

THE UNIVERSITY OF HONG KONG 香港大學 **faculty of architecture 建築學院**

From geometric landscape to fitness landscape As-built BIM reconstruction through optimization 从几何到适应度景观 应用优化算法自动重建 BIM 模型

Sch. of Civil Eng. & Mech., HUST 华中科技大学 土木工程与力学学院 27 May 2019

Frank Xue 薛帆

<u>www.frankxue.com</u>

Research Assistant Professor 助理教授(研究) Dept. of REC, HKU 香港大学 房地产及建设系 iLab, HKURBANIab, HKU 香港大学 iLab 实验室

Section 1 BACKGROUND & OPPORTUNITIES

1.1 As-built modeling

♦ As-built modeling (Volk et al. 2014)

Increasingly important for AEC/FM⁺

- Construction management
- Facility management
- Built env. conservation
- Smart city

₫a

iLab

- Self-driving car, *etc*.
- Popular models and technologies

Point clouds (Photogrammetry, laser scanning)

Triangle mesh models (3D Maps)

建成BIM 🖒 🗉 Volumetric as-built BIMs

• Also: As-designed, as-planned, as-demolished

F Xue: Geometric & fitness landscapes, 27 May 2019, HUST

†: Architecture, Engineering and Construction/ Facilities Management

FOG

Example of photogrammetry: Kowloon Wall City (Source: patrick-@sketchfab.com)

Example of point cloud: Pompei City (Source: MAP-Gamsau lab, CNRS, France)

Example of GIS-based: 3D Berlin (Open Data, source: berlin.de)

iLab

1.1 As-built BIM reconstruction

- Manual reconstruction?
 - Accurate, high-quality, & responsible
 - Expensive, tedious, or impractical for frequent update/cities
- ♦ Two paradigms of automatic reconstruction
 - ■(1) Semantic segmentation 语义分割
 - Step 1: To cut and label data to small patches (objects) (e.g., slicing bridge piers/deck)
 - Step 2: To fit object parameters (e.g., width, height of a wall)
- 本节 🖒 🗉 (2) Semantic registration 语义对齐
 - $_{\circ}~$ Step 1: To annotate standard BIM components
 - E.g., online open BIM resources
 - $_{\circ}~$ Step 2: To register into the whole data

Example of Step 1 of Paradigm (1) (Qi et al. 2017)

1.2 Geometric landscape in semantic registration

♦ Landscape

iLab

- 景观 Land scape: Appearance of land
 - Nature: Continuous surface
 - Peaks and valleys
 - Geometric landscape in 3D data of building scenes

儿何景观 ■ Also appearance

- Nature: Point/surface polygon
 - Discrete, noisy, cluttered
- Peaks and valleys
 - \circ On building elements

Landscape (Source: Wikipedia)

1.2 Problem: Fitness landscape in optimization

- Optimization problem
 - Find the best solution (e.g., $\min f(x) = |x|$)
- Fitness landscape
- 适应度景观

iLab

- Appearance of *f*
- Peaks/valleys contain the solutions
 - Where gradient $\nabla f = 0$
- Fitness landscape for registering BIM
 - Reflecting the geometric landscape
 - Many methods are not working
 - Up to 9 degree-of-freedoms (DoFs)
 - Continuous, jugged
 - Too expensive to calculate derivatives (∇)

1.3 Opportunity: Derivative-free optimization

♦ Derivative-free optimization (DFO) algorithms solve without explicit V

Surrogate methods

iLab

- CMA-ES and its variants are competitive
- Trust-region methods
 - DIRECT, NEWUOA, etc.
- Metaheuristics (GA, PSO, VNS, etc.)
- Hyper-heuristics, data mining
- ... and Monte Carlo
- OFO can bridge the two landscapes

Comparison of algorithms for BBOB-2009 (Black-Box Optimization Benchmarking, higher is better) (Auger et al., 2010) *Image courtesy: Inria*

Section 2 THE METHOD

2.1 Overview

- iLab
- Semantic registration through optimization
 - Two inputs, BIM (pose/relationship) output
 - Function : Minimize error (or maximize similarity)
 - Variables : 3D transformation
 - Subject to: Topological constraints

iLab

2.2 Prototype demo (Xue et al., 2018; 2019b)

- ♦ PCD/2D photos + BIM objects \rightarrow as-built BIM
 - Automatic
 - Segmentation-free
 - Semantic
 - Accurate
 - Efficient
- ♦ COBIMG
- DFO: CMA-ES
 A quick demo

2.3.1 Case 1: An indoor office scene (Xue et al., 2019b)

(Language: C++, CLR; Data formats: Autodesk Revit, Stanford polygon)

₫a

🧔 2.3.1 Case 1

- ♦ Indoor modeling
- iLab

- Accurate: 3.87 cm, 100% recall
- Fast: 6.44 s
- Rich semantics: Product, assembly, *etc*.

