addition, if the
axis of a symmetry is known to be vertical, m = 2 can thus be guaranteed. The fC
denotes a combination of the two symmetry conditions in Eqs. 7 and 8 for global
ASD, because it is discovered in practice that Eqs. 3 and 4 are not in a monotonic
relationship. Local ASD is in the same form of global ASD, e.g., for furniture and
building elements (Alexander et al., 2011; Mitra et al., 2013), by replacing C with
a subset C′ ⊂ C. The formulation thus exposes ASD to not only the approach in
this paper but also many other methods.

3.2. Problem-solving using ODAS
Optimization-based Detection of Architectural Symmetries (ODAS, available

at https://github.com/ffxue/odas) is an automated approach to solving the
formulated ASD problem. The framework of ODAS comprises three stages that
were implemented as three functional layers (see Fig. 2). ODAS takes advan-
tage of existing algorithmic libraries such as the Point Cloud Library (PCL, ver-
sion 1.8.1, available at https://github.com/PointCloudLibrary/pcl), Fast
Library for Approximate Nearest Neighbors (FLANN, version 1.7, available at
https://www.cs.ubc.ca/research/flann/), and other DFO algorithm libraries
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(Muja and Lowe, 2014). As shown in Fig. 2, the data layer consists of the stor-
age of the weighted feature points (i.e., Cv) described in Sect. 3.1, the kdtree that
indexes the whole input cloud (C) for FLANN search, and the pre-defined geomet-
ric regularity (e.g., local symmetries in rooftop elements must be perfectly vertical
or horizontal (Xue et al., 2019a)) and topology (e.g., a symmetric window array
should reside on a vertical plane of wall (Xue et al., 2018)) in architectural styles.
In the model layer, ODAS has a module for computing the objective function ( f in
Eq. 10) based on the data layer, an adaptor module for incorporating the existing
DFO algorithms, and a problem-solving controller for mobilizing all the involved
functions for automated ASD. The function layer includes some utilization func-
tions such as symmetry/asymmetry segmentation, detection, and visualization.

Figure 2: The software architecture of ODAS

ODAS incorporates seven well-known DFO algorithms, as listed in Table 2.
The selected DFO algorithms are of three types: (i) global optimization methods
such as DIRECT and MLSL-LDS from the library NLopt, (ii) population-based
metaheuristics including PSO and ABC from the library Popot, and (iii) evolution
strategies such as NSGA2 and variants of CMAES from the libraries Nsga2-cpp
and libcmaes. The parameters of the algorithms are set to the default values or
those in the user manuals. Each DFO algorithm is paired with an adaptor for
coding and decoding the symmetry parameters to the variables supported by the
algorithmic library. The pairwise parameter voting method in Mitra et al. (2006) is
also realized for comparison, while the heuristic feature matching methods are not
included due to limitations in application to uncontrolled real-world architectural
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styles.

Table 2: List of up-to-date algorithms incorporated in ODAS

Algorithm library Algorithm Full name Reference
NLopt (ver. 2.4.2, available at: DIRECT DIviding RECTangle Jones et al. (1993)
https://github.com/stevengj/NLopt/) MLSL-LDS Multi-Level Single-Linkage using Kucherenko and Sytsko (2005)

Low-Discrepancy Sequence
Popot (ver. 2.13, available at: PSO Particle Swarm Optimization Poli et al. (2007)
https://github.com/jeremyfix/popot) ABC Artificial Bee Colony Karaboga and Basturk (2007)
Nsga2-cpp (ver. 0.2, available at: NSGA2 Non-Sorting Genetic Algorithm II Deb et al. (2002)
https://github.com/dojeda/nsga2-cpp)
libcmaes (ver. 0.9.5, available at: CMAES Covariance Matrix Adaptation Hansen et al. (2003)
https://github.com/beniz/libcmaes) Evolution Strategy

sepaIPOP A variant of CMAES for noisy Hansen (2009)
-CMA problems

N.A. Voting Pairwise voting-clustering Mitra et al. (2006)

