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Abstract: The walkability of pedestrian paths serves as an urban semantic infrastructure for the 
global smart city development. However, traditional methods cannot fulfill the task of 
personalized walkability assessment on (i) automation of assessment, (ii) the level of details, and 
(iii) meeting the personalized demands of pedestrians (e.g., with a wheelchair). This paper 
presents a novel as-built building information model (BIM) approach based on ubiquitous 
augmented reality (AR) smartphone and deep transfer learning. First, an ‘as-is’ 3D point cloud is 
scanned by AR smartphone. Then, an as-built BIM containing semantic objects such as paved 
footway, guardrail, and obstacles can be created with pre-trained 3D point classification models. 
Finally, calculation of walking characteristics of the semantic as-built BIM leads to personalized 
walkability assessment. A pilot study involving five walking characteristics was conducted on a 
real case near the University of Hong Kong for the personalized requirements of five types of 
pedestrians: (1) people in wheelchair, (2) leisure traveler with a baby stroller, (3) business traveler 
with a rolling luggage, (4) senior people, and (5) exerciser (joggers). The results of the pilot study 
showed that the personalized walkability was correctly assessed using the proposed as-built BIM 
approach. With advanced ubiquitous computing devices, the proposed approach is expected to 
apply to everyday AR smartphones to enable crowd-sourcing and real-time assessment of the 
personalized walkability for pedestrian paths. The semantic as-built BIM, as an intermediate 
solution in this approach, can also open new avenues for many innovative smart city applications 
to foster a smart, sustainable, and resilient future. 

Keywords: Personalized walkability; As-built BIM (building information model); Augmented 
reality (AR) smartphone; 3D point cloud; Deep transfer learning; Urban semantics; Ubiquitous 
computing; Data-driven modeling; Smart city. 
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1 Introduction 
This paper focus on personalized walkability assessment (PWA) for pedestrian paths (or 
sidewalks). Walkability is conceptualized as the extent to which the characteristics of the built 
environment may or may not be conducive to residents in the area walking for leisure (e.g., with a 
baby stroller), traveling (e.g., in a wheelchair), or exercise (e.g., jogging)[1]. Beyond walking, 
walkability impacts many aspects of urban living[2] such as health[3], residential housing value, and 
neighborhood crime[4]. In view of the fact that 65% world’s population will be urban residents by 
2050[5], walkability is not only an essential concept for semantically-rich information retrieval but 
also an important analytical concept in infrastructure for human-centered smart, sustainable, and 
resilient city development [6].  

Researchers have developed many indices and approaches for assessing walkability at the 
macroscale (city)[7], neighborhood scale[4], and microscale[2,8-9]. However, it is costly and 
time-consuming to apply the traditional methods (e.g., audit tools) to the citywide pedestrian paths 
due to the vast amount, heterogeneous conditions, and frequent changes. The task becomes even 
more challenging for personalized assessment, e.g., walkability for people in a power wheelchair 
means something different to that for a jogging person. Hardware that enables PWA is readily 
available in the market, e.g., ubiquitous smartphones are evolving to augmented reality (AR) 
devices that can scan the as-is conditions with a centimeter accuracy. Computer vision software 
libraries such as deep learning models have also been developed to understand the results of AR 
scanning. So far, these advanced technologies have not been integrated into an automatic and 
inexpensive approach to PWA, as far as we are aware. 

This paper presents a novel as-built building information model (BIM) approach to PWA for 
pedestrian paths using the up-to-date ubiquitous AR smartphone, deep transfer learning, and 
as-built BIM creation and analytics. The remainder of this paper is organized into the following 
sections: related work, a framework of the approach, a pilot case study, discussion, and 
conclusion. 

2 Related Work 
Many conventional walkability assessment methods rely on observational audit tools. For example, 
Sun et al. employed 67 characteristics to measure the walking environments of access routes to 
urban metro stations in China in an urban planning viewpoint[2]; Griew et al. employed Google 
street view for facilitating their audit tool[9]. Although audit conducted by surveyors can, with care 
and attention to validation, be reliable and accurate, it is too laborious and costly to apply to PWA 
for the complex network of dynamic pedestrian paths. Using geographic information systems (GIS) 
technologies, such as GPS records[10] and imagery analysis of aerial photos[11] to collect real-world 
walking data, is also investigated in the literature, to supplement audits. Yet, the methods based on 
GIS suffer from inaccuracy (i.e., the unsatisfactory error level of GPS signal or path details in 
aerial photos for the built environment) and incomplete data (e.g., the paths are mostly a centerline 
in most GIS platforms)[12]. In summary, for PWA, especially in the contemporary settings for 
smart city applications, traditional assessment methods fail in at least one of three aspects: (i) 
automation of assessment, (ii) the level of details, and (iii) meeting the personalized demands of 
pedestrians (e.g., different physical impairments)[13]. 

