
1 
 

Pushing the Boundaries of Modular-Integrated Construction: A Symmetric Skeleton Grammar-

Based Multi-objective Optimization of Passive Design for Energy Savings and Daylight Autonomy 

Qianyun Zhou1, Fan Xue2* 

This is the peer-reviewed post-print version of the paper: 
Zhou, Q., & Xue, F. (2023). Pushing the boundaries of modular-integrated 
construction: A symmetric skeleton grammar-based multi-objective optimization of 
passive design for energy savings and daylight autonomy. Energy and Buildings, 296, 
113417. Doi: 10.1016/j.enbuild.2023.113417 

The final version of this paper is available at: https://doi.org/10.1016/j.enbuild.2023.113417. 
The use of this file must follow the Creative Commons Attribution Non-Commercial No 
Derivatives License, as required by Elsevier’s policy. 

Highlights 

⋅ Automatic MiC envelopes and layout generation by a novel SSG-MOO method. 5 

⋅ Multi-objective optimization formulation for passive MiC design. 

⋅ A pilot MiC study in Hong Kong produced 5 selected Pareto optima out of 625. 

⋅ Up to 0.42% energy savings and 9.71% spatial daylight autonomy improvement 

against the baseline. 

⋅ A multi-level analysis of results and design strategies for practitioners. 10 

Abstract 

Modular-integrated Construction (MiC) is an emerging construction technique promoted in the 

building sector for high productivity and low waste emission in the construction phase; yet, the 

standardized modules also bring new challenges, such as balancing passive energy efficiency 

and spatial daylight autonomy, to the operational phase. This paper proposes a Symmetric 15 

Skeleton Grammar-based Multi-Objective Optimization (SSG-MOO) method to formulate 

parametric MiC envelopes and detailed layout, with the two objective functions being energy 

efficiency and interior daylight performance in the operational phase. Pareto optima of the 

SSG-MOO, computed by the Non-dominated Sorting Genetic Algorithm II, are generally 

verified and analyzed in three levels, i.e., MOO’s solution space, SSG layout, and MiC design 20 

parameters. A case study of MiC residential building in Hong Kong demonstrated the SSG-

MOO method through five new passive MiC designs (i.e., spatial reorganization of three 

architectural modules, and parameter tuning of the envelops and corridors), achieving up to 

0.42% energy savings and 9.71% spatial daylight autonomy improvement compared to the 

baseline design. The contribution of this paper is two-fold, including a novel and sound SSG-25 
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MOO formulation for parametric MiC designs, and offering time-efficient and evidence-based 

design tactics for MiC designers and industrial practitioners to push boundaries of MiC. 

Keywords 

Modular-integrated Construction; Multi-objective Optimization; Symmetric Skeleton 

Grammar; Energy Efficiency; Daylight Performance; Passive Generative Design 30 

 

1 Introduction 

Worldwide, over 34% of final energy is consumed by the building and construction sector, 

emitting a third of green gas emissions (UNEP 2022). As a high-rise high-density city, Hong 

Kong receives roughly 60% of greenhouse gas emissions from the building sector, and the 35 

energy consumption has risen by 13.7% from 2010 to 66416 TJ in 2020 in the residential sector 

(EMSD 2022). The high energy consumption necessitates the development of novel sustainable 

construction technologies. Recently, a list of innovative sustainable construction technologies, 

such as modular construction and 3D printing, offer more advantages of enhancing productivity, 

reusability, and occupational safety than energy savings over the construction life cycle (Wang 40 

et al. 2020; Li et al. 2022). 

Modular-integrated Construction (MiC) is a novel construction technology best-known 

in the construction phase. MiC assembles free-standing integrated and volumetric modules 

before on-site installation (Pan & Hon 2020). According to Abdelmageed & Zayed (2020), 

MiC outperforms many construction technologies, including prefabrication, panelized 45 

construction, and hybrid construction, with higher productivity and safety, maintaining lower 

energy consumption and wastage in the construction phase. MiC also facilitates manufacturing, 

assembly, supply chain, and logistics management (Li et al. 2022). Therefore, MiC is highly 

promoted in Hong Kong, where around 20,000 new units of public housing projects are 

expected to use MiC technology for the 10-year period from 2022/23 to 2031/32 (HKHA 2022). 50 

However, the standard modularization also brings new challenges, such as constrained building 

designs and exponential combinations of modules. 

However, few studies have addressed optimum MiC designs in the operational phase, 

which involves up to 80%–90% of the total energy consumption (Habash 2022). Echenagucia 

et al. (2015) demonstrated that the optimal design of buildings could successfully improve 55 

indoor environmental comfort. Appropriate natural illumination and thermal comfort, for 

example, can save energy from lighting, cooling, and heating throughout the operational phase. 

