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Abstract6

Reconstructing semantically rich building information model (BIM) from 2D images or 3D7

point clouds represents a research realm that is gaining increasing popularity in architecture,8

engineering, and construction. Researchers have found that architectural design knowledge,9

such as symmetry, planarity, parallelism, and orthogonality, can be utilized to improve the10

effectiveness of such BIM reconstruction. Following this line of enquiry, this paper aims to11

develop a novel semantic registration approach for complicated scenes with repetitive,12

irregular-shaped objects. The approach first formulates the architectural repetition as the13

multimodality in mathematics. Thus, the reconstruction of repetitive objects becomes a14

multimodal optimization (MMO) problem of registering BIM components which have accurate15

geometries and rich semantics. Then, the topological information about repetition and16

symmetry in the reconstructed BIM is recognized and regularized for BIM semantic17

enrichment. A university lecture hall case, consisting of 1.9 million noisy points of 293 chairs,18

was selected for an experiment to validate the proposed approach. Experimental results showed19

that a BIM was satisfactorily created (achieving about 90% precision and recall) automatically20

in 926.6s; and an even more satisfactory BIM achieved 99.3% precision and 98.0% recall with21

detected semantic and topological information under the minimal effort of human intervention22

in 228.4s. The multimodality model of repetitive objects, the repetition detection and23

regularization for BIM, and satisfactory reconstruction results in the presented approach can24

contribute to methodologies and practices in multiple disciplines related to BIM and smart city.25
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1 Introduction31

The research reported in this paper is positioned in a small but rapidly growing body of32

literature on reconstruction of building information models (BIM) (Tang et al. 2010; Valero et33

al. 2016; Belsky et al. 2016; Xue et al. 2018). A BIM is a digital representation of physical and34

functional characteristics of a facility to enhance data interoperability and information sharing35

in the building lifecycle (NIBS 2015). The keyword in the term ‘BIM’ is ‘information’ (Lu et36

al. 2019). Schlueter & Thesseling (2009) classified BIM information into three categories37

including geometric, semantic and topological, whereby geometric information directly relates38

to the building form in three dimensions; semantic information describes the properties of39

components (i.e., more advanced rule and function information); and topological information40

captures the dependencies of components. Semantics will become more important as BIM41

grows into a mature technology in architecture, engineering, construction, and even smart city42

development.43

44

Not many existing built facilities have a semantically rich BIM. One approach to make up such45

fault is to enrich a BIM’s semantics manually. The manual method, albeit accurate, is tedious46

and time-consuming (Chen et al. 2015). The cost of manual semantics enrichment may far47

exceed the values that the enriched BIM semantics can generate. Therefore, researchers in48

recent years have endeavored to deploy various semi-automatic or automatic methods to49

reconstruct BIM from high-quality yet inexpensive measurement data, e.g., satellite images, or50

3D point clouds, and enrich semantics in the BIM (Huber et al. 2011; Xiong et al. 2013;51

Barazzetti 2016; Jung et al. 2016; Thomson & Boehm 2015; Pătrăucean et al. 2015).52

53

Volk et al. (2014) categorizes the BIM reconstruction methods into two subclasses, i.e., “data-54

driven” and “model-driven,” based on their principles; while another well-known taxonomy55

distinguishes “Scan-vs-BIM” from “Scan-to-BIM” regarding the involvement of as-designed56

BIM in inputs (Bosché, et al. 2013). However, most approaches in the literature of each57

subclass relied on a generic computer vision process called ‘semantic segmentation’, whereby58

every point in a 3D point cloud (or a pixel in a 2D image) is assigned to a semantic label first.59

The semantic segmentation has its fair share of shortcomings which can be largely alleviated60

by an emerging segmentation-free paradigm (Andreopoulos & Tsotsos 2013; Xue et al. 2019b).61

For example, the ‘semantic registration’ approach fits semantically rich components into an62

intermediate BIM by maximizing the similarity (or minimizing the errors) between the63

reconstructed BIM and the whole measurement data, and subsequently registering them with64

detected semantic information and topological information (Xue et al. 2019b).65

66

Along with the considerable progress in developing methods for BIM reconstruction and67

semantics enrichment, some researchers (e.g. Chen et al. 2018; Wang et al. 2018)68

serendipitously discovered that architectural design knowledge can be utilized to improve the69

efficiency and effectiveness of these methods. Architectural features such as symmetries,70



3

planarity, parallelism, and orthogonality in relationships between building components,71

contain rich semantics in their own right. Properly retrieved, they can be rich semantics to be72

reconstructed into the building information models. Such architectural features are not73

accidental. Rather, they are the result of functions, economics, mechanics, manufacturing, and74

aesthetics (Mitra 2008; 2012) and they therefore represent clues in matching geometric pattern75

with meaning and the related symbolism of language. They can also be applied as constraints76

to effectively eliminate noise in measurement data and to reduce the search space of formulated77

problem (Chen et al. 2017).78

79

Such advances in semantic registration and utilizing architectural domain knowledge have not80

fully overcome difficulties in dealing with complicated scenes with repetitive, complex-shaped81

objects. For example, multiple identical furniture measured as identical point cloud patches are82

the multiple optima, i.e., ‘modes,’ in registering the furniture; but, a unimodal algorithm often83

wastes computational resources on re-explorations without incorporating efficient search space84

structures such as the ‘neighborhood’ topology (Du et al. 2015). Thus, the overall efficiency85

and effectiveness of the existing unimodal registration are relatively low, which is in line with86

unimodal algorithm’s inferior results on various multimodal benchmark datasets (Chen et al.87

2010; Li et al. 2013). The multimodal nature triggered us to apply multimodal optimization88

(MMO) – a well-discussed problem in applied mathematics – to BIM reconstruction in such89

circumstances.90

91

In addition, shape and pattern repetition, which conveys important semantics about the design,92

function, and organization of a facility, has not been widely used for BIM reconstruction. Only93

a few recent studies have explored the modeling of repetitive structural ribs and piers of a94

bridge (Hidaka et al. 2018), openings on walls (Dore & Murphy, 2014; Previtali et al. 2018),95

boundary patterns of rooms (Jung et al. 2018), and indoor furniture (Wang et al. 2018) but they96

focused on simple-shaped objects or noise-free measurement data. Repetition is actually an97

ordering principle in architecture leading to sophisticated patterns and structural regularity to98

support life and well-being in the buildings comprising a city (Ching 2007; Fan et al. 2017).99