Alg. 1 shows the pseudocode of the core module, the ASD controller in ODAS,
for solving the problem in Eq. 10. The pseudocode describes the high-level func-
tions by omitting the distractive technical details. The four inputs to the ASD
controller are: (i) the 3D point cloud C, (ii) the depth of the octree (δ), (iii) the
DFO algorithm algDFO, and (iv) the number of iterations (k) for algDFO. First,
a weighted feature point cloud Cv is sampled using ODAS. Then, the procedure
asks algDFO for promising x (the symmetry parameters) and updates algDFO with
the computed objective value in a k-iteration loop, as shown in Lines 4 to 12 in
Alg. 1. The symmetry with the minimal objective value is recorded as the detected
symmetry. Because the DFO algorithm algDFO evolves the meta-model along the
ASD procedure, the symmetry parameters converge to the optimum and the sym-
metry of the point cloud can be detected. Since the time complexity of computing
the objective value in Eq. 10 (also see Line 6 in Alg. 1) is O(4δ log n), the computa-
tional time of the problem-solving procedure of ODAS is bounded at O(k4δ log n),
which is significantly more efficient than pairwise voting-clustering’s O(n2).

4. Experiments

4.1. Experimental design
Nine cases of real architecture, as listed in Table 3, were selected for validat-

ing the efficiency, accuracy, and robustness of ODAS. These cases represent three
architectural categories: heritage building, modern building, and infrastructure.
The point clouds of the nine cases were retrieved from airborne LiDAR datasets
collected by various government agencies or the research team, without any pre-
processing such as denoising. The number of points in the cases varies from
about 0.01 million to 1.4 million, representing small-scale to large-scale clouds.
The densities of the selected point clouds also cover a broad spectrum from 4
points/m2 to over 2,000 points/m2. Three cases were LiDAR data on the Hong

10

https://github.com/stevengj/NLopt/
https://github.com/jeremyfix/popot
https://github.com/dojeda/nsga2-cpp
https://github.com/beniz/libcmaes


Algorithm 1: The ASD controller in ODAS
Input : C, δ, algDFO, and k
Output: The global symmetry of C

1 Cv ← get octree sampling (C, δ);
2 fbest ← +∞;
3 xbest ← ∅;
4 for i← 1 to k do // k iterations

5 x← algDFO.ask for a trial ();
6 f ← compute f (x); // using Eq. 10

7 algDFO.tell and update (x, f );
8 if f < fbest then // a better obj value found

9 fbest ← f ;
10 xbest ← x; // recording x
11 end
12 end
13 Return xbest;

Kong 1980 Grid (EPSG:2326) from CEDD (2015), five cases were LiDAR data
on the Irish Grid (EPSG:29903) (Laefer et al., 2017), and also one case was a
photo-based point cloud (Xue et al., 2019a). The task was set to detect the global
reflection symmetries for each case. For quantifying the symmetries and bench-
marking the efficiency of the algorithms, two performance metrics were used.
One metric is the PCR, i.e., Eq. 3, where the error tolerance ε = 0.005. The other
metric is the computational time in single threading mode on a desktop computer
with XEON E5-2690 v4 2.6 GHz CPUs, 64 GB memory, Ubuntu 16.04, where
the depth of octree sampling was δ = 4. To sum up, this selection of various
cases and metrics aims to validate the efficiency, accuracy, and robustness of the
proposed ODAS using different ASD scenarios characterized by types of archi-
tecture, scales of point cloud, and point densities. The algorithms tested in the
experiments included all eight algorithms listed in Table 2.