A building information model (BIM) involves physical as well as functional characteristics of 
a facility and serves as an information hub to facilitate construction management along the whole 
life-cycle[14]. An as-built BIM focuses more on the as-is conditions[15] such as actual building 
geometries, current functions, and real topology to enable various smart city applications such as 
construction automation, energy consumption, and facility management [15]. Approaches to as-built 
BIM creation can be broadly categorized as data-driven (i.e., based on the input data’s features, 
shapes, materials, and statistics)[15-16] and model-driven (i.e., based on the BIM components and 
knowledge fitted into the input)[17-18]. Due to the variety of objects on uncontrolled real-world 
pedestrian paths, data-driven methods such as those exploiting architectural regularity and random 
sample consensus (RANSAC)[16] are more competitive in creating as-built BIMs for PWA[18]. It 
should be noted that the generated as-built BIMs can also be exported to GIS platforms to enable 
advanced spatial-temporal analyses as well as many existing GIS-based walkability assessment 



 

 

methods, once the as-built BIMs are geo-referenced[19]. 

These challenges motivate the as-built BIM approach to PWA presented in this paper. The 
as-built BIM is the information hub about various walking characteristics that facilitate the PWA 
for different pedestrians. In contrast to conventional assessment methods, the proposed approach 
is automatic and ubiquitous, rich in details and urban semantics, and compatible with multiple 
types of pedestrians. 

3 An As-built BIM Approach to Personalized Walkability Assessment 
The approach presented in this paper, as shown in Figure 1, is a straightforward technological 
pipeline that integrates the state-of-the-art data standards and processing methods in AR scanning 
from remote sensing and robotics, deep transfer learning from artificial intelligent and computer 
vision, and as-built BIM creation from civil engineering and construction management. In the 
proposed approach, the as-built BIM is the semantic information hub about walkability. The input 
to the approach, as shown in Figure 1, is the actual 3D geometry of the built environment, i.e., 
pedestrian paths. In the pipeline, there are three main steps of automatic data processing: (1) 3D 
scanning, (2) as-built BIM creation, and (3) assessment. The intermediates in the approach include 
the as-is 3D point cloud of the geometry of a path scene and an as-built BIM. The outputs of the 
proposed approach include PWA and recommendations from simulations. The proposed approach 
is thus classified as a data-driven as-built BIM approach. 

 
Figure 1. The technological pipeline of the proposed as-built BIM approach 

 Given a target pedestrian path, the first step is 3D AR scanning of the actual geometry to 
form an as-is 3D point cloud. Accuracy and density of the point cloud are crucial for the whole 
approach. Thus, advanced AR mobile devices which incorporate depth sensing 3D cameras, 
motion tracking, and area learning, such as Google Project Tango, are preferred over other AR 
devices such as Google ARCore and Apple ARKit. Because of the limited computational capacity 
for running deep learning models on current AR smartphones, the sensed as-is 3D point cloud can 
be uploaded to a GPU (graphics processing unit) powered workstation for post- processing. 

The second step is as-built BIM creation from the as-is 3D point cloud, by taking advantage 
of deep transfer learning, shape extraction and object recognition. In computer science, transfer 
learning aims at reducing the recollection of training data by transferring knowledge from related 
domains (models), and can thus save a significant amount of labeling effort[20]. As a subset, deep 
transfer learning focuses on reusing pre-trained deep learning models such as convolutional 
neural networks (CNNs), usually accelerated by modern GPUs. For example, Semantic-8[21] is an 
open dataset about street scenes, scanned in Germany, and annotated with 8 semantic labels (e.g., 
“man-made terrain,” “natural terrain,” and “buildings”). Deep transfer learning can reuse a 
PointNet[22] (or other CNN) model pre-trained on Semantic-8 to segment any 3D point cloud of 
street scene captured from anywhere. Based on the segmented labels (e.g., “man-made terrain” 
and “buildings”), shape extraction methods and object recognition methods such as a priori rules 
can recognize and rectify[16] the semantic components to create a data-driven as-built BIM. This 
step can be automatic or semi-automatic, depending on the as-built BIM creation methods.  

