

Architectural symmetry detection from 3D urban point clouds A derivative-free optimization (DFO) approach

CIB W78 2018 @ Chicago 2 October 2018

Frank F Xue*, Leo K Chen & Wilson WS Lu

Dept. of REC, HKU iLab, HKURBANlab, HKU

iLab

Background & Opportunity

DFO-based symmetry detection

Section 1 BACKGROUND & OPPORTUNITY

3

"The chief forms of beauty are order and symmetry and definiteness, which the mathematical sciences demonstrate in a special degree."

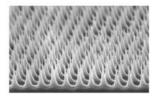
Aristotle, *Metaphysics*, 3-1078b

Symmetry is fundamental, from quarks to animals to galaxies

iLab

Human brain

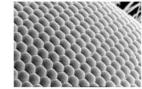
Starfish


Steam turbine

Nautilus shell

Simian virus

Silicon nanostructures


Taj Mahal

Vitruvian Man

·

Spiral galaxy

Insect eye

Geodesic dome

Persian carpet

Symmetry (Photo source Mitra et al. (2013))

Xue, Chen & Lu: ASD from 3D urban PCs, CIB W78 2018, 2 October 2018, Chicago

1.1 Symmetry in constructions

🔷 Universal

₫a

iLab

Across various eras, continents, and cultures

(a) Reflection (Mirror)(The Taj Mahal, India)

ror) (b) Rotation dia) (The Pentagon, USA)

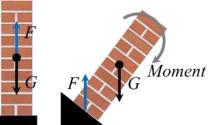
(e) Scaling \times rotation (f) Rotation \times translation (The Pantheon dome, Italy) (The Gherkin, UK)

(c) Translation (The Great Wall, China)

(g) Translation × reflection (Sugar Hill Project, USA)

(d) Translation × scaling (Fractal-like) (Hindu temples

(Note: Some photos are adapted from wikipedia.org, original work shared by Yann, Livioandronico2013, D. B. Gleason, Evancahill, Ashish Nangia, and Aurelien Guichard, licensed under CC-BY-SA 2.0/3.0/4.0)


1.1 Reasons for the symmetry in constructions

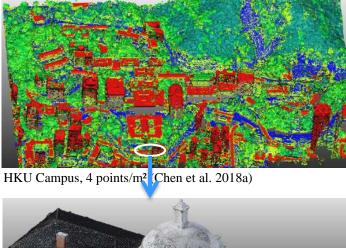
- \diamond Not accidental, but the results of
 - Mechanics

iLab

- $_{\odot}~$ e.g., vertical plane axis of reflection for loads and stability
- Functions and climate
- Economics and manufacture, and
- Aesthetics, psychology, and cognition

(a) Gravity (*e.g.*, moment can(b) Local climate (*e.g.*, tropical(c) Required functions pull down a leaning wall) roofs and stilts against rains) (*e.g.*, strongholds for defense)

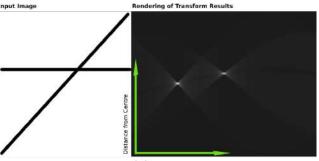
(Note: Some photos are adapted from wikipedia.org, original work shared by Mr. Wabu and Mikehume, licensed under CC-BY-SA 2.0/3.0)


1.2 Data: Point clouds of constructions

♦ Increasingly affordable, large-scale urban point clouds

₫a

Xue, Chen & Lu: ASD from 3D urban PCs, CIB W78 2018, 2 October 2018, Chicago


The HHY Building, HKU, > 2,000 points/m²

1.3 Existing methods for symmetry detection

- Three categories, according to the methodology
 - Pairwise voting-clustering

iLab

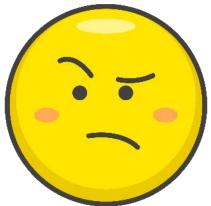
- Hough-like transform parameter space
- Heuristic feature matching
- Parameter optimization
 - Hill climbing on the parameter space

Angle Hough transform (image source Wikipedia)

Category	General methodology	Accuracy (less geometric error)	Efficiency (Using less time)	Types of symmetries
Pairwise voting- clustering	Collection of pairwise votes of all the points in the parameter space	+	-	All (++)
Heuristic feature matching	Matching features (e.g., lines, planes, spheres) to infer symmetries	-	++	Limited by the features (−)
Parameter optimization	Solving abstracted optimization models over the parameter space	++	+	All (++)