Furthermore, MiC is a new technology without detailed written standards. Therefore, it is 

urgent and vital to study the optimal design for energy-efficient MiC buildings for the 

operational phase.  60 

Generally, energy-efficient MiC building designs are highly related to passive design 

strategies, such as proper building layouts, windows, and insulation materials in the walls and 

roof (Baños et al. 2011; Fang & Cho 2019). Building layouts, different from other architectural 

components (such as windows), are infeasible to reconstruct by variables only, due to the 
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topological properties. Some state-of-the-art research has suggested the connection patterns 65 

between multiple modules, but the lack of a generic rule has made widespread implementation 

challenging. Previous studies suggested shape grammar as a transferable formulation for 

automatic layout generation in computer-aided design systems, which was operated through 

replacement rules on finite shapes (Haakonsen et al. 2023). Over the past fifty years, shape 

grammar has evolved to encode the design language of classic architectural projects and has 70 

been applied to generalize design guidelines to represent and generate a diverse range of 

architectural layouts. However, the existing shape grammars are subject to specific building 

types and require to be redefined manually in each design situation. Applying traditional shape 

grammars to guide the replacement rules thus is a labor-intensive procedure. Additionally, MiC 

layouts exhibit symmetry and standardization, notably in high-density Hong Kong. Thus, a 75 

generic and symmetric generation grammar is required for efficiently creating MiC layouts. In 

addition to energy efficiency, there are additional objectives such as visual comfort and health 

(Echenagucia et al. 2015). In the literature, multi-objective optimization (MOO) is often 

adopted to guide designers in generating optimal passive design with complex objectives 

(Hamdy et al. 2016). 80 

This paper proposes a symmetric skeleton grammar-based Multi-objective 

Optimization (SSG-MOO), a computer-aided passive design method, for energy-efficient MiC 

designs. First, a symmetric skeleton grammar is defined to formulate the layout and envelope 

of a standard MiC story using a set of design variables, including window-to-wall ratios, 

window heights, corridor axis, corridor lengths, and module distribution. Two objective 85 

formulations are then defined, with numerical simulations of energy use intensity (EUI) and 

spatial daylight autonomy (sDA), for evaluating the building performance of MiC design. MOO 

algorithms can optimize the SSG formulation against the two objectives by perturbating the 

passive MiC designs, with two hard constraints on the total modules and total floor area. In-

depth analysis of the Pareto front are presented for validation and insights, with comparisons 90 

between the SSG-MOO’s optima and the baseline design. A pioneering 19-story MiC housing 

project was studied in Hong Kong to demonstrate the proposed method. The contribution of 

this paper is thus twofold: (i) A novel SSG-MOO formulation of energy-efficient and ambient-

daylighting MiC designs and (ii) a time-efficient method and evidence-based design principles 

for planners and designers to push the boundaries of MiC. 95 

The remainder of the paper is structured as follows: Section 2 reviews previous research 

for building layout grammars and passive design optimization. Section 3 elaborately presents 

the research method in four parts and proposes an SSG-MOO method, emphasizing the 

symmetric skeleton grammar, for energy-efficient MiC designs. Then, Section 4 explains the 

experimental settings and analyzes the results in three levels. Finally, Sections 5 and 6 discuss 100 

the main findings and summarize the conclusions. 
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2 Literature review 

2.1 Modular building design rules and grammars 

In prefabricated and modular construction, layout rules and grammars have been studied with 

prefabricated modules. Gan et al. (2019) parameterized the modular building layouts by 105 

measuring one core area and multiple wings; each wing consisted of a corridor and adjacent 

household modules. Gan (2022) later extended the parameterized modular layouts with a graph 

model representing the topological, geometric, and semantic information. Zhang et al. (2021) 

then explored the connection patterns of multiple-shaped architectural modules to generate 

layout rules. Nevertheless, for MiC typologies, which are highly efficient and standardized, a 110 

systematic and scalable grammar for generating standard floor layouts is still lacking. 

Shape grammar has been developed as a systematic formalization of recursive rules to 

represent and generate floor layouts of various building types since the 1970s in the literature, 

as illustrated in Figure 1 (Stiny & Gips 1972; Ning & Peiman 2018; Haakonsen et al. 2023). 

For example, Stiny and Mitchell (1978) employed a parametric shape grammar to generate the 115 

ground plans of Palladio’s villas. Koning and Eizenberg (1981) encoded the design language 

of Frank Lloyd Wright’s prairie house with a shape grammar derivation. Similarly, Gülen 

(1996) and Duarte (2005) created varied architectural layouts for different types of residential 

houses by defining the connection rules of the shape grammar. Ruiz-Montiel et al. (2013) 

studied proximity relationships of architectural spaces with given design requirements using 120 

shape grammars and reinforcement learning, presenting diverse design solutions for single-

family housing. Moreover, Paulino et al. (2023) developed the Reviver shape grammar for 

converting historic buildings into social housing; the Reviver grammar helped to generate 

various types of housing layouts, i.e., studios, one-bedroom, and two-bedroom apartments. 

 125 

Figure 1. The timeline review of shape grammars and modular building design rules in the 
literature 

 
The benefits of shape grammar include encoding the topological variations and 

presenting universal properties for building layouts by summarizing the architectural design 130 

guidelines. However, the existing shape grammars often need to be manually redefined by 

designers regarding different built objects; and the generated building footprints are commonly 
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non-standardized. MiC with mass construction and standardized manufacturing properties 

cannot be fully adapted to existing shape grammars. Thus, a concise and scalable generative 

grammar is urgently needed for the represent the standardized modules of MiC.  135 

2.2 Multi-objective optimization for passive building design 

Passive building design promotes solutions with comfortable indoor environments that 

effectively reduce energy consumption during the operational phase (Sadineni et al. 2011). 

Later, computer-aided passive design optimization relieved designers from manually 

modifying numerous architectural parameters (Stevanović 2013). The optimization is often an 140 

iterative procedure coupled with numerical simulation tools. The popular tools for building 

performance simulation in optimization studies are EnergyPlus and TRNSYS (Nguyen et al. 