Examples of architectural repetitions exist in furniture setups of conference rooms, patterns or100

windows on building facades, as well as city blocks. The repetition-based reconstruction for101

such complex-shaped objects is a research gap that we now address.102

103

We aim to advance the semantic registration approach for BIM reconstruction by104

experimenting multimodal optimization algorithms and applying architectural knowledge like105

repetition patterns. The remainder of the paper is organized as follows. The next section is a106

literature review covering (a) the paradigmatic change from ‘semantic segmentation’ to107

‘semantic registration’ for BIM reconstruction and semantic enrichment; and (b) the108

opportunities to enhance such semantic registration approaches. The third section is a detailed109

description of the MMO-based approach in different languages, e.g., mathematical language110
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and pseudocode. The fourth section presents an experiment using a university lecture hall case,111

consisting of 1.9 million noisy points of 293 chairs as a testbed. Section 5 is an in-depth112

discussion of the implications and limitations of the research and the last section concludes.113

114

2 Literature review115

2.1 From ‘semantic segmentation’ to ‘semantic registration’116

In the context of reconstructing BIM from 2D images and 3D point clouds, there are two well-117

known taxonomies of the BIM reconstruction methods. Volk et al. (2014) categorized the118

shape-based, shape descriptor-based, and material-based matching methods as “data-driven”119

methods while knowledge and context-based methods are “model-driven.” Alternatively,120

Bosché et al. (2013) regarded the BIM reconstruction with referencing to as-designed BIMs as121

the “Scan-vs-BIM” subclass and those without referential BIM resources as “Scan-to-BIM.”122

However, most BIM reconstruction applications in the literature, no matter data-driven, model-123

driven, Scan-to-BIM, or Scan-vs-BIM, relied on semantic segmentation for extracting the124

object surfaces and creating BIM components (Barazzetti 2016; Babacan et al. 2017).125

126

Semantic segmentation is a computer vision process that assigns each point (or pixel in 2D127

images) to a semantic label (Shamir 2008). The segmentation methods involved in BIM128

reconstruction can be broadly grouped into four types: (i) a priori rules, (ii) geometric shape129

descriptors, (iii) supervised machine learning classifiers, and (iv) a combination of these130

methods for multiple types of BIM components. The a priori rules for BIM component131

recognition utilize the regularities of individual components, such as the region-growth132

regarding the planarity of walls and ceilings (Huber et al. 2011) and the prism boundary133

reconstruction of indoor space (Valero et al. 2012). Explicit shape descriptors extract the134

characteristic geometric features for shape matching, such as local convexity (Son & Kim 2017)135

and the Laplace-Beltrami filtering (Wang et al. 2018). Supervised machine learning classifiers136

such as stacking of logistic regression (Xiong et al. 2013), convolutional neural network137

(Babacan et al. 2017), and random forest (Bassier, et al. 2019) have also been applied. Many138

studies employed a combination of multiple segmentation methods for multiple types of BIM139

components, e.g., Nguyen and Choi (2018) removed planar primitives before the RANSAC140

fitting of the cylindrical piping systems, and Czerniawski et al. (2018)’s point density-based141

clustering followed by a bagged decision tree for planar objects. However, these semantic142

segmentation-based methods have three weaknesses in common: (1) unsatisfactory results for143

complex-shaped objects (e.g., decorations, furniture, and appliances) (Wang et al. 2018; Zou144

et al. 2018); (2) reliance on a priori rules or labeled data set for training the correlational models;145

and (3) failure to reuse as-designed or online open BIM resources (Bosché et al. 2013; Xue et146

al. 2018).147

148

Segmentation-free methods have thus been developed recently for overcoming these149

weaknesses. Xue et al. (2018; 2019b) proposed a semantic registration approach that essentially150
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reassembles individual BIM components into a complete model in iterations by minimizing151

the overall error (or maximizing the similarity) between the reconstructed BIM and the whole152

measurement data. So far, semantic registration was validated, on both 2D images and 3D point153

clouds of both indoor and outdoor scenes, e.g., about 80% precision and recall in reconstructing154

293 theater chairs, using unimodal algorithms such as covariance matrix adaptation evolution155

strategy (CMA-ES) (Xue et al. 2019b). Hidaka et al. (2018) developed another segmentation-156

free method, in which similar regions of template CAD models were first adaptively localized157

then fine-tuned by the iterative closest point (ICP) algorithm. These segmentation-free methods158

proven to be successful in making use of existing BIM resources (e.g., components collected159

from open BIM libraries) to enrich the reconstructed BIM with semantics, topology, and fine160

details.161

162

However, the segmentation-free methods still suffer from a few limitations (Xue et al.  2019b).163

The first limitation is that existing segmentation-free methods are not effective and efficient164

enough for complicated scenes with repetitive, irregular-shaped objects. One of the reasons for165

this is that existing semantic registration approaches rely on ‘unimodal’ problem solving, in166

which only one optimal solution can be found in one time. For complicated scenes with167

repetitive objects, unimodal problem solving suffers the unnecessary re-exploration of the168

problem search space in the component-by-component processing. The second limitation is the169

method’s proneness to input errors such as noise, clutters, and occlusion, due to the adoption170

of the objective functions such as the SSIM (structural similarity), RMSE (root-mean-square171

error), and the descriptor-based similarity in Hidaka et al. (2018). The last, but not the least,172

limitation is the availability of online open or as-designed BIM resources and annotated173

topological requirements, so that they may not work on unique and tailor-made components.174

175

2.2 Two opportunities to enhance the ‘semantic registration’ approaches176

Multimodal optimization (MMO) can enhance the segmentation-free methods by addressing177

the first limitation, i.e., to enhance effectiveness and efficiency for complicated scenes. MMO178

is a class of non-linear optimization that aims to find all the optimal solutions (i.e., ‘modes’)179

to a multimodal problem (Das et al. 2011). For instance, the problem “arg minx∈[0,10π] cos(x)”180

has five solutions, i.e., 1, 3π, 5π, 7π, and 9π. Due to the multimodality, an MMO algorithm can181

find all the five values, while a unimodal algorithm can only find one (Xue et al. 2019b; Kim182

et al. 2013). MMO algorithms have been applied to many complicated problems with multiple183

local optima, such as protein structure prediction (Wong et al. 2010) and engineering design184