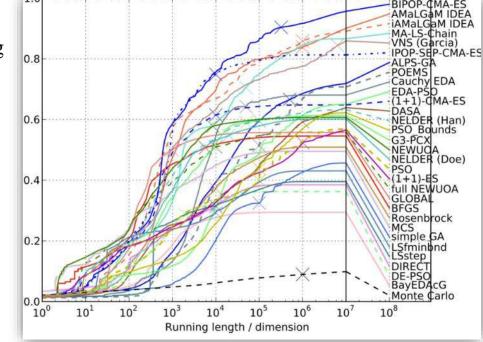
Xue, Chen & Lu: ASD from 3D urban PCs, CIB W78 2018, 2 October 2018, Chicago

++: Very satisfactory; +: satisfactory; -: not satisfactory. 8



iLab

1.3 Challenges


- Pairwise voting-clustering
 - inherited proneness to noise of Hough-like (Brown, 1983),
 - ineffective recognition of local symmetries (Bokeloh et al., 2009),
 - low efficiency (exponential to the number of parameters), and
 - Iimited cardinality *n* (Berner et al., 2008)
- ♦ Heuristic feature matching
 - availability of *a priori* rules of the point clouds, and
 - abundance of suitable features (Lipman et al., 2010)
- Parameter optimization
 - very complex (*e.g.*, $n > 10^6$) and expensive (time-consuming in evaluation) in the dense point clouds of real architectures

1.4 Opportunity: Derivative-free optimization (DFO)

- Derivatives are often too expensive
 - Many known methods are not working
 - Where *Derivative-free* optimization (DFO) algorithms may help
 - Surrogate methods
 - CMA-ES and its variants are competitive
 - Trust-region methods
 - DIRECT, NEWUOA, etc.
 Metaheuristics (GA, PSO, VNS, *etc.*)
 - Hyper-heuristics, data mining
 - ... and Monte Carlo

Comparison of algorithms for BBOB-2009 (Black-Box Optimization Benchmarking, higher is better) (Auger et al., 2010) *Image source: Inria*

1.5 Aim and contribution of this research

iLab

📀 Aim

- A novel DFO approach for
 - architectural symmetry detection (ASD),
 - $_{\circ}~$ processing of large-scale point clouds of constructions
- Contribution
 - A novel formulation of ASD
 - $_{\circ}~$ With effective approximation
 - Evaluation with a modern DFO algorithm
 - For BIM/CIM, and related disciplines

Section 2 DFO-BASED SYMMETRY DETECTION

2.1 Preliminary formulas

Symmetry group

$$G = \langle \mathcal{T}, \circ \rangle,$$
 The symmetry group •: function composition
 $\mathcal{T} = \{T | T(\mathcal{C}) = \mathcal{C}, T \text{ is affine on } \mathbb{R}^3\},$ The set of all symmetries
 $\mathcal{C} = \{p_1, p_2, \dots, p_n\} \subset \mathbb{R}^3, n > 0,$ A given point cloud
Symmetry group •: function composition
(1)
C = { p_1, p_2, \dots, p_n } ⊂ $\mathbb{R}^3, n > 0,$ A given point cloud

$$PCR = \frac{1}{n} |T(\mathcal{C}) \cap \mathcal{C}| > 1 - \varepsilon, \qquad (Approximate) \text{ point correspondence rate} \qquad (2)$$
$$MSE = \frac{1}{n} \sum_{p \in \mathcal{C}} ||T(p) - N(T(p), \mathcal{C})||^2 < \varepsilon d^2, \qquad Mean-squared error \qquad (3)$$