2014). Usually, designers are required to address multiple – and sometimes conflictive – 

objectives simultaneously for achieving a comfortable indoor environment, such as proper 

illumination and thermal comfort (Liu et al. 2020; Zheng et al. 2023). Therefore, the MOO 145 

method has been widely adopted to find the optimal solutions for comfortable and low-energy 

passive building design (Clarke & Hensen 2015; Hamdy et al. 2016). 

Existing MOO techniques can be classified into two categories: aggregate weight 

functions and Pareto-based optimization methods (Baños et al. 2011). Aggregating functions 

transform all the objectives into a single weighted-sum function to optimize the objectives. 150 

However, aggregating functions have several limitations, such as constant weights and linear 

summation, that oversimplify complex objectives and return only a single solution after the 

lengthy search process (Hajela & Lin 1992). In contrast, Pareto-based MOO examines a set of 

trade-off optimal solutions (a Pareto set) between each objective and determines appropriate 

solutions (Nguyen et al. 2014). Pareto-based MOO can overcome the major drawbacks of 155 

aggregating functions. The common algorithms for Pareto-based MOO are metaheuristics, 

including Genetic Algorithm (GA), Covariance Matrix Adaptation Evolutionary Strategy 

(CMA-ES), Harmony Search (HS), Particle Swarm Optimization (PSO), and Ant Colony 

Optimization (ACO). GA, in particular the Non-dominated Sorting Genetic Algorithm (NSGA-

II) (Hamdy et al. 2016), was the most prominent Pareto-based MMO algorithm for building 160 

performance problems in the literature (Evins 2013; Ascione et al. 2017; Ciardiello et al. 2020). 

Popular optimization environments for NSGA-II include Matlab (Ljung & Singh 2012), 

modeFRONTIER (Clarich et al. 2011), and Grasshopper (Wallacei, Galapagos, Octopus) on 

Rhinoceros (Makki et al. 2015). 

Existing MOO studies of passive designs using NSGA-II in the literature were 165 

primarily conducted from three perspectives, i.e., the building envelopes, floor layout, and 

building form-finding. For example, with NSGA-II, Didier et al. (2013) studied the optimal 

thermophysical properties of the dwelling’s envelope in two French climates, targeting reduced 

annual energy consumption and improved summer comfort. Echenagucia et al. (2015) further 

explored the optimal envelope variables to minimize energy consumption for heating, cooling, 170 

and lighting in four urban contexts (i.e., Palermo, Torino, Frankfurt, and Oslo). The research 
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was conducted on an office building by optimizing the number, position, shape, and type of 

windows and the thickness of masonry walls. Moreover, the study developed by Zhang et al. 

(2021) showed the effectiveness of optimizing floor layouts to enhance energy efficiency in 

the early design stage for a residence case in Beijing. Based on four different climate zones, an 175 

MOO study by Konis et al. (2016) concluded that the optimum building form and orientation 

could considerably improve the performance of daylighting and energy efficiency. 

Therefore, it can be concluded that passive design optimization based on MOO can 

effectively achieve energy reductions in heating, ventilation, air conditioning (HVAC) and 

artificial lighting by modifying architectural properties (Tian et al. 2018). This paper thus aims 180 

to design energy-efficient and daylight-autonomous MiC that rely the least on heating, cooling, 

and lighting, using an MiC design grammar and optimum modular fenestration and layouts. 

3 Research methods 

This paper presents a bi-objective passive design optimization method focusing on MiC 

envelope and layout. As shown in Figure 2, the method contains four parts: (1) A symmetric 185 

skeleton grammar of combinatorial MiC design variables; (2) Definition of the SSG-MOO 

problem of energy-efficient and ambient-daylighting MiC with constrains; (3) MiC design 

generation by solving SSG-MOO; (4) Pareto optima selection and multi-level verification and 

analysis.  

 190 
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Figure 2. The proposed SSG-MMO method for energy-efficient and ambient-daylighting 

MiC design. 

3.1 Definition of symmetric skeleton grammar and design variables 

This section defines a symmetric skeleton grammar deriving from the basic features of shape 

grammar and aesthetics to represent the spatial topology between MiC modules. The grammar 195 

first indicates the core point from which the axis of symmetry is subsequently defined. Later, 

the skeletons of the main corridors (Sci) are defined, where i denotes the number of circulation 

corridors. By rotating Sci through the angle θ (clockwise rotation from Y-axis), the spatial 

topology of the corridor skeletons to the core point is obtained, which is saved as Sci
’. The 

grammar constructs sub-skeletons for sub-corridors (Ssi) and locations for modules by 200 

determining the placement of sub-skeleton nodes (Snj) or module nodes (Mnj). Then, the 

modules are arranged by vectors (Mvj). Here j represents the total number of modules in relation 

to the number of occupants. The entire layout is horizontally symmetrical. Therefore, for 

symmetrical wings, the computed decision is only required once to generate the mirrored wing; 

this setting can considerably increase the computational speed. The derivation tree diagram for 205 

this grammar is illustrated in Figure 3. The grammar well represents the majority layouts of 

new residential buildings in Hong Kong; for example, Figure 4 shows the standard layouts for 

public housing in Hong Kong (HKHA 2020). 

 
Figure 3. The derivation tree diagram for the proposed symmetric skeleton grammar.  210 
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Figure 4. Examples of symmetric skeleton grammar representation of public housing layouts 

in Hong Kong.  