(Forrester & Keane 2008). Recent MMO competitions showed that NMMSO (niching185

migratory multi-swarm optimizer), RS-CMSA-ES (covariance matrix self-adaption evolution186

strategy with repelling subpopulations), and NEA2+ (niching the CMA-ES via nearest-better187

clustering) are among the best algorithms (Li et al. 2013; Fieldsend 2014; Ahrari et al. 2017;188

Qu et al. 2012). For example, NMMSO dynamically manages a large set of Particle Swarm189

Optimization (PSO) processes for a balanced search for all solutions. MMO algorithms’190
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exclusive capability to handle multimodal problems thus provides an opportunity to191

complement the existing research of unimodal algorithms for segmentation-free methods for192

BIM.193

194

The use of architectural domain knowledge can help address the problem of noisy data and195

occlusion, i.e., the second limitation of the segmentation-free methods. Several previous196

studies have made use of architectural domain knowledge in the building reconstruction197

process. For example, Fisher (2003) described the application of standard feature relations to198

enhance the building reconstruction. De Luca et al. (2006) proposed a reconstruction approach199

that used architectural design knowledge to interpret architectural shapes from 3D point clouds.200

Likewise, Liu and Wu (2016) presented a rule-based method to reconstruct historical building201

with different architectural styles. In addition, Chen et al. (2018) applied a fundamental202

regularization rule to rooftop elements from noisy LiDAR point clouds and reconstructed over203

one thousand buildings located in Hong Kong Island. However, most of these studies were204

limited by the use only of parallel or orthogonal relationships between building components,205

paying less attention to the repetitions that embed meaningful architectural domain knowledge.206

Our anticipation in starting this study was that the two opportunities, i.e., MMO and repetition207

as architectural domain knowledge, will enhance the ‘semantic registration’ approaches to BIM208

reconstruction.209

210

3 Methodology211

To reiterate, this study focuses on developing a novel semantic registration approach to BIM212

reconstruction by exploring MMO algorithms and making good use of architectural repetition.213

The approach proposed, as shown in Figure 1, consists of three steps: mathematical formulation,214

reconstruction of an intermediate BIM based on multimodality of repetition, and regularization215

of the intermediate BIM using repetition formations. The first two steps are fully automated216

for an intermediate BIM output based on candidate components with accurate geometry and217

rich properties, while the last one is semi-automated for the detection and regularization of218

topological relationships about repetition and symmetry for a final BIM output. There are two219

differences between the proposed approach and previous semantic registration applications in220

Xue et al. (2018; 2019b). First, the problem formulation changes from constrained optimization221

to multimodal optimization, while the solving algorithms which convey automatic222

reconstruction evolve from unimodal algorithms to MMO ones. Secondly, the architectural223

design knowledge, such as repetition and symmetry, is applied to recognition and224

regularization of repetition formations for BIM reconstruction, so that the approach can benefit225

from both data-driven and model-driven principles.226

227
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228
Figure 1. A general framework of the proposed MMO-based semantic registration approach229

230

3.1 Mathematical formulation231

The semantic registration approach requires two inputs, i.e., measurement data (e.g., a 3D point232

cloud or 2D images) and a set of BIM components annotated with topological relationships233

(Xue, et al. 2019b). To highlight the repetition patterns of components, the BIM reconstruction234

task in this paper has two data inputs. One input is a ‘scene cloud’ S = { p1, p2, …, pn }⊂ℝ³ of235

n points of repetitive objects. The other is a candidate BIM component of the repetitive objects,236

such as a parametric Revit family, from which a ‘component cloud’ ࣝ = { p1, p2, …, pm }⊂ℝ³237

of m visible surface points is evenly sampled. The task of BIM reconstruction is thus equivalent238

to an optimization problem that finds all the instances of ࣝ in S:239

arg min f(x) = RMSE(ࣝ(x), S) = [ଵ
m
Σp∈ࣝ(x) || p–N (p, S) ||²]½

s.t. C(x) ≤ 0,
ࣝ(x) = {Tx(p) | p ∈ ࣝ},

Tx(p) = Rp + [tx, ty, tz]T,

R = ൥
cos ௭ݎ −sin ௭ݎ 0
sin ௭ݎ cos ௭ݎ 0
0 0 1

൩ ቎
cos ௬ݎ 0 sin ௬ݎ
0 1 0

− sin ௬ݎ 0 cos ௬ݎ
቏ ൥
1 0 0
0 cos ௫ݎ −sin ௫ݎ
0 sin ௫ݎ cos ௫ݎ

൩,

x    = [tx, ty, tz, rx, ry, rz]T ∈ ℝ⁶

(1)

where x indicates the six degrees of freedom (DoFs) about 3D translation (i.e., tx, ty, tz) and240

rotation (i.e., rx, ry, rz), RMSE is the root-mean-square error function to minimize, N (p, S)241

returns the nearest point of p in S, C represents the topological constraints such as “a window242

must reside on a wall” and “a desk sits on horizontal surfaces” (Belsky et al. 2016; Xue et al.243

2018). The expression “C(x) ≤ 0” is a general form of constraint equations and inequalities,244

e.g., a constraint c1(x) ≥ a is equivalent to c1
’(x) = a – c1(x) ≤ 0, and c2(x) = 0 is equivalent to245

c2(x) ≤ 0 and c2
’(x) = – c2(x) ≤ 0. The point cloud ࣝ(x) is a permutated instance of ࣝ transformed246

by a Euclidean transformation Tx defined on x. R is a 3×3 orthogonal matrix of rotation, i.e., R247