♦ Architectural symmetry

iLab

$$\mathcal{T}_{A} = \{T | \mathcal{A}(T) = \mathcal{A}_{g}(T) + \mathcal{A}_{t}(T) < \varepsilon_{A}, T \in \mathcal{T}\} \subseteq \mathcal{T}, \qquad The target subset$$

$$\mathcal{A}_{g}(T) \ge 0, \qquad Geometric regularity$$

$$\mathcal{A}_{t}(T) \ge 0, \qquad Topological requirements$$

$$(4)$$

2.2 The problem of ASD

iLab

♦ ASD

$$\begin{array}{ll} \min & f(x) = f_{\mathcal{C}}(x) + \omega \mathcal{A}(x) & A \text{ weighted sum objective} \\ \text{s.t.} & x = \{x_1, x_2, \dots, x_m\} \in \mathbb{R}^m, \\ & f_{\mathcal{C}} : \mathbb{R}^m \mapsto \mathbb{R}^+ \cup \{0\}, & \text{see Eq. (2-3)}, \\ & \mathcal{A} : \mathbb{R}^m \mapsto \mathbb{R}^+ \cup \{0\}, & \text{see Eq. (4)}, \\ & \omega \in \mathbb{R}^+ \cup \{0\}, \end{array}$$

Computational complexity

 $\blacksquare \operatorname{O}(k n \log n)$

• *k* iterations, O(*n* log *n*) for each iteration (using *k*dtree-based FLANN)

Performance metrics of problem-solving

 $\bullet f$

Computational time

■ PCR (Eq. 32)

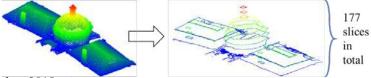
2.3 A pilot study

The HHY Building at HKU campus (Fig. (a))

- 250 photos taken by a UAV (Fig. (b))
- 1.4 million points (Fig. (c)) obtained by Autodesk ReCap
- Two-storey neoclassical redbrick building
 - $_{\circ}~$ Symmetry axes/planes are vertical ($\mathcal{A}_{
 m g}$)
 - Approximated using *z*-slices (Fig. (d))

Formulation in Fig. (e)

♦ Algorithm

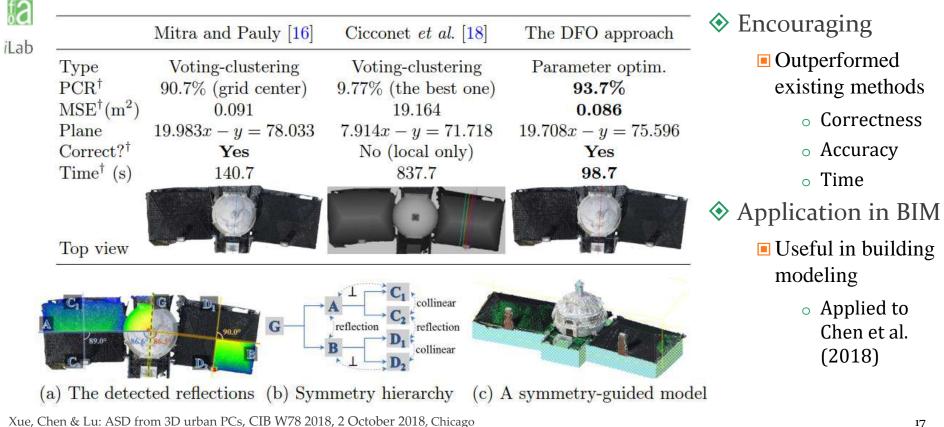

₫a

iLab

- CMA-ES (Hansen 2009)
- Default parameters
 - Iteration = 200

(a) The Hung Hing Ying Building at (b) 250 aerial photos taken with a HKU main campus UAV (model: *DJI Inspire 1*)

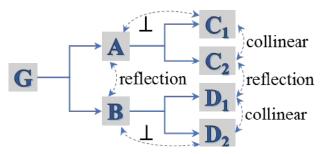
(c) A dense cloud of 1,413,211 points of the building rooftop $\min f(x) = fc (x) + 10\mathcal{A}(x)$ $= \frac{1}{n} \sum_{i=1}^{177} |\mathcal{C}_i| \cdot MNNDc_i (x)$ $+ 10 [\mathcal{A}_g(x) + \mathcal{A}_t(x)]$ s.t. $x = (\rho, \varphi),$ $\rho \in \mathbb{R}^+ \cup \{0\}, \varphi \in (-\pi, \pi].$ (e) The formulated problem ¹⁵