With the symmetric skeleton grammar, a MiC model can be decoded and parameterized 

in Rhinoceros3D (Ver.7.0) with Grasshopper. The former is the professional 3D CAD software 215 

with high compatibility, whereas the latter is a graphical algorithm editor interacting 3D 

modeling with numerical simulations (McNeel 2023). As shown in Figure 2, a MiC layout 

consists of symmetric and asymmetric parts. The symmetric parts include three main corridors 

(Sc1
’, Sc2

’, Sc3
’) with two nodes (Sn1, Sn1

’) generating sub-corridors (Ss1, Ss2, Ss1
’, Ss2

’), where 

θ1, θ2, and θ3 are 0°, 270°, and 90°, respectively. The midpoint of the corridor axis (Sc2
’, Sc3

’) 220 

can be altered within the vertical range (Pc). Three parameters of corridors’ lengths (L1, L2, L3) 

are variable, while L4 is a constant value when the number of modules per floor is determined. 

Different modules (e.g., MA, MB, MC) are arrangeable for the layout according to Mvj, while 

each module has a parametric window with the WWR and height variables on the north (WWRN, 

WHN) or south (WWRS, WHS) side of the module. The asymmetric part is usually much smaller 225 

than the symmetric ones in size, which differs between projects. The three fixed-location 

modules (Cw, Ct, Bw) are arranged in the bottom of the south, also with parametric windows. 

3.2 Definition of SSG-MOO problem of energy-efficient and ambient-daylighting MiC 

We formulate the MOO of passive MiC envelope and layout design as a bi-objective problem: 

arg minx∈X  EUI(SSG(x)), sDA−1(SSG(x))  230 

subject to   GFA(SSG(x)) = TGFA, (1) 
    Σ Mnj = Constant  

Where SSG maps input design parameters to an MiC layout, EUI is the energy use intensity 

(kWh/(m2·yr)) that is calculated by dividing the total energy used per year by the gross floor 

area (Konis et al. 2016), sDA−1 refers to the inversed spatial daylight autonomy (to minimize) 235 

that expresses the annual deficiency of ambient daylight levels for the interior environment, 

quantifying the percentage of minimum received brightness during daytime working hours in 
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the target space (Heschong et al. 2012), the first constraint is that the SSG’s gross floor area is 

equal to the expected value (TGFA), x stands for a combination of the n design variables (x1, 

x2, ..., xn), and X means the set of all possible combinations. And the second constraint is the 240 

constant number of total modules. 

The EUI computation is based on an integrated energy model of multi-feature data, 

including local climate data, construction materials, construction type, and HVAC. The energy 

model (.osm) can be translated into the .idf file via the OpenStudio component in Honeybee 

(Ver.1.5) and run on the built-in EnergyPlus program (Roudsari & Pak 2013). The target 245 

meteorological data can be downloaded from the EnergyPlus weather website through 

the Ladybug (Ver.1.5) EPWmap component (ASHRAE 2021). As a result, the EUI and related 

end-use value (i.e., heating, cooling, interior lighting, and the other end-uses) can be calculated. 

The sDA−1 is the reciprocal of sDA. In general, sDA assesses whether the floor area 

receives a minimum target illuminance of 300lx for at least 50% of the year during standard 250 

occupied hours (sDA300/50%) on the horizontal work plane. According to the LEED V4.1 

standard (standard for green building design, construction, operations, and performance), the 

average sDA300/50% value for the regularly occupied floor area should be reached 40% to earn 

one point of standard daylight evaluation, and 50% for two points (Pilechiha et al. 2020; 

USGBC 2022). The formula for sDA can be defined as (Pilechiha et al. 2020): sDA = Σρ =1…N 255 

ST(ρ) / N, where ST(ρ) = 1 if stρ ≥ 𝜏𝜏 ty, and ST(ρ) = 0 if stρ ≤ 𝜏𝜏 ty. stρ is the occurrence count 

above the sDA illuminance threshold at point ρ; ty is the annual timestamp count, and 𝜏𝜏 denotes 

the temporal fraction threshold. Assuming an N-point grid with function ST(ρ), the value turns 

to one when point ρ in the grid has a minimum required illuminance that exceeds a given 

percentage of the total occupied time, and zero vice versa. Later, the Honeybee-Radiance 260 

components launch the annual daylight simulation for each sensor based on the preset grid size 

(Gs). Since sDA takes probability between zero and one, the interval of sDA−1 is one to ∞. By 

minimizing the sDA−1, the SSG-MMO in Eq. (1) tends to improve MiC layouts toward less 

deficiency of ambient daylighting. 

3.3 MiC design generation with SSG-MOO 265 

Many MOO algorithms can solve the SSG-MOO problem in Eq. (1). For simplicity and clarity, 

the NSGA-II algorithm implemented in Wallacei (Ver. 2.7), an add-on that interacts with 

simulation data with Honeybee and Ladybug in Grasshopper (Makki et al. 2018), is adopted in 

the remainder of this paper. The design variables described in Section 3.1 are transferred as 

genes, while EUI and sDA−1 values in Eq. (1) are then positioned and sorted among the 270 

objective space. The major algorithmic parameters of NSGA-II are population size and 

crossover/mutation index. 

The output of NSGA-II is the Pareto optima that is the set of non-dominated solutions. 

A dominated solution indicates all its objective values are inferior than another (or more) 

solutions (Deb et al. 2002; Li et al. 2023). However, it can be time-consuming and 275 

computationally challenging for decision-makers to analyze the entire Pareto optima or quickly 
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select a unique ‘best solution’. Proper selection, verification, and analysis are thus essential for 

prioritizing the most promising solutions for MiC practitioners. 