The final step of the proposed approach is PWA by calculation and simulations. Quantitative 
walking characteristics (e.g., slope grade and the number of steps) of the as-built BIM can be 
calculated and compared to the pre-defined requirements of a specific type of pedestrians (e.g., 
people in a hand-powered wheelchair or joggers). The walkability of the input pedestrian path can 
thereafter be assessed as “OK,” “Limited,” or “Failed” though a floor function (i.e., the worst) on 
all the characteristics individually for each type of pedestrians. For example, an “OK” in slope 
grade and a “Failed” in the number of steps result in a “Failed” in PWA. In addition, obstacles and 
walkability recommendations can also be inferred from a series of ‘what-if’ simulations on the 
as-built BIM. For example, a major obstacle implies that its removal improves the walkability 



 

 

from “Failed” to “OK,” while a minor obstacle means removal refines the walkability from 
“Failed” to “Limited” (or from “Limited” to “OK”). 

4 A Pilot Study 
4.1 As-is 3D scanning using AR smartphone 

To validate the proposed approach, we selected a scene of a pedestrian path on Bonham Road next 
to the University of Hong Kong, as shown in Figure 2 (a). The scanned area was 56.2 m². We 
collected a dense cloud of 569,344 colorful points (over 10,000 points per m²) using an in-house 
developed Android app on a Google Tango AR smartphone (model: Lenovo PB2-690Y). The as-is 
3D point cloud, though somehow noisy, was adequately registered, stitched, and uniformly 
sampled in the Stanford polygon (.ply) format. It was observed in Figure 2 (b) that there existed 
two obstacles (i.e., a light pole in the red oval and a meter pole in the blue oval) on the pavement, 
two drainage pipes (in the yellow oval) on the wall, and a guardrail (in the flat oval) between the 
pavement and the roadway. The time spent on the 3D scanning was about four minutes. At the end 
of scanning, the app uploaded the as-is point cloud, as shown in Figure 2 (b), to a GPU powered 
BIM workstation in a few seconds via a local 4G mobile network.  

  
 (a) A scene of Bonham Road, Hong Kong  (b) As-is cloud of 569,344 points through AR scanning 

Figure 2. A pilot case of a pedestrian path near the University of Hong Kong 

4.2 As-built BIM creation using deep transfer learning 

An as-built BIM was then created on the BIM workstation. The workstation has two Intel XEON 
E5-2690 v4 CPUs (2.6GHz, 28 cores), 64 GB memory, an Nvidia Quadro P5000 GPU, and 
Windows 10 Enterprise 64-bit operating system. Before the as-built BIM creation, a PointNet[22] 
model was already trained on the Semantic-8 dataset[21] on Google TensorFlow (version 1.4, with 
GPU support) in Python (version 3.6) to enable the deep transfer learning. First, the uploaded 
point cloud was converted from the Stanford polygon (.ply) format to a Numpy (version 1.12) data 
file. The pre-trained PointNet model spent 4 seconds on the segmentation of the scanned 569,344 
points. Figure 3 (a) shows the result of segmenting the 3D points in Hong Kong with training data 
from Germany, which was surprisingly satisfactory. For instance, it can be observed in Figure 3 (a) 
that the points labeled as “man-made terrain” were very close to the actual geometry of the 
pavement. Next, the excessive 3D points above the height of 1.5 m were removed, as shown in 
Figure 3 (b), for focusing on the major space for pedestrians. 

  
 (a) 3D point classification (e.g., the points labeled as 
“manmade terrain” were detached as the pavement) 

 (b) As-built BIM consisting of semantic objects (walls 
omitted in this view) 

Figure 3. The results of 3D point classification and the as-built 3D model of the pilot case 



 

 