RT = I3, [rx, ry, rz]T in x is the (proper) Euler angular vector about the axes, and t = [tx, ty, tz]T is248

the translation vector of the origin.249

250

It should be noted that Eq. (1) involves one component for clarity of presentation; it, however,251

does not degrade the generality of the formulation. The reason lies in the incremental build252
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phase of semantic registration: Given an i-th component and a set { 1(x1), ࣝ2(x2), …, ࣝi–1(xi–1) }253

of i – 1 reconstructed components, we can note ࣝ(x) = ࣝi(x) ∪ ࣝ1(x1) ∪ ࣝ2(x2) ∪ … ∪ ࣝi–1(xi–1)254

in Eq. (1) to represent the whole model. In the current study, we only uses RMSE in Eq. (1) for255

simplicity of the objective function. More as-demanded metrics, such as the non-256

correspondence rate (NCR) (Van Kaick, et al. 2011), values of point colors (grayscale or true257

color), and laser reflectance, can extend the f in Eq. (1) in practice.258

259

An ideal mode (optimal transformation parameters) x* yields f(x*) = fmin (e.g., 0), that is,260

minimal geometric error (or fully corresponded in case of Eq. (2)) between the permutated261

instance cloud ࣝ(x) and the measured scene cloud S. If there are multiple instances of a262

parametric BIM component, there should exist multiple modes to Eq. (1). Therefore, it is clear263

that the formulated problem is a multimodal problem. However, the point cloud of a real264

building or area inevitably has instrumental, environmental, and calibration errors. In addition,265

the points of different instances inevitably have heterogeneous point density, geometric266

accuracy, occlusion, and clutters. Therefore, the ideal condition of “arg min” in Eq. (1) is often267

relaxed to a satisfactory condition f(x*) ≤ ε, where ε is a small error tolerance. The set X* of268

multiple satisfactory (Note: rather than ideal or optimal) solutions thus are:269

X* = { x* | f(x*) ≤ ε }, (3)
where x* indicate one satisfactory solution (mode) to Eq. (1).270

271

3.2 BIM reconstruction based on multimodality of repetition272

The detailed processes of the proposed MMO-based BIM reconstruction is shown in Figure 2.273

In general, this step includes the two phases of semantic registration, i.e., the incremental build274

phase and the fine-tuning phase. The difference between the proposed approach and Xue et al.275

(2019b) is the employment of NMMSO, one of the best MMO algorithms, instead of the276

unimodal CMA-ES algorithm due to intrinsic multimodality in the formulated problem. Due277

to the evolutionary searching strategies of NMMSO, the unnecessary re-exploration of search278

space, a drawback of unimodal semantic registration, was largely eliminated. The proposed279

approach was implemented in an in-house developed software plugin COBIMG-Revit280

(Constrained Optimization-based Building Information Model Generator-Revit; source code281

available at: https://github.com/ffxue/cobimg).282

283
Figure 2. Zoom-in of the proposed MMO-based BIM reconstruction for repetitive objects284

285
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As the output of the MMO algorithm, the set X* in Figure 2 is the multiple satisfactory solutions286

about the input BIM component, as defined in Eq. (3). However, not every satisfactory solution287

leads to a feasible instance, this being due to the ε-relaxation which extends the set X* to include288

solutions near the optimal solutions. For example, the problem “arg minx∈[0,10π] cos(x)” has five289

exact solutions while the relaxed problem “cos(x) < –1 + ε, ε > 0, x ∈ [0, 10π]” has many. MMO290

algorithms have native strategies, called distance “tolerance”, before forking into new modes,291

which handles this problem in part. However, the distance tolerance is in 6D in our study,292

instead of the Euclidean 3D. As a result, there still exist a number of clashes between BIM293

components if the full set X* is used for creating new instances.294

295

A greedy process, as shown in Figure 2, is employed to cleanse the MMO solutions X* by296

accepting non-clashed solutions in the reconstruction. First, the objective values F* of the297

solutions in X* are evaluated, so that the set X* can be sorted in an ascending order of F*. Then,298

the solutions in the sorted X* are tested one by one in order. For each solution, if there is no299

clash detected between its instance and the BIM comprising of BIM component instances of300

previous solutions, the new instance is added to the BIM; otherwise, the solution is skipped.301

After every solution in X* is tested, the reconstructed BIM is fine-tuned and output as the302

intermediate BIM. Besides, the object-level semantics, such as materials, production, and usage,303

is registered to the BIM. It should be noted that the systematic fine-tuning can be omitted in304

case the MMO algorithm has performed an equivalent processing during its problem solving.305

After the Step 2, an intermediate BIM is automatically reconstructed with repetitive BIM306

components.307

308

3.3 BIM regularization using repetition formations309

The intermediate BIM is regularized to create the final BIM. The regularization step aims to310

correct the errors that come from input data noises or the context-free MMO-based component311

registration. As shown in Figure 3.a, four modules, i.e., Manual labeling, pattern regression,312

regularization, and semantic registration, are designed to achieve the aim. In the four modules,313

only the first one requires human intervention. The regularization was also implemented in our314

COBIMG-Revit, as shown in Figure 3.b.315

316
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317

318
(a) Zoom-in of the BIM regularization319

320
(b) Graphical interface of the COBIMG-Revit plugin321

Figure 3. The BIM regularization process and implementation in an in-house developed322

software plugin323

324

In the first module of manual labeling, as shown in Figure 3.a, a human modeler is needed to325

select a set of components. For example, a row of windows or desks can be quickly labeled as326

a cluster by dragging a selection box using a mouse and clicking the “Insert new” button in327

Figure 3.b. In addition, the type of repetition is also chosen by observation of the intermediate328

BIM. The interim output of the first module is the manually clustered solutions.329

330

The second module detects the patterns as equations. The pattern equation of each cluster, such331

as lines or a circle, as well as the uniformed equation of the cross-cluster formation, such as332

parallel lines and concentric circles, are then regressed for the labeled clusters. COBIMG-Revit333

realizes the multiple linear regression and the least squares methods for other regression models334

using two Python scientific libraries scipy (version 1.1.0) and sklearn (version 0.19.1). The335

median of nearest distance between components is detected within the clusters.336

337

The third module proposes new, regularized solutions. Based on the median distance, each338

cluster can be segmented into smaller groups. The centroids and range of each group are339

computed from the locations of its members. If an approximate symmetry is detected or defined,340

two symmetric groups will have perfectly symmetric centroids and ranges. Based on the341



11

median distance and the centroid of each group, all the solutions in a cluster can be calibrated342

isometrically to have a uniform Euclidean distance to their neighbors. In the isometric343

calibration, new regularized solutions will be proposed along the curve of the pattern equation,344

while the uniform distance is equal to the median distance. The interim output of this module345

is the regularized solutions.346

347

The final module revise the intermediate BIM. First, the reconstructed components in BIM are348

updated using the regularized solutions. Then newly detected topological relationships,349

including the symmetry, cluster, group, sequence in group, and nearest neighbors, enriches the350

components to form the final semantically rich BIM. Due to the limited involvement of human351

intervention, the BIM regularization, as shown in Figure 3, can be regarded as a semi-automatic352

process.353

354

4 Experimental tests355

4.1 Experimental settings356

A case of a university lecture hall, which is the “Area_2 Auditorium_2” instance in the Stanford357