Xue, Chen & Lu: ASD from 3D urban PCs, CIB W78 2018, 2 Octoberhe shees his ast verifying reflections on rooftop in the pilot case

2.4 The automatic ASD process, visualized

₿ ♦ Was a descent of iLab (ii) The parameter space viewport (walking on $L(\rho, \varphi)$) objective value of Image: Solution of the problem (e)
 Image: Figure (i)
 Also a hill-climbing in the parameter setting landscape
 Image: Figure (ii) (rad) ρ(m) 10 The optimal solution • Figure (ii) \cap 20 80 40 60 100 ♦ Also an adaptive Parameters (foot): Time cost of CMA-ES (s) $\rho = 3.8310 \text{m}, \ \varphi = -0.0507$ ASD from points (i) The optimization viewport (descending of the objective function by CMA-ES) • Figure (iii) (iii) The **Point cloud viewport** (testing a series of symmetries)

2.5 The results

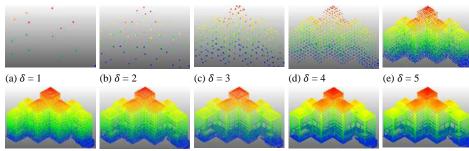


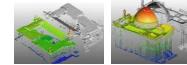
iLab

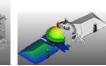
2.6 Summary

- ♦ A new method for ASD
 - For large-scale point clouds with certain noises
- ♦ Accuracy
 - better than conventional methods
- Automation and efficiency
 - Fully, inexpensive, very fast
- Applications
 - Building/city modeling and beyond
- ♦ Intrinsic knowledge discovered
 - Symmetry of symmetries
 - Co-hierarchy analysis
- Xue, Chen & Lu Design uigenes, CIB W78 2018, 2 October 2018, Chicago

Section 3 DISCUSSION


Recent progress of the research


iLab

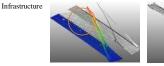

- \diamond A systematic determination of voxel size (δ)
- ♦ Adapted more than 40 DFO algorithms
- Senchmarked on a test set of 9 constructions Modern building
- Parameters' sensitivity analysis
 - Adoption recommendation
- ♦ It is open source now

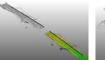
https://github.com/ffxue/odas

Xue, Che^(f) & Lu: ASD froi^(g) D urban PCs, ^(h) B W78 2018, ⁽ⁱ⁾ Ct Ober 2018, ^(j) Original cloud

Cor.=85.09% (BK=86.14%) Cor.=86.29% (BK=86.56%)

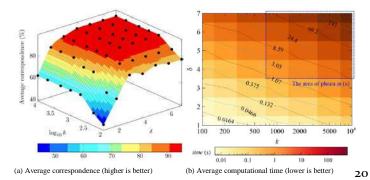
Cor.=95.95% (BK=96.04%

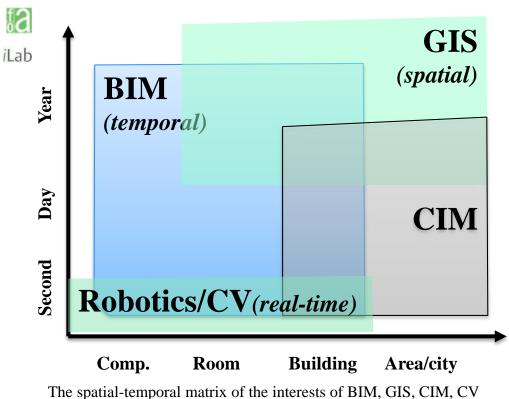


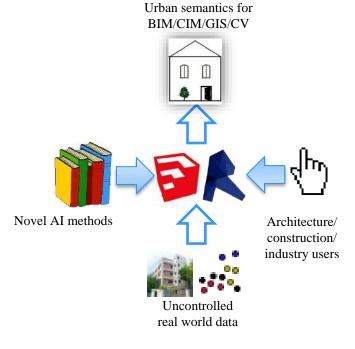

Cor.=95.44% (BK=95.50%)

Heritage building

Cor.=97.11% (BK97.18%)


Cor.=95.25% (BK=96.97%





Cor.=97,51% (BK=97,52%) Cor.=99,32% (BK=99,55%) Cor.=94,60% (BK=94,84%)