Planes and cylinders were detected from the segmented and filtered point cloud using an 
up-to-date as-built BIM creation algorithm[16] in less than 1 second. The detected geometric 
primitives were further screened by the proximity of their normal direction to the z-axis for 
focusing on the vertical and horizontal objects. Furthermore, the boundaries of planar objects were 
refined by the 2D concave hull algorithm provided by the point cloud library (PCL, version 1.8.1). 
The resulting objects were associated with semantic labels to form semantic BIM components 
through a priori rules. Examples of rules are “vertical planes along the pavement are guardrails or 
walls,” and “vertical cylinders connected to the pavement are possible obstacles.” Finally, an 
as-built BIM was formed as shown in Figure 3 (b). The as-built BIM included the reconstructed 
guardrail (i.e., the transparent flat polygon) and the pipes and poles (i.e., the four narrow 
cylinders). It was interesting that an unexpected object, which was actually a concrete trace of a 
former construction work left on the wall, was also recognized as shown as the wide cylinder in 
Figure 3 (b). Although the as-built BIM in this pilot case was preliminary (i.e., not volumetric and 
in popular BIM formats), the semantic information (i.e., the geometry and labels) was capable of 
reasoning and calculating many detailed walking characteristics and problems. 

4.3 Personalized walkability assessment based on the as-built BIM 

To demonstrate the PWA of the proposed approach, this paper employs five walking 
characteristics: (1) the number of steps, (2) slop grade of the footway, (3) tile grade of the footway, 
(4) footway width, and (5) pavement surface clearance (i.e., non-existence of gaps and pebbles). 
The as-built BIM was geo-referenced first, as shown in Figure 4 (a), for visualization and 
compatibility with GIS platforms. The number of steps was identified as zero by analyzing the 
variation in altitude of the paved footway. The pave footway in the as-built BIM had two sections, 
as shown in Figure 4 (b). the left section had a slope grade of 1:50 (or 1.1°) while the right one 
had a grade of 1:58.8 (or 1.0°). The title grades of the two sections of the footway, as shown in 
Figure 4 (c), were 1:47.6 (or 1.2°) and 1:66.7 (or 0.9°), respectively. The width of the paved 
footway varied in different sections, as shown in Figure 3 (d). The maximum width was 199 cm in 
the beginning and minimum width (i.e., the bottleneck) was only 45 cm, where the average width 
was around 105 cm for the remaining parts of the paved footway. The green cylinders in Figures 3 
(b) and 4 (d) stand for the possible obstacles. The surface clearance of the paved footway was 
good, because no considerable gap was found, e.g., the gap shown in Figure 4 (c) was about 2 cm, 
neglectable as an error of planarization of a curved surface footway. 

  
 (a) Geo-referenced first-person view  (b) The slope grades (i.e., tan θ) of the paved footway 

  
 (c) The tilt grades of the paved footway  (d) The actual widths of the pavement with obstacles 

Figure 4. The results of point cloud classification and as-built 3D model of the pedestrian path 



 

 

Based on the calculated values of the five characteristics, the walkability can be accurately 
assessed for different pedestrians regarding their individual requirements. In this pilot study, we 
defined five types of pedestrians: (1) people in a wheelchair, (2) leisure travelers with a baby 
stroller, (3) business travelers with rolling luggage, (4) senior people, and (5) exerciser (joggers). 
Table 1 shows the walkability assessment matrix between the five walking characteristics and the 
five types of pedestrians. The bottom row indicates the results of PWA as the worst (floor function) 
evaluations in each column. The results in Table 1 indicated that the pilot scene was unwalkable 
for any people in wheelchair, and only walkable for travelers with a limited walkability for baby 
strollers and rolling luggage.  

Table 1. Assessing the walkability of the pilot case for five types of pedestrians 
Walking 
characteristic 

Calculated value Type of pedestrians 
Wheelchair ♿ Stroller  Luggage 🛄🛄 Senior 👴👴 Exercise 🏃🏃  

No. of steps 0 OK OK OK OK OK 
Slope grade* 1:50.0~58.8 OK OK OK OK OK 
Tilt grade† 1:47.6~66.7 OK OK OK OK OK 
Footway width‡ 45~199 cm Failed Limited Limited OK OK 
Clearance Good OK OK OK OK OK 
Overall walkability (the worst) Failed Limited Limited OK OK 
*: Reference maximum slope grade: 1:8~12 (wheelchairs); 
†: Reference maximum tilt grade of pavement: 1:15 (wheelchairs); 
‡: Reference minimum width: 70~90 cm (wheelchairs), 40~70 cm (strollers), and 30~60 cm (baggage). 