3.4 Multi-level verification and analysis of selected Pareto front 

This paper employs verification and analysis in three levels for validating the selected solutions 280 

on the Pareto front. The three levels are MOO solution space, SSG modular layout, and MiC 

design parameters.  

Firstly, the bi-objective ranking of the Pareto optimal solutions is sorted, compared, and 

analyzed. The overall density and trending curves of Pareto front are summarized for the 

alternative. Then, we extend the ‘Utopia’ point method with the baseline MiC layout as the 285 

second reference solution in the solution space. The ‘Utopia’ point is the virtual position of the 

ideal solution in the objective space, obtained by minimizing each objective function without 

regard for other objective function (Showkatbakhsh & Makki 2022). A rectangular-shaded area 

can be drawn between the ‘Utopia’ point and the baseline MiC reference point. Pareto optimal 

solutions in the rectangular are most desirable for decision-makers, due to all the objectives are 290 

superior than the baseline. This screening approach can effectively save time and effort for 

practitioners to select multiple Pareto optimal solution(s) while keeping the variation and 

diversity of the selected subsets. 

Secondly, the modular layouts of the selected Pareto optima are generated by SSG for 

visualization and assessment. The selection and arrangement of multiple modules can be 295 

assessed and compared together with the baseline MiC layout. The layouts’ improvement 

effects on the target performance are analyzable accordingly.  

Finally, passive design variables are explored, and general design trends for energy-

efficient MiC design are presented. The data sample is based on the selected Pareto optimal 

solutions. This paper applies Spearman’s correlation to testing the correlations between the two 300 

optimization objectives and the eleven design variables. The Spearman’s correlation 

coefficient (r) is a value between −1 and 1. And the significant (e.g., p < 0.001) correlations 

often indicate interesting relations to investigate and interpret further with domain knowledge. 

4 Experimental tests 

4.1 Experimental settings 305 

A pioneering 19-story MiC residential building was the test case in this paper. The building is 

a university student hostel located at 142 Pokfulam Road, Hong Kong, Latitude 22°15’51.76” 

N, Longitude 114°8’7.72” E, and to be completed by the second quarter of 2024 (HKSAR 

2021). Figure 5 (a) depicts the climatic indicators for the building, explicitly showing the mean-

minimum-maximum dry bulb temperature and global horizontal radiation values for each 310 

month. As shown in Figure 5 (a), the dry-bulb temperatures reach more than 30 °C in summer 

in Hong Kong, with average winter levels around 10 °C; and the summer lasts approximately 

six months. Figure 5 (b) shows the baseline MiC layout, which was designed by a professional 

architect consultant, consisting of a core tube with six different types of modules. Modules Bw, 
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Cw, and Ct remain spatially constant in this study, and the corresponding window features were 315 

added to the optimization calculation. The spatial layouts for the three modules, MA, MB, and 

MC, were then reorganized in the optimization. The width and height of each module type are 

fixed at 2.5 m and 3.15 m, respectively. Those modules differ primarily in terms of length and 

windows’ features. 

 320 

Figure 5. (a) Annual climate indicators for Hong Kong SAR. (b) The baseline MiC layout. 

Table 1 lists the design variables considered in the SSG-MOO experiments, along with 

data units and ranges. The design variables were divided into two types: corridors and windows. 

L1 was based on Sc1
’, varied from 0 to 2 m, and controlled the corridor length on the north; L2 

and L3, which were based on Ss1 and Ss2, respectively, modified the length of the northern and 325 

southern sub-corridors, with values ranging from 1m to 6m. Pc guided the vertical movement 

(0% to 100%) of the horizontal corridors along the axis of symmetry. WWRN and WWRS varied 

between 20% and 70% for the south and north facades, respectively. Moreover, WHN and WHS 

were optimized in the range of 1.0m to 2.5m. The TGFA in this experiment was 531.34 m2, and 

the modules number (C) was 31. To fulfill the requirement for the number of occupants on 330 

each floor, modular amount and L4 were fixed values of 31 and 13.75 m, respectively.  

Table 1. Independent variables in MiC parametric design excluding selection of modules. 

Type Component Unit Variable’s value range 
Corridor Corridor length (L1, L2, L3) m 0 ≤ L1≤ 2.00; 1.00 ≤ L2, L3 ≤ 

6.00 
Vertical range for the corridor 
axis (Pc) 

% 0 ≤ Pc ≤ 100 

Window Window-to-Wall Ratio 
(WWRN, WWRS) 

% 20 ≤ WWRN, WWRS ≤ 70 

Window height (WHN, WHS) m 1.0 ≤ WHN, WHS ≤ 2.5 

Table 2 lists the material settings for MiC envelopes. In this case, the single clear glass 

had a thickness of 0.006m, where the U-value was 5.78 W/m2K, the Solar Heat Gain 

Coefficient (SHGC) value was 0.775, and the visible transmittance value was 0.881. The wall 335 

and floor slab thicknesses were set as 0.14 m and 0.1 m, respectively, with U-values as 3.72 

W/m2K and 2.89 W/m2K. The above parameters referred to the energy modeling 

recommendations for residential buildings specified in the Hong Kong environmental 
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evaluation (Qin & Pan 2020). According to Honeybee Heat Cool Templates, the HVAC system 

was configured as a “Window AC with baseboard electric” for high-rise apartments. In addition, 340 

the construction set applied “ASHRAE 90.1 2019” for building vintages and “2-Hot” for the 

climate zone. The numerical simulations were then conducted with a resolution grid size (Gs = 

0.5m). 
Table 2. Material parameter settings for MiC envelopes. 