Modeler No.	Experience	Correctness (out of 8)	RMSE (cm)	Time cost (s)
1	Expert (3 years)	8	3.79	363.9
2	Average (1 year)	8	3.90	335.4
3	Beginner	8	4.22	691.1
COBIMG -Revit		8	3.87	6.44
COBIMG-Revit + annotation		8	3.87	~ 246.0

Properties X			Type Properties		
Steelcase 425W x 42	AP - B Free - Cube 25D		Eamily:	Steekcase AP - B F	
Furniture (1)	🗸 🔂 Edit T	ype	The	TESTE A TEST	
Upholstery for Top Upholstery	Steelcase AP - SL S Steelcase AP - SL S		Type Parameters		
dentity Data	\$	2		Parameter	
Image			Identity Data		
Comments			URL		
Mark			Style Number(s)		
Phasing		٤ 👘	Release Date		
Phase Created	Project Completion		Product Line		
Phase Demolished	None		Product		
Other	\$	٤.	Manufacturer		
COBIMG_ID	Type2-Inst1		Copyright		
COBIMG_translation	[0,796,-3.694,0.000]		AutoCAD Tag		
COBIMG_children			Authoring Version		
COBIMG_parent	Ground		Assembly Code		
COBIMG_rotation	4.677;[0.0,0.0,1.0]		Type Image		
COBIMG_manifold		~	Keynote		
Properties bein Armhu			Model		
Toperclas neip	mp page		Type Cor	mments	
Project Browser - ilab-demo-revit.rvt			Description		
□ [O] Views (all)		~	Cost		
E - Floor Plans			Assembly Description		
Ceiling Plans			Type Ma	Type Mark	
B - 3D Views			OmniCla	ss Number	
 Elevations (Building Elevation) 			OmniClass Title		
- E Legends					
Schedules/Quar	ntities				
⊞ 🗟 Sheets (all)			<< Pre	view	
E PI Families					

F Xue: Geometric & fitness landscapes, 27 May 2019, HUST

(Language: C++, CLR; Data formats: Autodesk Revit, Stanford polygon)

×

Load... Duplicate.

Rename...

ree - Cube

BF1300010 January 2018 Welcome/ In Between B Free. © 2010 Steelcase Inc. 425W x 425D Revit Architecture 2014 E2020200

Furniture & Accessories

General Furniture and Specialties

Cancel

23.40.20.00

1v

4

Value

Case 3: Architectural symmetry (Xue et al. 2019a)

<mark>ва</mark> iLab

(iii) The Point cloud viewport (testing a series of symmetries)

Section 3 DISCUSSION

3.1 Discussion

iLab

- Semantic registration for as-built BIM
 - Converts geometric landscape to fitness landscape
 - Reuses online open BIM resources
 - Finds optima (objects in as-built BIM) using DFO
 - Automatic
 - Segmentation-free
 - Accurate
 - Efficient
 - Good for complex-shaped objects
- ♦ Drawbacks
 - Require annotations beforehand
 - Killer (downstream) applications

iLab

References

- Auger, A., Finck, S., Hansen, N., and Ros, R. (2010). BBOB 2009: Comparison tables of all algorithms on all noisy functions, INRIA.
- National Institute of Building Sciences. (2015). National Building Information Modeling Standard. Version 3, Retrieved from https://www.nationalbimstandard.org/
- Qi, C. R., Su, H., Mo, K., & Guibas, L. J. (2017). Pointnet: Deep learning on point sets for 3d classification and segmentation. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition* (pp. 652-660).
- Volk, R., Stengel, J., and Schultmann, F. (2014). Building Information Modeling (BIM) for existing buildings—Literature review and future needs. *Automation in Construction*, *38*: 109-127.
- Xue, F., Lu, W., Chen, K. (2018). Automatic generation of semantically rich as-built building information models using 2D images: A derivative-free optimization approach. *Computer-Aided Civil and Infrastructure Engineering*, 33(11), 926-942.
- **Xue, F.**, Lu, W., Webster, C. J., & Chen, K. (2019a). A derivative-free optimization-based approach for detecting architectural symmetries from 3D point clouds. *ISPRS Journal of Photogrammetry and Remote Sensing*, *148*, 32-40.
- Xue, F., Lu, W., Chen, K., & Zetkulic, A. (2019b). From Semantic Segmentation to Semantic Registration: Derivative-Free Optimization–Based Approach for Automatic Generation of Semantically Rich As-Built Building Information Models from 3D Point Clouds. *Journal of Computing in Civil Engineering*, 33(4), 04019024.
- Xue, F., Lu, W., Chen, K., & Webster, C. J. (2019c). BIM reconstruction from 3D point clouds: A semantic registration approach based on multimodal optimization and architectural design knowledge, *Advanced Engineering Informatics*, (under revision)

THE UNIVERSITY OF HONG KONG 香港大學 **faculty of architecture 建築學院**