4.2. Benchmarking and comparison of various algorithms
For each test case listed in Table 3, a DFO algorithm was tested with 7 different

values of k, ranging from k = 102 to 104, in an exponential order; Using an
exponential, rather than a linear or polynomial, variation for benchmarking can
expose the ODAS to more extreme scenarios. For each value of k, the resulting
metrics, i.e., PCR (Eq. 3) and time, were the average values from 100 independent
runs of Alg. 1. The average results of the seven DFO algorithms are shown in
Fig. 3. It can be observed that DIRECT is the algorithm found to have the best
average correspondence when k < 2, 000, while sepaIPOP-CMA, ABC, CMAES,
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Table 3: List of point clouds of nine cases of symmetric architecture

Category Id Name of architecture n Density Geolocation Type Spatial ref. Source
Heritage 1 Main Building, University 29,756 4 22.28418, 114.13780 LiDAR EPSG:2326 CEDD (2015)
building of Hong Kong

2 Dublin City Hall 459,386 > 100 53.34386, −6.26716 LiDAR EPSG:29903 Laefer et al. (2017)
3 Hung Hing Ying Building, 1,413,211 > 2, 000 22.28462, 114.13785 Photo-based Xue et al. (2019a)

University of Hong Kong
Modern 4 One George’s Quay Plaza, 1,170,122 > 100 53.34676, −6.25337 LiDAR EPSG:29903 Laefer et al. (2017)
building Dublin

5 47-51 O’Connell St. Upper, 395,818 > 100 53.35135, −6.26167 LiDAR EPSG:29903 Laefer et al. (2017)
Dublin

6 Western District Fruits 44,699 4 22.28896, 114.13576 LiDAR EPSG:2326 CEDD (2015)
Wholesale Market, Hong Kong

Infra- 7 Samuel Beckett Bridge, Dublin 570,338 > 100 53.34695, −6.24132 LiDAR EPSG:29903 Laefer et al. (2017)
structure 8 Seán O’Casey Bridge, Dublin 223,213 > 100 53.34748, −6.24799 LiDAR EPSG:29903 Laefer et al. (2017)

9 Two piers at Victoria Harbor, 12,631 4 22.28963, 114.13557 LiDAR EPSG:2326 CEDD (2015)
Hong Kong

and MLSL-LDS converged to the DIRECT when k ≥ 5, 000. NSGA2 is shown
to have fallen behind the other six DFO algorithms in Fig. 3a. Fig. 3b shows the
average computational time spent by each DFO algorithm with different k. Log-
linear trends can be observed for all the test DFO algorithms, which validates the
theoretical time complexity of the proposed method in Sect. 3.1, i.e., O(k4δ log n).
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Figure 3: Comparison of the average results of the seven DFO algorithms (δ = 4, 100 independent
runs)

Fig. 4 shows the comparison between the proposed approach ODAS (using
DIRECT algorithm) and the conventional voting-clustering method. For ODAS,
the results of ASD were unsuccessful (below 90% average correspondence) until
k ≥ 500, while the results of voting method were unsuccessful until δ ≥ 8. In
addition, the average ODAS computational time was hundreds of times shorter
than that of the voting methods. Thus, the voting methods were dominated, i.e.,
inferior in both correspondence and time, by the Pareto frontier formed by ODAS
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using the DIRECT algorithm. Nevertheless, the voting methods showed efficiency
— though unsuccessful — in the bottom left of Fig. 4.
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Figure 4: Comparison of average performance metrics between the ODAS using the DIRECT
algorithm (δ = 4) and the conventional pairwise voting-clustering method

Table 4 presents a detailed comparison of different methods in the case of the
Hung Hing Ying Building, which contains over 1.4 million points. There were
two reasons for selecting this case: (i) it was the case with the most (and the most
dense) points, and (ii) it was an outlier case on which the ODAS returned a 0.02%
lower PCR than the conventional voting method — unlike the average results show
in Fig. 4. Because the computational complexity is O(k4δ log n), the approach was
more than 1,000 times faster than the conventional voting method. It should be
noted that the results of ODAS in Table 4 were median values, while the best PCR
in the 100 runs was 96.06%. In contrast to the CMAES in Xue et al. (2019a), the
approach in this paper improved considerably all the metrics including correspon-
dence, computational time, and RMSD. The reasons for this improvement include
an effective octree-based weighted sampling (see Eq. 7), the weighted sum of two
symmetry metrics (see Eq. 10), and the very competitive DIRECT algorithm when
k is small (see Fig. 3a). In addition, the data on the correspondence and RMSD
in Table 4 show that Eqs. 3 and 4 are not monotonic (referring to Sect. 3.1); e.g.,
Votingoriginal cloud returned a better (higher) correspondence but a worse (higher)
RMSD than ODAS.