2D-3D-S dataset (Armeni et al. 2017), was selected for validation. The Stanford 2D-3D-S is358

an open benchmark dataset including a cloud of 695 million annotated indoor points produced359

from multi-view photos inside a university building (available at360

http://buildingparser.stanford.edu/dataset.html). One reason for targeting an indoor dataset was361

that it is more challenging in general. The case is also the largest indoor instance in the dataset.362

The standard exemplar also allows the results of our experiment to be compared with that of a363

unimodal algorithm CMA-ES in Xue et al. (2019b). To focus on the repetition itself, the364

semantic labels in the dataset were used to filter 1,879,282 points of 293 theater chairs as the365

‘scene’ cloud S, as shown in Figure 4.a, by removing other building elements such as walls and366

doors which were already annotated in the dataset (Note: For unlabeled indoor scenes, the367

planarity and normals can segment such elements (Thomson & Boehm 2015)). Some parts of368

S were noisy, incomplete, and cluttered as shown in Figure 4.a. We assumed that a chair has a369

possible rotation (heading direction) around the z-axis (Figure 4.b). Thus, there were four370

degrees of freedoms (DoFs), i.e., the 3D centroid (tx, ty, tz) and the heading direction rz, for each371

chair. Ground truth values of the positions of the 293 chairs were extracted from the noisy point372

cloud and manually validated within an error threshold at 10cm; the true values of heading373

directions were manually measured with an error threshold at 5°. An online open BIM374

component ‘Theater chair,’ freely shared by AJ at 3DWarehouse.com (See Figure 4.c), was375

downloaded for the semantic registration. The input component was selected because it was376

proven better than some others in Xue et al. (2019b). A ‘component’ cloud ࣝ of 1,802,939377

dense points, as shown in Figure 4.c, was then downsampled from the polygon surface of the378

volumetric component using an Autodesk Revit (version Educational 64-bit) software plugin379

developed in Xue et al. (2019b).380
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(a) A noisy cloud S of 1,879,282 points of 293 chairs (b) The 4 degrees of freedom (x, y, z, rz) and the size,
where color in the cross-section indicates height

(c) An online open BIM component ‘Theater chair’ (author: AJ) and the sampled ‘component’ cloud ࣝ by a Revit
plugin

Figure 4. A university lecture hall case and a BIM component using Autodesk Revit 2015381

382

The computational experiments were conducted on a workstation (dual Intel Xeon E5-2690 v4383

2.6GHz, 64 GB memory, Windows 10 Enterprise, 56-threading in all tests), with point cloud384

library (version 1.8.1) and fast library for approximate nearest neighbor (FLANN, version 1.8.4)385

for efficient point cloud processing. The mathematical formation step followed Eq. (3) with386

additional settings from Xue et al. (2019b). In the BIM reconstruction step, a C++ version of387

the NMMSO algorithm was applied. To make full use of the multi-threading CPUs, the388

problem-solving was realized by 110 parallel NMMSO threads, with a maximum of 10,000389

iterations. Thus, the maximum number of iterations for BIM reconstruction was equivalently390

1.1 million, which is comparable to the 1.4 million (5,000 × 289) iterations of CMA-ES in Xue391

et al. (2019b). The swarm size was 300 and the floating-point error tolerance was set to default392

(1–6). The results of the NMMSO algorithm automatically registered the template BIM chair to393

various positions through the COBIMG-Revit for Autodesk Revit 2015. In the BIM394

regularization step, the estimated formations of repetition were concentric circles, and the395

reflection symmetry and isometry between BIM chairs were also assumed.396

397

4.2 Experimental results398

4.2.1 Problem formulation399

Based on Eq. (3), the problem of BIM reconstruction for the university lecture hall was thus:400

401

402

Scene cloud
(S)

ࣝ
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arg min f(x) = RMSE(ࣝ(x), S)
s.t. x     = [tx, ty, tz, rz] T

parent(ࣝ(x)) = Ground
[tx, ty, tz]T ∈ boundingbox(S)

rz ∈ [0, 360)
f(x)  ≤ ε = 0.25diagࣝ ≈ 0.01diagS

(4)

Where parent is a function that returns the “parent” component that ࣝ(x) attaches to,403

boundingbox indicates the 3D bounding box of the scene cloud S (see Figure 4.b), diagࣝ stands404

for the diagonal length of ࣝ, and diagS is the diagonal length of the scene cloud S. The tolerance405

ε is a constant of minimum requirement for a new BIM component, about 1/4 diagࣝ and 0.01406

diagS, and it can be changed (e.g., to 0.1m or 0.05diagࣝ) for other scenes. Figure 5 visualizes407

the jagged fitness landscape of Eq. (4) over the x-axis and y-axis. The tz and rz in the parameters408

x were set – after an exhaustive search independent to the experiment – to indicate the best409

possible f in Figure 5, due to considerably less variance in the z-axis and heading direction than410

those in the x-y plane. The axes x and y of the spikes in the surface chart, as shown in Figure411

5.a, are the [tx, ty]T in the demanded modes (optimal transformation parameters); while the best412

possible f (unit in meter) is shown in logarithm to the base 10 in color to emphasize the modes.413

It is obvious that there exist many modes for Eq. (4). Figure 5.b shows the contour map, i.e.,414

the vertical projection, of Figure 5a. It can be observed from Figure 5b that the modes were415

highly correlated to the position of the chairs. A very regular formation of the chairs can also416

be seen, which could be the concentric circles resulting from the architectural acoustic input to417

the theatre’s design (Mehta et al. 1999).418

(a) Surface chart of the f (in log10) in Eq. (4), where the
demanded modes are the spikes at the bottom

(b) 2D Contour chart, i.e., the bottom projection in (a)

Figure 5. Visualization of the multimodal fitness landscape of the test case over the x-y plane,419

where z and rz were assigned as the best values420

421
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4.2.2 BIM reconstruction422