In addition, obstacles to the walkability can be identified by a series of simulations. In each 
simulation, a ‘what-if’ analysis of PWA (i.e., repeating Table 1) was carried out by removing one 
possible obstacle. Table 2 lists the identified obstacles in three categories: major obstacles, minor 
obstacles, and inoffensive obstacles. It can be found that the light pole in the middle of the paved 
footway was identified as the only major obstacle. As a result, alternative recommendations can be 
made, for example, moving the light pole to the guardrail, which can be subject to subsequent 
cost-benefit analysis as well as public consultation, leading to a schedule of improvement works to 
upgrade a PWA. 

Table 2. A list of identified obstacles to walkability  
Major obstacles Minor obstacles Inoffensive obstacles 
Light pole (None) Meter pole, drainage pipe #1, #2, and concrete trace on the wall 

4.4 Discussion 

This pilot study preliminarily confirms the technological feasibility of the proposed approach. 
Nevertheless, some minor details such as volumetric BIM components and commercial BIM 
platforms (e.g., Autodesk Revit) were not tested in the study. In terms of the computational time 
cost, the 3D scanning accounted for the significant portion, while other automatic processes like 
network transmission, execution of deep transfer learning, object recognition, and as-built BIM 
creation only cost a few seconds on the workstation. The flexible settings of the walking 
requirements in the proposed as-built BIM approach lead to a personalized walkability assessment. 
The high efficiency (fast processing speed) indicates that it is now possible to crowdsource the 
PWA to ubiquitous AR smartphones. When ubiquitous AR smartphones become more and more 
potent in computational power (e.g., with powerful GPUs) in future, the proposed approach can 
also be fully embedded in everyday AR smartphones for real-time PWA and obstacle detection. 

 In comparison to the conventional walkability assessment methods, the proposed approach 
has several advantages. First, the automation level of walkability assessment is elevated, so that 
the traditional reliance on human surveyors by audit tools and inaccurate data by GIS-based 
methods is now relieved. The proposed approach leverages state-of-the-art technologies in remote 
sensing, deep transfer learning, and as-built BIM creation and achieves an accurate, consistent and 
inexpensive assessment. Consistency is very important for the use of a walkability rating system. 
Furthermore, the details of pedestrian paths are modeled and assessed, thanks to the centimeter 
accurate, dense as-is 3D point cloud scanned by the AR smartphone. Last but not least, the 
proposed approach measures personalized walkability for each individual pedestrian like a person 



 

 

in a power wheelchair or a traveler with a large-model (e.g., 70 cm) baby stroller. To sum up, the 
proposed approach yielded a novel, automatic, semantically rich PWA, which is expected to be 
very competitive with manual surveying in smart city scenarios.  

Disadvantages, nevertheless, can also be identified. In the first step of 3D scanning, noise is 
problematic because the capacity of the embedded AR sensors and the related software libraries 
are not perfect. Another limitation is the requirement of an additional BIM workstation and 
network transmission apart from the AR smartphone, due to the reliance on powerful GPUs. The 
GPUs and memory in state-of-the-art smartphone models are not powerful enough to execute 
large-scale CNN models. Additionally, the as-built BIM, though successful in the pilot case, was 
neither volumetric nor in popular commercial BIM formats. Errors, though not significant, can be 
found in the results of PoinNet and as-built BIM creation as shown in Figures 3 (a) and (b). 
However, with the promised technological advancement in AR smartphone and continuous 
research, all these drawbacks are likely to be resolved in the near future. 

5 Conclusion 
This study presented an as-built BIM approach to PWA for pedestrian paths. The as-built BIM of a 
target pedestrian path represents the actual geometry, semantic components (e.g., potential 
obstacles), as well as the real topology, and serves as an information hub for assessing walkability. 
In our approach, the everyday AR smartphone becomes a potent walkability assessment tool, and 
pre-trained CNN models serve as a part of the automatic as-built BIM generator. The PWA created, 
is automatic, highly detailed, and capable of assessing walkability for various types of pedestrians. 
A pilot case of a real-world pedestrian path scene gave initial validation of the proposed approach. 

This study is expected to enrich research of PWA, as well as as-built BIM study, for 
pedestrian paths with a novel ubiquitous computing enabled framework for near-instant automated 
modelling of a walking environment. Although the findings are preliminary, the technological 
feasibility of crowdsourcing walkability assessment has been demonstrated by our prototyping 
pilot study. Further research will aim to reduce noise in the 3D scanning stage, embed the 
approach to AR smartphones without assistance from a BIM workstation, integrate with popular 
BIM/GIS software and standards, and refine the deep learning models.  
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