In summary, the proposed ODAS approach was found to be successful in all
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Table 4: Comparison with ASD methods in the literature on the Hung Hing Ying Building case
(the best value in each column is in bold)

Method PCR (%) Time (s) RMSD (m)
Votingoriginal cloud (Mitra et al., 2006) 96.01 4098.3 0.098
CMAES (k = 200) (Xue et al., 2019a) 92.65a 98.7 0.293
ODAS (δ = 4, k = 1, 000, median of 95.99 3.7 0.095
100 runs, DIRECT algorithm)
a: Recalculated with the setting (ε = 0.005) in this paper

architectural types using modern DFO algorithms including DIRECT, CMAES
and its variants, ABC, and MLSL-LDS. DIRECT is the best in terms of accuracy
when k is small (e.g., k < 2, 000), as shown in Fig. 3a, while five algorithms
including DIRECT, sepaIPOP-CMA, ABC, CMAES, and MLSL-LDS have very
close accuracy when k ≥ 5, 000. Driven by these advanced algorithms, the pro-
posed ODAS is significantly faster and more accurate than conventional voting-
clustering methods, as compared in Table 4.

4.3. Results and parameter sensitivity using the DIRECT algorithm
Table 5 shows the median results of global ASD by ODAS using the DIRECT

algorithm. The segmented symmetric parts validated that all the detected sym-
metries were correct and accurate. Furthermore, the overall PCR for the dataset
was about 94% in about 2s on average. Also interesting were some asymmetric
parts in the results. For example, the point cloud of One George’s Quay Plaza
(No. 4) lost its as-designed asymmetry, i.e., the carpark entrance, see Table 5 and
Fig. 5a, as intended. In the case of Samuel Beckett Bridge (No. 7), all the stay
cables surprisingly fell aside the plane axis of the detected global symmetry. An
as-built asymmetry, about 0.5 m difference on the bridge deck, was confirmed by
an approximate measurement on an aerial photo; see Table 5 and Fig. 5a.

ODAS has two primary parameters, i.e., the depth of octree (δ) and the num-
ber of iterations (k) if the DFO algorithm is selected. Fig. 6 shows the variation
of the average correspondence and the average computational time under differ-
ent parameter combinations. Fig. 6a reveals that there exists a satisfactory, steady
plateau where δ ≥ 4 and k ≥ 1, 000 (in red color). The results of ASD were
insensitive to the two parameters if they were on the plateau. Fig. 6b shows the
variation of the expected computational time, where the computational time in-
creased with both k and δ. The dashed box in Fig. 6b represents the area of the
preferred plateau in Fig. 6a. Fig. 6b shows that some preferred parameter combi-
nations, such as (δ = 4, k = 1, 000), spent only a few seconds (between the curves
of 1.07 and 3.03 seconds) on average.
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Table 5: List of results of global ASD by ODAS (Median of 100 runs)

Id Thumbnail of input Normalb Symmetric partsc PCR Time Intrinsicd

point clouda (C) of Sym. segmented (%) (s) asymmetry

1

 1.026
−0.046

0


86.29 0.81

2

0.171
0.036

0


85.22 1.79

3

−0.080
0.004

0


95.99 3.68

4

−1.979
2.242

0


95.44 2.77 As circled

5

 0.956
−3.256

0


97.11 2.21

6

0.251
0.068

0


96.96 0.60

7

 2.687
−0.243

0


97.51 3.05 As circled

8

−0.011
0.001

0


99.49 5.25

9

−6.791
−1.866

0


94.56 0.32

Average: 94.29 2.22
a: Color represents height ramp;
b: Origin is the center, e.g., the symmetry for #1 was 1.026x − 0.046y + 1 = 0.
c: The front part is in color for comparison;
d: Occlusion and environment were excluded.
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(a) As-designed asymmetry (car park entrance) of the No.
4 building