The NMMSO algorithm spent 414.5s to find 300 solutions to Eq. (4) in the incremental build423

phase using the greedy processing shown in Figure 2. In the second phase of semantic424

registration, COBIMG-Revit spent 512.1s on fine-tuning the 300 chairs in BIM using CMA-425

ES. The reconstructed intermediate BIM is shown in Figure 6.a. The overall geometry of the426

reconstructed BIM looks similar to the input scene, but has some notable gaps with missing427

objects. Figure 6.b shows the distribution of centroid errors of the 300 chairs, where the mean428

error = 13.7cm, standard deviation = 6.5cm, and about a half of chairs were placed within the429

range of 1/8 diagonal length (i.e., the green dashed line of 12.5cm). Figure 6.c visualizes the430

distribution of errors of their heading directions, where mean error = 10.4°, standard deviation431

= 13.6°, and a considerable portion of chairs were no less than 15° from the referential432

directions.433

(a) Automatically created intermediate BIM, consisting
of 300 instances (modes) of ‘Theater chairs’

(b) Distribution of position errors of the instances,
mean = 13.7cm, standard deviation = 6.5cm

(c) Distribution of angular errors of the instances, mean
= 10.4°, standard deviation = 13.6°

(d) Top view of 267 true positive chairs (wired
frames), 33 false positive (highlighted in blue), and
26 false negative (red boxes), where the gray points
indicate the cloud S

Figure 6. Intermediate BIM automatically reconstructed in 926.6s by NMMSO434
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435

In order to compare with previous results such as Xue et al. (2019b), the two blue lines were436

adopted as the acceptance thresholds, i.e., position error ≤ 25cm and angular error ≤ 45°. In the437

300 chairs in the reconstructed intermediate BIM, 267 chairs were true positive, 33 were false438

positive (i.e., wrongly reconstructed). Figure 6.d shows a top view of the chairs in Autodesk439

Revit, where the false positive are highlighted in blue and 26 false negative (i.e., missing)440

chairs are in red boxes. Thus,441

precision = true positive
true positive + false positive

 = 267/300 = 89.0%,

recall      = true positive
true positive + false negative

 = 267/293 = 91.1%,

F1 = 2 × precision × recall / (precision + recall) = 90.1%.

(5)

It should be noted that the three metrics may decrease if the acceptance thresholds are changed.442

443

4.2.3 BIM regularization444

Manual labeling grouped the chairs in correct repetition formations as 14 clusters (rows) in445

223.7 seconds. The centroids of the chairs, as shown in Figure 7.a, were used for the regression.446

The median distance of two neighboring chairs was 55.26cm. The regression of the equations447

of the concentric circles (acoustic design patterns) on the x-y plane was conducted using the448

least square method in 0.06s. The equations obeyed by all chairs were:449

(x + 5.832)² + (y + 2.091)² = r²
r = 0.913 ρ + 7.387
ρ ∈ {1, 2, …, 14}
(R² = 0.9999)

Concentric circles on the x-y plane
with a linear increment on radius
The row number from 1 to 14
A highly satisfactory regression

(6)

where the center of the 14 circles, i.e., the stage center, was at (–5.832, –2.091), and the radius450

r increased linearly against the row number ρ. The equation of z values of the chairs’ centroids451

were further obtained by multiple linear regression against x, y, and ρ using the least squares452

method in 0.06s:453

z  = 0.418 + 0.061 ρ – 0.003 x + 0.005 y
ρ ∈ {1, 2, …, 14}
(R² = 0.9673)

A multiple linear regression of z
The row number from 1 to 14
A satisfactory regression

(7)

It can be found in Eq. (7) that z had the highest correlation with the row number ρ. In addition,454

the coefficients +0.005 of y and -0.003 of x in Eq. (7) suggested that the repetition formations455

of chairs had a 1:200 slope over the y-axis and a 1:330 slope over the x-axis, while the R² =456

0.9673 confirmed the confidences of the two slopes. As a result, the projections of the 14 curves457

on the x-z plane were in “⊃” shapes. The reason could be that the datum in the Stanford dataset458

was not perfectly calibrated, or that there were heavy asymmetric errors in the data459

measurement, or that the lecture hall itself has such an as-designed feature (possibly for460

drainage) or as-built error.461
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(a) Top view of the 14 rows of repetitive chairs and the
14 concentric circles, where color indicates clusters

(b) 3D view and projections of the multiple linear
regression of z (Eq. 7); note that the “⊃” shapes on
the left projection indicate slopes along the y-axis

Figure 7. Visualization of regression equations of the repetitive BIM components462

463

Both the symmetric regularization and isometric regularization were set for the BIM chairs.464

The symmetric regularization first mirrored all the labeled chairs using the axis y = –2.091 (see465

Eq. 6) on the x-y plane, and merge the transformed positions to the original ones, as shown in466

Figure 8.a. So that most of the missing chairs, i.e., the wrong gaps in the red boxes in Figure467

6.b, were filled as shown. In the isometric regularization, the chairs in each extended cluster468

were first sorted by a clockwise order of their angles to the center (–5.832, –2.091) and grouped469

using a maximum gap (i.e., the minimum aisle width) set at twice the median chair distance (2470

× 55.26cm). Then, the 14 clusters of chairs were split into 42 groups. The center and the471

estimated number of isometric chairs in each group are shown in Figure 8.a, where the sum of472

the estimated number was 289. Then, 289 new chair positions with isometric distances were473

generated on the x-y plane for the 42 groups. The z values were computed by Eq. (7) and the474

heading directions were set to the center of the concentric circles, as shown in Figure 8.b.475
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(a) Top view of the centers (black dots) and estimated
number of isometric chairs in the 42 symmetric groups

(b) 3D centroids of 289 regularized chair positions
using the detected repetition equations (Eqs. 6, 7)

Figure 8. Results of the symmetric regularization and isometric regularization based on476

repetition in architecture477

478

The 289 regularized chair positions were used to generate a list of semantics of the regularized479

BIM components, as shown in Table 1. Beside the variables involved in Eq. 4, the cluster (row480

number), group (theater section), sequence number within group (seat number from right to481

left), and neighbors of a BIM component. Examples of neighboring components included the482

left, the right, and the one symmetric to the whole plan.483

484

Table 1. List of semantics and topological relations of the 289 regularized components485

Id Type Variables in Eq. (4) Cluster Group Seq. in Parent Neighbors' Ids
tx ty tz rz (Row) group Left Right Symmetric