Envelopes  Thickness 
(m) 

k 
(W/mK) 

U_ Factor 
(W/m2K) 

SHGC Visible 
Transmittance 

Single clear glass 0.006 0.900 5.78 0.775 0.881 
Wall 0.140 2.160 3.72 − − 
Floor 0.100 2.160 2.89 − − 

For the NSGA-II algorithm settings, both the generation size and generation count were 345 

chosen as 25, producing a total population of 625. And the index for crossover and mutation 

distribution was set as 20 in Wallacei. The rest parameters of NSGA-II algorithm were set 

according to the existing literature expertise (Chantrelle et al. 2011; Makki et al. 2015; 

Showkatbakhsh & Makki 2022).  

4.2 Experimental results and analysis 350 

The experiments were conducted on a desktop computer with an Intel (R) Core i7-10700 CPU 

@ 2.90 GHz processor and 32 GB memory. The total time cost was 15.56 hours to solve the 

SSG-MOO problem by the NSGA-II algorithm and the simulations. A total of 39 Pareto optima 

were returned. Within the Pareto-Utopia shaded area, as shown in Figure 6 (a), the five selected 

MiC Pareto optima decreased the EUI values and increased daylight performance for the same 355 

floor area and units as the baseline case. The visualization analysis of daylight and energy end-

use for each of these five options is shown in Figures 6(b) and (c). In Figure 6(b), the closer 

the color is to red, the more daylight can be received, and the closer it is to blue, the less. In 

particular, the energy end use (in heating, cooling, lighting, equipment, and water) of these five 

options is presented in detail in Figure 6(c). 360 

 
Figure 6. The selection and comparative analysis of the five MiC Pareto optima. (a) 39 Pareto 

optima solution space; (b) Modular layouts of the five selected MiC Pareto optima with 

daylighting visualization; (c) End use intensity of the selected. 
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4.2.1 On the MOO solution space level 365 

Every dot in Figure 6 indicates a Pareto optimum, i.e., a Pareto optimal solution, and they 

depict the Pareto front collectively. In Figure 6 (a), the purple square symbol represents the 

‘Utopia’ point, the blue diamond symbol shows the location of the baseline MiC scheme, and 

the magenta triangular symbol highlights the five selected MiC Pareto optima. The closer a 

point is to the square “Utopia” point, the superior the behavior of the specific solution in 370 

relation to that objective. The rectangular shading area bounded by the ‘Utopia’ point and the 

baseline case suggests the most promising Pareto optimal solutions, which were superior than 

both objective values – or dominate over – the input baseline case.  

In addition to the five options located in the Pareto-Utopia shaded area, Figure 6(a) 

shows five more Pareto optimal solutions between the baseline point and the horizontal dash 375 

line sDA−1 = 2.5. The threshold sDA−1 = 2.5 (or sDA = 40%) will grant at least one point based 

on LEED V4.1 standard. These five options might also be available for the project team to 

consider, if they would like to emphasize on the EUI. In the remainder of this section, we 

mainly focus on the five MiC designs in Figure 6 (b) without loss of generality. 

4.2.2 On SSG modular layout level 380 

Figure 6(b), (c) and Table 3 comprehensively compare the layouts of the five selected MiC 

Pareto solutions and the baseline project concerning the improvement magnitude in energy and 

daylighting performance. In Table 3, the improvement magnitude [% Imp.*] is the percentage 

increase or decrease, where v0 is the EUI value of the baseline scheme, and v1 is the EUI value 

of the calculated option; w0 represents baseline scheme’s sDA, and w1 represents the sDA value 385 

of the calculated option. For the MOO process, modules Bw, Cw, and Ct (three modules arranged 

horizontally below) remain spatially constant in this paper. The baseline MiC design solution 

consists of 12 MA, 2 MB, and 14 MC. And the baseline scheme simulated the EUI as 133.259 

kWh/m2·yr and the sDA as 56.05%.  

Option 1 reduces annual energy consumption by 0.42% per square meter compared to 390 

the baseline scheme. In terms of modular layout, Option 1 arranges more MB than the baseline 

one and tends to be essentially flat at the northern boundary. Similarly, Options 2 and 3 are 

close to the horizontal line in the layout of the modules on the north side. Option 2 has a higher 

energy efficiency than Option 3, with close indoor daylighting performance. Option 4, which 

arranges the three modules evenly on the north and south sides, computed the EUI as 133.151 395 

kWh/m2·yr, a reduction of 0.08% compared to the baseline one, while the sDA improves by 

7.78%. Option 5 significantly improves the performance of daylighting with an increase of 

9.71%, while its building energy consumption is reduced by only 0.05%. It can also be noticed 

that from Option 1 to Option 5, as the value of sDA increases from 57% to 61.49%, the energy 

consumption of cooling increases from 38.913 kWh/m2·yr to 39.357 kWh/m2·yr, while the 400 

energy use of lighting gradually decreases. 
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Table 3. Objective values and improvements of the five Pareto optimal solutions of MiC 

designs in Figure 6 (b). 405 

Option EUI 
(kWh/m2·yr) 

EUI [% Imp.*] sDA (%) sDA [% Imp.*] 

1 132.693 0.42 57.00 1.69 
2 132.799 0.35 57.47 2.53 
3 132.878 0.29 57.71 2.96 
4 133.151 0.08 60.41 7.78 
5 133.192 0.05 61.49 9.71 

Baseline 133.259 - 56.05 - 
*: Improvement by percentage, (v0 − v1)/v0 × 100% for EUI, (w1 – w0)/w0 × 100% for sDA. 