(b) As-built asymmetry on the deck of No. 7, where the
east half is about 0.5m wider

Figure 5: Aerial photos about the detected intrinsic, local asymmetries (Source: Google Maps)
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Figure 6: Parameter analysis of the depth of octree (δ) and the number of iterations (k) in ODAS

To differentiate the effects of the two primary parameters of ODAS, Table 6
lists the Pearson’s correlations between the parameters and the performance met-
rics. The δwas compared to logarithms of iterations (log10 k) and average time, be-
cause a linear variation in δ caused exponential change in the time, i.e., O(k4δ log n),
which was equivalently led by exponential variations in k. The results in Table 6
show that the average PCR had a significant strong positive correlation with the
depth of octree (δ). Meanwhile, the logarithm of the average time had a significant
strong positive correlation with the depth of octree (δ) and a significant weak pos-
itive correlation with the logarithm of iterations (log10 k). The correlation between
the average PCR and the logarithm of iterations (log10 k) was not significant at the
0.01 level. In other words, depth of octree (δ) plays a more critical role than the
number of iterations (k) in effective ASD.
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Table 6: Pearson’s correlations between the two primary parameters of ODAS and the performance
metrics (N = 49)

Parameter Statistic Average PCR (%) log10 average time/s
δ Pearson Cor. 0.720a 0.897a

Sig. (2-tailed) 0.000 0.000
log10 k Pearson Cor. 0.331 0.441a

Sig. (2-tailed) 0.020 0.001
a: Correlation is significant at the 0.01 level (2-tailed).

5. Discussion

Effective detection of the symmetries omnipresent in architecture and their
digital reconstruction in building and city information models (i.e., BIMs and
CIMs) has many valuable applications. Currently, available algorithms for ASD
from point clouds elicit unsatisfactory accuracy and efficiency. Identification of
effective and efficient mathematical algorithms for the problem of ASD will fa-
cilitate the development of digital reconstruction for buildings and may improve
responses to currently available point cloud processing methods and algorithms.

This paper proposes a novel ODAS approach for ASD with a particular fo-
cus on DFO algorithms which showed promising results in a previous study (Xue
et al., 2019a). This study extends the mathematical formulation of general sym-
metry to all types of architectural symmetries by including the conditions about
PCR, RMSD, and architectural regularity; in contrast, Mitra et al. (2006) only em-
phasized on an implicit objective of PCR and the objective in Xue et al. (2019a)
was a weighted sum of a variant of RMSD and architectural regularity. Through
a combination of octree-based weighted sampling (See Sect. 3.1) and a k-iterated
searching strategy (Alg. 1), we bounded the computational time complexity of
ODAS to O(k4δ log n), which is efficient for processing large-scale point clouds.
In contrast, the computational time complexity of Mitra et al. (2006) was O(n2)
and that of Xue et al. (2019a) was O(k n log n). The experimental results of a
series of tests on three categories of architectures confirmed both the efficiency,
e.g., over 1,000 times faster than the voting-clustering (Mitra et al., 2006), and
accuracy of ODAS, see Fig. 4 and Table 4.