1 1 0.255 3.549 0.497 2.318 1 A 1 Ground 2 15
2 1 0.617 3.131 0.493 2.251 1 A 2 Ground 3 1 14
3 1 0.950 2.690 0.490 2.185 1 A 3 Ground 4 2 13
4 1 1.254 2.229 0.487 2.118 1 A 4 Ground 5 3 12
5 1 1.525 1.747 0.484 2.052 1 A 5 Ground 4 11
6 1 2.393 -0.989 0.467 1.704 1 B 1 Ground 7 10
7 1 2.448 -1.539 0.464 1.637 1 B 2 Ground 8 6 9
8 1 2.467 -2.091 0.461 1.571 1 B 3 Ground 9 7 8
9 1 2.448 -2.644 0.458 1.504 1 B 4 Ground 10 8 7

10 1 2.393 -3.193 0.456 1.438 1 B 5 Ground 9 6
11 1 1.525 -5.930 0.444 1.090 1 C 1 Ground 12 5
12 1 1.254 -6.411 0.442 1.023 1 C 2 Ground 13 11 4
13 1 0.950 -6.873 0.440 0.957 1 C 3 Ground 14 12 3
14 1 0.617 -7.314 0.439 0.890 1 C 4 Ground 15 13 2
15 1 0.255 -7.732 0.438 0.824 1 C 5 Ground 14 1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

287 1 14.015 -5.664 1.199 1.393 14 B 14 Ground 286 274
288 1 13.261 -8.582 1.185 1.243 14 C 1 Ground 289 273
289 1 13.076 -9.103 1.183 1.216 14 C 2 Ground 288 272

486
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The semantics in Table 1 were then registered to form the final BIM as a 1.82 MB Autodesk487

Revit project (.rvt) as shown in Figure 9.a, using the COBIMG-Revit plugin in 4.6s. The overall488

processing time for the final BIM, including automatic reconstruction and semi-automatic489

regularization, was 1,155.0s (i.e., about 3 seconds per chair). The BIM regularization showed490

an encouraging improvement as shown in the distributions of position and angular errors in491

Figures 9.b and 9.c. As shown in Figure 9.d, the number of true positive chairs increased from492

267 to 287, the false positive reduced from 33 to 2, and the false negative reduced from 24 to493

4. It is worth noting that none of the 4 missing chairs was detected in the intermediate BIM494

before regularization (see Figure 6). As a result, the final BIM had a precision of 99.3%, a495

recall of 98.0%, and an F1 score of 98.6%. The RMSE between the visible surface of the BIM496

and the input scene cloud was 8.79cm. In addition, the average distance error and the average497

angular error of the final BIM were 9.6cm and 3.8° regarding the ground-truth values,498

respectively. Because the majorities in both distributions fall below the two green dashed lines,499

the precision and recall rates will remain almost the same if the acceptance thresholds are500

tightened to the green dashed lines.501

(a) Screenshot of 3D view of the BIM consisting of 289
regularized chairs

(b) Distribution of position errors of the instances,
mean = 9.6cm, standard deviation = 3.5cm

(c) Distribution of angular errors of the instances, mean =
3.8°, standard deviation = 3.3°

(d) Top view of 287 true positive chairs, 2 false
positives (highlighted in blue), and 4 false negatives
(boxes), where the gray points are the input cloud S

Figure 9. The final BIM after regularization by the repetition formations502
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503

4.3 Semantics stored in the BIM504

Rich semantics were also registered to the chairs in the BIM, as a characteristic of the semantic505

registration approach. Figure 10 shows the screenshot of the properties of the No. 1 chair listed506

in Table 1. The location, heading direction, and parent component, i.e., the invisible “Ground”507

was registered as usual. Furthermore, the semantics such as the cluster number, group number,508

sequence, and the “neighbor” components were also stored as properties from Table 1.509

510
Figure 10. Screenshot of rich semantics of a chair in the final BIM511

512

4.4 Comparison to other algorithms513

The results of the proposed MMO-based approach were compared with two well-known514

‘unimodal’ algorithms ICP (Kim et al. 2013) and CMA-ES (Xue et al. 2019b) applied to the515

same test case. Table 2 lists the comparison results, including the RMSE between the input516

point cloud and the output BIM, computational time, 3D (tx, ty, tz) position error of chair517

centroids, angular error of rz, precision, recall, and F1 score, of the BIMs by the four methods518

on the pilot case.519

520
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521

Table 2. Comparison of different algorithms522

Evaluation (unit)
ICP (Kim, et
al. 2013)

CMA-ES (Xue,
et al. 2019b)

This study
Intermediate BIM
(automatic)

Final BIM (semi-
automatic)

RMSE (cm) 7.28 8.10 10.38 8.97
Computational time (s) 3,702.4 1,434.2 926.6 1,155.0
Number of chair instances 322 288 300 289
Distance error (cm, mean ± stdev.) 17.9 ± 10.8 15.2 ± 7.7 13.7 ± 6.5 9.6 ± 3.5
Angular error (°, mean ± stdev.) 28.4 ± 42.9 17.6 ± 28.8 10.4 ± 13.6 3.8 ± 3.3
Precision (%) 69.3 81.9 89.0 99.3
Recall (%) 76.1 80.5 91.1 98.0
F1 (%) 72.5 81.2 90.1 98.6

(Remark: Bold fonts in each row indicate the best value)523

524

The first three data columns are the results of three fully automatic methods, i.e., ICP, CMA-525

ES, and NMMSO (i.e., the intermediate BIM) in this paper. In comparison to unimodal ICP526

and CMA-ES, the NMMSO outperformed in automatic BIM reconstruction in all aspects527

except for the RMSE metric defined on points. The precision by NMMSO was about 10%528

higher than CMA-ES and about 17% higher than ICP, with 35% time saved versus CMA-ES529

and 75% saved versus ICP. Thus, the pilot study preliminarily confirms the competence of the530

MMO-based semantic registration approach for automatic BIM reconstruction.531

532

Furthermore, the effect of using architectural design knowledge can be summarized from the533

comparison of the last two columns. The Step 3, semi-automatic BIM regularization, resulted534

in superior results than NMMSO’s intermediate BIM in all aspects except for the time cost.535