Overall, from Option 1 to Option 5, the annual energy consumption per square meter 

of the MiC designs gradually increases, while the daylight performance shows an opposite 

trend. Compared with the baseline scheme, the five Pareto optimal schemes all meet the 

requirements of the LEED V4.1 standard to obtain two points for daylight assessment, and all 

have improved the energy efficiency for MiC design. 410 

4.2.3 On MiC design parameters level 

Figure 7 shows the Spearman’s rank correlations between the design variables and the two 

objectives. Figure 7 contains histograms at diagonal subfigures, and the lower half involves 

scatter plots and trend lines, where the color and size of the circle in the upper triangle indicate 

the sign and value of the correlation coefficient (r). Note that six insignificant variables (Pc, L1, 415 

L2, L3, WHN, WHS) in this case are hidden in Figure 7. Specifically, the findings reveal 

significant and very strong correlations (r = ± 0.91, p ≤ 0.001, N = 39) between WWRS and 

the two objectives.  

 
Figure 7. Results of Spearman’s correlation analysis based on 39 Pareto optima, with 420 

histograms, scatter plots, and the correlation coefficient r (cool color indicates positive, size 

stands for strength) and significance (*** p ≤ 0.001, ** p ≤ 0.01, * p ≤ 0.05, two-tailed).  
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Similarly, WWRN shows strong correlations (r = ± 0.70, p ≤ 0.001, N = 39) with EUI 

and sDA−1. For the three types of modules, the number of MB has a moderate positive 

correlation (r = 0.47, p ≤ 0.01, N = 39) with EUI, whereas the number of MA and MC has a 425 

moderate negative correlation (r = –0.47) with EUI. It can be found an opposite result in 

correlation coefficients of MB and MA, MC calculated by sDA−1. Moreover, the results show 

that the number of MB has a robust negative correlation with the number of MA and MC, with 

a coefficient of –1.0 (p ≤ 0.001), while the number of MA has a robust positive correlation 

(1.0) with the number of MC. However, the values of WHN and WHS did not show significant 430 

correlations with EUI or sDA−1. 

 
Figure 8. Comparison of 11 design parameters and the layout perimeter between 39 MiC 

Pareto optimal solutions and the baseline project. 

Figure 8 compares the statistics of optimized design variables in the 39 MiC Pareto 435 

optima against the baseline design parameters. In the baseline solution, Pc is assigned as 50%, 

which means that the axis of the horizontal corridors is located in the middle of the core tube. 

As shown by the red bolded short line in the box plot, the median value of the optimized Pc 

was 30%, which means that the axis of the horizontal corridors is shifted towards south. The 

optimized values of L2 are mainly distributed between 3.75m and 5.25m, which are slightly 440 

larger than the baseline parameters (3.66m). L2 is utilized to modify the length of the sub-

corridor on the north side, and a smaller Pc value would also mean an increase in L2. The 

optimized values of L3 are slightly smaller than the baseline parameters (3.66m), with the 

median of 2.26m. In contrast, the difference between the median value of optimized L1 and the 

baseline solution is tiny, at 0.17m. 445 

Meanwhile, the three types of modules are distributed in distinct ways. Figure 8 shows 

that the data spread of three types of modules is relatively concentrated. The number of MB is 

significantly higher than the baseline scheme, with a median of 26. The total number for MA is 

slightly lower than that of MC, with median values of 2 and 0, respectively. 

The optimized window design parameters vary considerably from the baseline 450 

parameters, especially for the WWRN, and WWRS. In the baseline scheme, the WWRN and 

WWRS were designed with an equal value of 35%, while the WHN and WHS were both in 1.2m. 
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However, the optimized WWRN shows higher values, predominantly between 47% and 64%. 

The values for the optimized WWRS, on the other hand, are mainly distributed between 21% 

and 40%. With regard to the height of the windows, the optimal solutions emphasize the almost 455 

same height of the windows on the north side (WHN) and the south side (WHS). The median 

value of the window’s height on the north is 2.0m, while the value is 2.1m for the south side. 

Moreover, the optimized schemes’ median perimeter value is roughly 137m, which is 

substantially less than the baseline project’s perimeter value of 167.7m, indicating that the 

optimized schemes were more compact. 460 

4.3 Sensitivity analysis 

A sensitivity analysis was conducted to identify a cost-effective MOO setting from the aspects 

of daylighting simulation grid size and total population size. The grid size substantially 

influences the quantity of sensors utilized in daylight simulations, which subsequently affects 

the sDA computation outcomes and the simulation time frame. In the preliminary study, six 465 

grid sizes (i.e., 0.1 m, 0.2 m, 0.5m, 1m, 1.5m, and 2m) were selected for daylighting simulation 

of the baseline model, and the corresponding simulation times required for each case were 

documented, as illustrated in Figure 9. The computing time exhibited a substantial increase 

when the grid size was reduced to less than 0.5 m. E.g., a 0.2 m grid necessitated 135 seconds 

for computation, whereas a 0.1 m grid demanded 454 seconds. For the case in this paper, Figure 470 

9 suggests that there was an ‘elbow point’ around time = 60s. Thus, a grid size of 0.5 m was 

selected to maintain a reasonable trade-off between computation time (i.e., 48 seconds per 

simulation on average) and accuracy. 

