

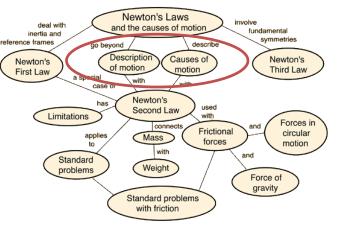
Indoor-outdoor navigation without beacons: Compensating smartphone AR positioning errors with 3D pedestrian network

9 March 2020 CRC 2020, Tempe, Arizona, USA

PORTRAIT

Jinying Xu, Fan Xue, Alain Chiaradia, Weisheng Lu, and Jin Cao FoA, HKU, HK SAR

The WaNAR Method


1. Motion, position, and indoor positioning

Motion & position

iLab

- Core concepts in Newton's laws
- With respect to a reference frame
 - $\circ~$ E.g., a passenger on a flying maglev train
- ♦ Indoor positioning
 - "Where am I?" in a building / underground space
 - Important for the AECO industry
 - × but no satellite signals here ...
 - Possible reference frames
 - Building structure
 - Space
 - Beacons

Xu et al.: WaNAR positioning @ CRC2020, Tempe, Arizona

Newton's Laws (Source: phy-astr.gsu.edu)

Maglev motion

₫a

iLab

1. Related works

Beacon-based methods are more expensive (\$\$\$)

• Vision & Radio Frequency (RFID, Ultra-wideband (UWB), Bluetooth (BLE), & WiFi)

Seacon-free methods are more prone to errors

Sonic & magnetic field: Natural "beacons"

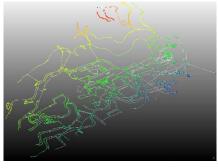
PDR stepper & Augmented reality (**AR**): Integration of motion data over time

|--|

Technique classes	Performance	Price	Examples
Sonic	***	*	
Magnetic	***	**	
Vision	**	****	Marker, floor pattern, image-to-location reasoning
Radio Frequency (RF)	****	***	Infrared, light, WiFi, BLE, GSM, UWB, etc.
Pedestrian Dead	*	****	Step counter + motion sensors
Reckoning (PDR)			
Augmented reality (AR)	**	****	iPhone 11, Google Tango / Pixel, Huawei Mate 30P
	+ + + + + +	+ + + +	Ditto

1. Opportunity

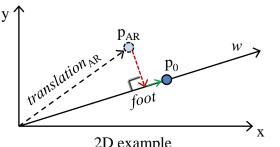
Indoor-outdoor motions are constrained

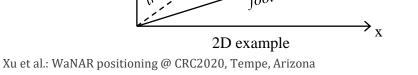

- For walking, driving, etc.
 - 。 E.g., No walking through walls
 - Restricted in some areas (e.g., locked)
- ♦ 3D walkablility network
 - A digital **reference** for PDR stepper and **AR**
 - Cheap: From BIM + GIS
- ♦ This paper
 - A Walkable Network-based AR (WaNAR) positioning
 - Beacon-free
 - Accurate, by compensating AR's errors

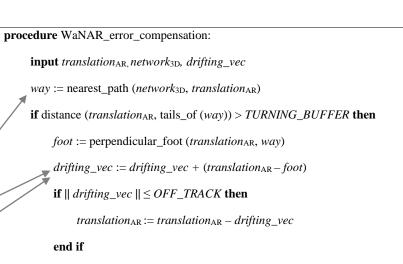
Indoor motion example

HKU Main Campus (Source: Google Maps)

HKU Main Campus 3D walkablility Network (partial indoor + outdoor) (Sun et al. 2019)







2. The WaNAR method

Given a true position p₀ sensed as p_{AR}
The "drifting" can be compensated as:
Green: on the path; Red: in perpendicular
WaNAR is a loop of three steps
1. To "snap" the p_{AR} to a walkable path w
2. To compensate the red if w not changed
3. To compensate the green if w changed

end if

return translationAR

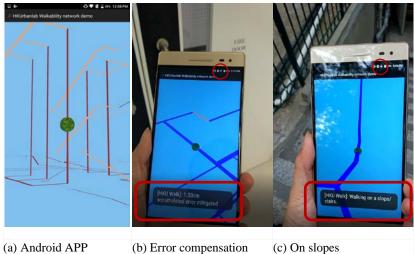
end procedure

Figure 2. Pseudo codes of the WaNAR error compensation algorithm

₫a

iLab

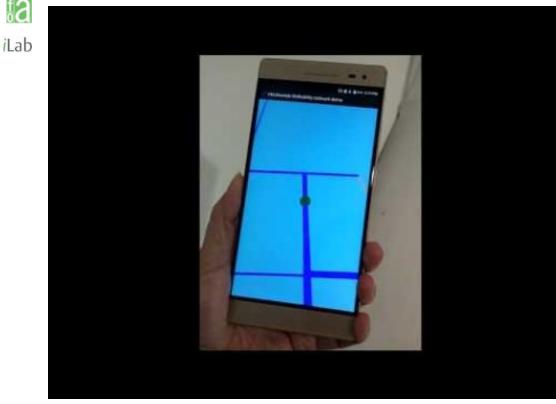
2. Pilot test


♦ 10 minutes walk at HKU Main Campus

Outdoor: Knowles Bld. \rightarrow outdoor \rightarrow CYM Amenities Center

Indoor: ... \rightarrow Knowles Bld. G/F

 \rightarrow Lobby \rightarrow 1/F \rightarrow 2/F


- ♦ Android app
 - On Android Studio (version 3.1)
 - 3D walkablility network (Sun et al. 2019)
 - Standard AR API (Google Tango, 2017)
 - Flight mode: (as circled)
 - Active messages: (in boxes)
 - Errors compensated
- **On slopes/steps** Xu et al.: WaNAR positioning @ CRC2020, Tempe, Arizona

2. Demo video 1/2 (outdoor)


 \otimes Knowles Bld. \rightarrow outdoor \rightarrow CYM Amenities Center Flight mode: On ■ No RF signals ♦ AR drafting was compensated Continuously Small ♦ Accurate, real-time • E.g., from cross to cross

Xu et al Video available on YouTube (link in CRC Proceedings)

2. Demo video 2/2 (indoor)

 \otimes Knowles Bld. $\blacksquare G/F \rightarrow Lobby \rightarrow 1/F \rightarrow 2/F$ ♦ Flight mode: On ♦ Worked well on steps, corridors, and doors ♦ Failed in lifts Too high acceleration on z Limited in an open area Must follow a line

Xu et al Video available on YouTube (link in CRC Proceedings)

3. Discussion

Pros

• WaNAR is accurate, cheap (a few modeler-hours), AR-ready

Taking advantage of the walkability in BIM/GIS models

Cons

A location synchronization before use

Limited to linear network in this paper

Cannot handle lifts' acceleration yet

♦ Future work

Automatic location synchronization (e.g., a few BLE, RFID)

- More types of walkability spaces
- Integration of rear camera and POIs (e.g., voice navigation for visually impaired)

THE UNIVERSITY OF HONG KONG 香港大學 **faculty of architecture** 建築學院

Let BIM/GIS contribute to smart cities!

For questions, pls Email Frank: xuef@hku.hk