3.2 Urban semantics in a broader view

The inter-disciplinary view of smart, resilient development for humanity

References

- Auger, A., Finck, S., Hansen, N., and Ros, R. (2010). BBOB 2009: Comparison tables of all algorithms on all noisy functions, INRIA.
- iLab Chen, K., Lu, W., Xue, F., Tang, P., & Li, L. H. (2018a). Automatic building information model reconstruction in high-density urban areas: Augmenting multi-source data with architectural knowledge. Automation in Construction, 93, 22-34.
 - Chen, K., Lu, W. S. ., Xue, F, Zheng, L. Z., & Liu, D. D. (2018b). Smart Gateway for Bridging BIM and Building. In Proceedings of the 21st International Symposium on Advancement of Construction Management and Real Estate (pp. 1307-1316). Springer, Singapore.
 - Deb, K., Pratap, A., Agarwal, S. & Meyarivan, T.A.M.T., (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation, 6(2), pp.182-97.
 - Hansen, N., (2009). Benchmarking a BI-Population CMA-ES on the BBOB-2009 Function Testbed. In Workshop Proceedings of the GECCO Genetic and Evolutionary Computation Conference., 2009. ACM.
 - Hansen, N., Müller, S.D. & Koumoutsakos, P., (2003). Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evolutionary computation, 11(1), pp.1-18.
 - Hough, P.V., (1959). Machine analysis of bubble chamber pictures. In Proceedings of International Conference on High Energy Accelerators and Instrumentation (HEACC 1959). Geneva, 1959. CERN.
 - Jones, D.R., Perttunen, C.D. & Stuckman, B.E., (1993). Lipschitzian optimization without the Lipschitz constant. Journal of Optimization Theory and Applications, 79(1), pp.157-81.
 - Karaboga, D. & Basturk, B., (2007). A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. Journal of global optimization, 39(3), pp.459-71.
 - Kucherenko, S. & Sytsko, Y., (2005). Application of deterministic low-discrepancy sequences in global optimization. Computational Optimization and Applications, 30(3), pp.297-318.

References (cont.)

- Mitra, N.J., Guibas, J. & Pauly, M., (2006). Partial and approximate symmetry detection for 3D geometry. ACM Transactions on Graphics, 25(3), pp.560-68.
- iLab Mitra, N.J., Pauly, M., Wand, M. & Ceylan, D., (2013). Symmetry in 3D geometry: Extraction and applications. Computer Graphics Forum, 32(6), pp.1-23.
 - National Institute of Building Sciences. (2015). National Building Information Modeling Standard. Version 3, Retrieved from https://www.nationalbimstandard.org/
 - Poli, R., Kennedy, J. & Blackwell, T., (2007). Particle swarm optimization. Swarm intelligence, 1(1), pp.33-57.
 - Xu, J., Chen, K., Xue, F., & Lu, W. (2018). 3D point clouds for architecture, engineering, construction, and operation: A SWOT analysis. Working paper
 - **Xue, F.**, Lu, W., Chen, K. (2018a). Automatic generation of semantically rich as-built building information models using 2D images: A derivative-free optimization approach. Computer-Aided Civil and Infrastructure Engineering, in press.
 - Xue, F., Lu, W., Chen, K. & Zetkulic, A. (2018b). From 'semantic segmentation' to 'semantic registration': A derivative-free optimization-based approach for automatic generation of semantically rich as-built building information models (BIMs) from 3D point clouds. Journal of Computing in Civil Engineering. Under review
 - **Xue, F.**, Chen, K., Lu, W., Huang, GQ. (2018c). Linking radio-frequency identification to Building Information Modeling: Status quo, development trajectory and guidelines for practitioners. Automation in Construction, in press.
 - Xue, F., Chiaradia, A., Webster, C., Chen, K., Lu, W. (2018d). Personalized Walkability Assessment for Pedestrian Paths: An Asbuilt BIM Approach Using Ubiquitous Augmented Reality (AR) Smartphone and Deep Transfer Learning. CRIOCM 2016. to appear.

THANK YOU!

Please send your Questions via Email: <u>xuef@hku.hk</u> or RG page: <u>https://bit.ly/2RcKQqS</u>