 
Figure 9. Sensitivity testing results of grid size for daylighting simulation. (a) The sDA 475 

values and time required for each simulation against grid size (dashed line indicates 60s); (b) 

Daylighting simulation results. 

Figure 10 compares the number and location of the Pareto optimal solutions in three 

situations: total population size in 100 (10 chromosomes times by 10 generations), 625, and 
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2500. The experiments led to 14, 39, and 90 Pareto optima in 2.28 h, 15.56 h, and 72.48 h, 480 

respectively. In Figure 10 (a), there was only one Pareto optimum in the Pareto-Utopia shaded 

area when the population was 100. In contrast, the number of the most promising Pareto optima 

reached 16 after examining the population of 2,500, as shown in Figure 10 (c). In Figure 10 (c), 

the new Pareto optima in the shaded area progressed the five options in Figure 10 (b) to a 

limited extent, but it required a significant amount of time and effort for the decision-makers 485 

to compute and compare the final optimal solutions. Therefore, increasing the population size 

can generate slightly more promising solutions, at the costs of computer time for computation 

and experts’ time for narrowing down the candidate MiC schemes for decision-makers.  

 
Figure 10. Scatter plot of Pareto optima against the population size of NSGA-II. (a) 490 

Population size as 100; (b) Population size as 625; (c) Population size as 2,500. 

5 Discussion 

The SSG-MMO method presented in this paper shows promising experimental results in 

improving ambient daylighting and reducing operational energy costs in the early design phase 

of MiC projects. The three-level comparative analysis provides an efficient and elaborate way 495 

of analyzing the information in the MiC Pareto optima. By subject to the target gross floor area, 

the decision-makers have the flexibility to compare multiple Pareto optimal solutions under a 

defined number of occupants. In terms of modular layout, the optimized MiC designs arrange 

more MB than the baseline one and tends to be essentially flat at the northern boundary. 

According to Spearman’s correlation analysis, the value of WWRN, and WWRS have a robust 500 

correlation with optimizing the energy efficiency and daylight performance in the Hong Kong 

region. 

Therefore, the optimized parameters for MiC window and corridor design can also be 

summarized into valuable suggestions for energy-efficient design strategies. Specifically, the 

optimized window design parameters indicate that the window ratio should be distinguished 505 

for the north and south sides, while the values of WWR should be increased on the north side. 

Meanwhile, the optimized Pc suggests that the corridors’ layout becomes more passive energy 

efficient as it is shifted southward. The optimization results for the window and corridor 

parameters are consistent with the geographical location and climatic conditions of Hong Kong. 

Therefore, for Hong Kong in a subtropical climate, the energy-efficient MiC designs (with a 510 

due north orientation) should increase the ratio of windows on the north side of the building 
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and design the axis of the horizontal corridor towards the southern part of the core, as well as 

reduce the concavity of the northern boundary. 

However, there are three groups of limitations in this paper. Firstly, there are limitations 

in the SSG-MOO formulation. This paper mainly conducts optimization from energy 515 

consumption and daylighting aspects, without other operational performance indicators for 

MiC design, such as target wind load, ventilation, personalized thermal comfort, and carbon 

emissions. Also, the envelope optimization in this paper concerns the size of the windows 

regardless of the influence of different materials and coating on energy efficiency. Therefore, 

the conclusive design tactics may be overridden by other design needs in practice. Secondly, 520 

this paper is limited in applying NSGA-II as the only algorithm. In the future, other MOO 

algorithms, such as CMA-ES and PSO, are also potential to solve the SSG-MOO problem for 

MiC. Lastly, the numerical computational results need further validation and comments by 

field experts. 

6 Conclusion 525 

Novel construction technologies are required with lifecycle passive designs to address energy 

crises and comfort concerns. This paper presents a symmetric skeleton grammar to handle the 

constrained MiC designs and MOO to cope with the exponential combinations of various 

modules for energy efficiency and daylight autonomy in the operational phase. A pilot MiC 

project was studied in Hong Kong to evaluate the proposed method. By optimizing 11 design 530 

variables regarding windows, corridors, and layouts of MiC modules, five optimized options 

were selected from 39 Pareto optima using the Pareto-Utopia shaded screening method. 

Meanwhile, the optimal design tactics can be summarized to passive MiC designs for energy 

efficiency and daylight autonomy: (i) the ratio of north-facing windows (WWRN) should be 

increased, and (ii) the axis of the horizontal corridor should move southward, while maintaining 535 

flatness at the northern boundary. 

The main contribution of this paper can be concluded in two aspects. From the MiC 

researchers’ perspective, the method presents a symmetric skeleton grammar of MiC designs. 

Moreover, the proposed bi-objective formulation optimizes the parametric MiC designs in an 

energy-efficient and sufficient daylighting manner. From the industrial practitioners’ 540 

perspective, the SSG-MOO with Pareto-Utopia-shaded screening method can efficiently assist 

designers in selecting the optimized solution(s) with multi-level evidence-based information. 

And valuable energy-efficient design strategies can be suggested for MiC designers in Hong 

Kong. 

In the future, researchers can broaden the goals of MiC design optimization for wind 545 

load, thermal comfort, and carbon emissions, and taking into account the impact of different 

envelope materials on building performance. Furthermore, advanced MOO algorithms can be 

studied and applied to address the complex SSG-MOO problems. In addition, human experts 

can be included in the loop to verify and guide the Pareto optima selection for multi-level 

evidence-based decision making. 550 
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