ODAS includes a long list of state-of-the-art algorithms and will be open
source for non-profit applications involving ASD. Users can utilize ODAS freely
for the ASD functions with a few lines of code. It offers a broad spectrum of
algorithm candidates for different real-life application scenarios based on the pa-
rameter sensitivity and correlational analysis shown in Fig. 6 and Table 6. For
example, if allowed computation time is tight, i.e., k is small, a user can choose
the DIRECT algorithm; if a large k is allowed, other algorithms such as CMAES,
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ABC, MLSL-LDS, or even a ‘tournament’ (sequential running) of all, can be used.
Besides the approach itself, there were two minor findings. One was the non-

monotony between the two well-known symmetry conditions, i.e., Eqs. 3 and 4, in
the point clouds of architectures. The other was that that the detected architectural
symmetries were also useful to identify the intrinsic asymmetries, such as the as-
designed asymmetry of car-park entrance and the as-built asymmetry of bridge
deck shown in Table 5 and Fig. 5.

Nevertheless, the proposed ODAS has some limitations that should be consid-
ered in future studies:

i. So far, ODAS only works with the classic symmetries with linear or planar
symmetry axes. Many intrinsic architectural symmetries are non-classic, e.g.,
those with L- or J-shape curved symmetry axes or those that are rotational
over the storey. Such symmetries are not yet accurately detectable with the
pilot version of ODAS. Given that they are increasingly seen in modern ar-
chitecture, ODAS should be extended in the future to work with non-classic
symmetries.

ii. Although the proposed optimization-based approach is competitive in finding
one symmetry at a time, it is handicapped in the task of finding repetitions —
which can be seen as symmetry compositions of translations and rotations.
For example, there can be hundreds of repeated windows and balconies on
a modern high-rise building facade. Most mathematical optimization meth-
ods, such as the seven included in ODAS, return only one optimal solution,
e.g., a translation or a pair of instances, to ASD. However, there exists a set
of multi-modal optimization (MMO) algorithms such as variants of PSO (Li
and Yao, 2012) that can find all optimal solutions for all repetitions. There-
fore, extension of ODAS using MMO algorithms is another future research
direction.

iii. The two primary parameters, i.e., k and δ, were tuned to be 1,000 and 4,
respectively, based on the experiments in which the error tolerance ε was a
constant value of 0.005. However, to what extent the constants can effectively
and efficiently achieve ASD for the untested architectural styles remain un-
clear. For example, the settings might fail if the input point cloud is too small,
e.g., n < 200. How to adapt the parameters and the approximated symmetry
conditions in Eqs. 7 and 8 automatically is another issue.

iv. Last but not least, some DFO algorithms such as CMAES and PSO are known
to be unstable, i.e., the results of ASD can be slightly affected by the initial
‘seed’ of the pseudo-random number generator (RNG). Other algorithms such
as DIRECT and voting-clustering are more stable. Therefore, the automatic
selection of algorithms from ODAS should consider the demands of stability
in different application scenarios.
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6. Conclusion

This paper introduces a derivative-free optimization (DFO)-based approach
for architectural symmetry detection (ASD) from 3D point clouds of real-world
architecture. It does so by firstly transforming ASD into a nonlinear optimiza-
tion problem, and then developing an in-house ODAS (Optimization-based De-
tection of Architectural Symmetries) approach to solve the formulated problem.
The computational experiments on various real-life architecture cases prove that
ODAS is significantly faster and more accurate than existing methods, taking only
3.7 seconds to detect global architectural symmetry from a large-scale point cloud
of, for example, about 1.4 million points.

The contributions of this paper are three-fold. Firstly, formulating ASD as a
nonlinear optimization problem so that numerous state-of-the-art DFO algorithms
can be applied constitutes a methodological innovation. Secondly, the up-to-date
DFO algorithms developed in this study will be embedded in an open access
source so that other researchers can benchmark their work in this field. Thirdly,
the ODAS approach can be directly used by software vendors, researchers, and
others to develop BIMs and CIMs. By triangulating the ODAS and inexpen-
sive 3D point cloud data, the symmetries and inferred structural and topological
semantics may contribute to geometrically accurate, effectively compressed by
component abstraction, and semantically rich BIMs and CIMs for various value-
added applications. Further studies can be conducted in directions including in-
trinsic non-classic symmetry detection, multi-modal local symmetry detection,
automatic parameter determination, and automatic algorithm selection.
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