Specifically, the precision (99.3%) and recall (98.0%) became very satisfactory at a536

computational cost of 228.4s to apply architectural design knowledge. The overall processing537

time of the proposed approach was 1,155.0s and was less than the two unimodal methods538

reported in literature.539

540

5 Discussion541

The experiment reported in this paper confirms the power of a multimodal optimization (MMO)542

approach to reconstructing semantically rich Building Information Models (BIM). In the543

methodological sphere, the mathematical concept of multimodality and the practical design544

rules complement each other to become an efficient (i.e., using less time) and effective (i.e.,545

more accurate) approach. In the practical sphere, the proposed approach can be easily546

embedded in mainstream BIM platforms to enable various value-added BIM applications such547

as architectural design, construction management, heritage conservation, and urban digital twin.548

549

This study goes beyond existing unimodal ‘semantic registration’ algorithms (e.g., ICP and550

CMA-ES) and introduces a generic MMO approach so that multiple semantics in measurement551
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data (e.g., 3D point clouds) can be found and registered in a more efficient and effective way.552

The precision and recall of automatic BIM reconstruction increased from about 80% using553

unimodal CMA-ES to about 90% using the NMMSO (niching migratory multi-swarm554

optimizer), and the time cost reduced by about 30%. The experiment further confirms the555

power of architectural design knowledge (e.g., repetition rules) in improving the efficiency and556

effectiveness of BIM reconstruction. As-designed or as-built building components need to557

follow certain rules and the rules can reduce the search space in a formulated BIM558

reconstruction problem. The repetition rules are utilized as rules for ‘BIM regularization’. After559

a human-in-the-loop BIM regularization, the precision and recall increased to over 98%, which560

were close to the ideal values of 100%, while the overall time cost was still less than ICP and561

CMA-ES.562

563

Our approach is not weakness free. For example, its scalability needs to be verified in more564

complicated scenes with different types of repetitive objects. For various scenes, the different565

sets of repetition formations and algorithm parameter configuration should be comprehensively566

investigated. In addition, some other limitations of this study should be clarified for future567

research:568

1. Utilizing architectural domain knowledge for BIM regularization still requires manual569

intervention for labeling and clustering BIM components. In the reported experiment, the570

labeling and clustering of chairs cost 223.7 seconds. For more complicated scenes, the571

increase in the number of different types of repetitive objects will proportionally increases572

the time needed for manual intervention. In such situations, end-users face a trade-off573

between accuracy and speed when adopting automatic and semi-automatic approaches to574

BIM reconstruction. Therefore, how to further automate labeling and clustering is of great575

importance to further improve the performance of our proposed method.576

2. The method is confirmed to be more robust than existing methods, but false positives and577

false negatives were still witnessed in the results. In order to further improve accuracy578

without undue penalty in computation time, additional information and architectural domain579

knowledge such as the function of the building and local regulations could be used in the580

BIM reconstruction.581

3. Although the regression and regularization can improve the BIM reconstruction in terms of582

object recognition and semantics discovery (see Figure 10 and Table 2), the idea of applying583

the as-designed patterns to a cluster can impose the risk of “regularizing” some as-built584

errors caused by poor craftsmanship or deformation). In this case, the modeler can simply585

undo the regularized components back to their as-built status.586

587

The legitimacy of BIM reconstruction and semantic enrichment needs to be justified in terms588

of cost-benefit. BIM researchers have developed various reconstruction methods, including589

‘semantic segmentation’ and ‘semantic registration’. Our study recognizes the strengths and590

weaknesses of the semantic registration approach and further improves it by introducing591
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additional algorithms from other disciplines. It demonstrates the power of architectural domain592

knowledge in improving the effectiveness and efficiency of such approaches. In this sense, the593

research opens up a new avenue for exploring semantic registration algorithms enhanced by594

architectural design knowledge.595

596

6 Conclusion597

This study advances the realm of semantically rich BIM reconstruction by addressing the598

widespread challenge of dealing with complicated scenes (e.g., indoor environments with599

repetitive, irregular-shaped objects, and noisy measurement data as input). An MMO-based600

semantic registration approach for BIM reconstruction was proposed. The approach consists601

of three steps: multimodal problem formulation based on repetition in architecture; automatic602

BIM reconstruction based on MMO; and semi-automatic BIM regularization based on603

repetition formations. The proposed approach was prototyped and tested in an experiment by604

following a series of rigorous processes. The experimental results showed that the proposed605

approach can reconstruct an indoor scene of 293 theater chairs from 1.9 million noisy points606

with satisfactory accuracy (99.3% precision and 98.0% recall) and less modeling time than607

previously published algorithms. Our study confirms that the MMO approach, by finding all608

identical or repetitive objects in one go, is more effective and efficient than traditional609

‘unimodal’ problem solving in BIM reconstruction. The research also confirms that610

architectural domain knowledge, particularly ‘repetition’, can further augment an MMO611

approach to improve efficiency and effectiveness of BIM reconstruction.612

613

The paper thus makes significant contributions to the methodology and practice of advanced614

BIM technologies. An original methodological contribution is to translate the reconstruction615

of BIM with repetitive objects into a MMO problem, thereby allowing a number of well-616

established MMO algorithms to be applied to the problem. The paper endorses and extends the617

paradigmatic shift from ‘semantic segmentation’ to ‘semantic registration’; advances the618

approach by introducing MMO. Particularly, another novelty of the research is to make use of619

architectural design knowledge hidden within a point cloud (i.e., symmetry, repetition, and620

structure regularity), which can be used to eliminate noise or errors of measurement data and621

to reduce search space of the formulated problem. Augmenting MMO algorithms with622

architectural domain knowledge is considered a novel philosophy for semantically rich BIM623

reconstruction. Practically, our approach is suitable for scaling up and embedding in624

mainstream BIM platforms, for example, to enable value-added applications such as creating625

BIMs of architectural design, construction management projects, heritage conservation sites626

and so on, which require accurate mapping of domain-specific semantics to geometric627

components.628

629

Future research can be conducted in three directions. First, the effectiveness of the proposed630

approach should be tested on other complicated cases with less obvious repetitions. Secondly,631
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more advanced computer vision methods can be developed to improve the semi-automatic or632

manual labeling and clustering deployed in current approach. Thirdly, other types of633

architectural domain knowledge, including symmetry, architectural styles, historical building634

materials and technology, local standards and regulations, and parametric curved surfaces, can635

be tested in BIM reconstruction.636
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