

THE UNIVERSITY OF HONG KONG 香港大學 faculty of architecture 建築學院

IEEE ICSPCC 2019 (SPG 10-6)

Semantic Enrichment for Rooftop Modeling using Aerial LiDAR Reflectance

Tan, T., Chen, K., Lu, W., & Xue, F.*

Assistant Professor Dept. of REC / iLab FoA, HKU, HKSAR, PRC

Outline

iLab

1.1 Background

iLab

♦ Global urbanization

- By 2050, 65% world's population will live in cities (WHO, 2015)
- Irreversible; Even faster in China
- ♦ Leads to urban vulnerability (a.k.a. 'city diseases')
 - 'Dead' space/landscape, low familiarity with surroundings,
 - Poor waste treatment, environment (air, water) pollution,
 - Heritage destruction, aging town blocks, inefficient traffic,
 - Disasters (earthquake, climate change), resource crisis, ...
- Demands smarter and more resilient development
 - (a) Smarter decision supports in multiple disciplines
 - (b) On basis of accurate, timely urban semantics

China's and global urbanization rates *source: gov.cn*

Global urban vulnerability level (Birkmann et al, 2016) *source: nature.com*

1.2 Urban semantics

iLab

♦ Why semantics from signals? (Rowley & Hartley, 2017)

- Answering interrogative questions (*what, who, where, when*)
- Enabling automated reasoning / checking
- Abstracted, processed from data and signals
- ♦ Types of urban semantics
 - Geometric: Dimension, location, rotation, color, ...
 - Non-geometric facts: Function, materials, history, owner, ...
 - Instructions (how-to): Manufacturing, installation, access, ...
- ♦ Common databases / interfaces
 - BIM: building information model
 - GIS: geographic information system

Data: Digital pixels (0~255 R, G, B)

Semantics: Car, building, tree, ...

1.3 Motivation and aims

iLab

♦ LiDAR data

- Light Detection and Ranging
 - o Different devices: total station, vehicle-borne, drone
- Aerial LiDAR from drones / fixed-wing aircraft
 - Large-scale
 - Uniform point density $(4\sim1,000 \text{ pts/m}^2)$
 - Laser reflectance (received photons from object surface)
 - Rooftop details
- ♦ Semantic enrichment using LiDAR ?
 - Geometry
 - Non-geometric, e.g., green roof
 - topology

2.5D "block" map

Illustration of aerial LiDAR

Infrared laser reflectance (warmer color = less received)

2.1 Semantic enrichment: Geometry

 δ

iLab

♦ LiDAR → RANSAC → rectification → LoD2 model (Chen et al. 2018)

(Language: C++; Data formats: COLLADA, Las, csv)

2.2 Semantic enrichment: Green roofs (1/3)

iLab

♦ Inputs of a pilot area: (a) LiDAR

■ Intermediate input: (b) Rooftop elements from geometric modeling (previous page)

(a) Input LiDAR point cloud of 55,000m² pilot area (298,126 points), where color indicates the laser reflectance (warmer = less)

(b) 158 reconstructed rooftop elements using [2], where color indicates average reflectance (warmer = less)

2.2 Semantic enrichment: Green roofs (2/3)

iLab

♦ A supervised learning method

- Decision tree (ctree on R)
 - Human readable result.
- Label: Potted, turf, non-green

Label	Avg. reflectance (%)	Top area (m²)	height (m)
Non-green	54.5	123.6	2.47
Non-green	53.6	66.2	2.39
Non-green	36.7	400.5	3.53
Non-green	34.6	58.6	3.52
Non-green	50.8	12.5	2.84
Non-green	29.5	5.0	0.80
Non-green	30.5	9.5	0.72
Non-green	33.5	29.1	0.63
Non-green	28.1	5.3	0.72
potted	35.1	74.0	0.35
turf	54.9	61.9	-0.35
turf	53.7	529.3	-0.34
•••			
turf	50.4	74. 4	-0.39

2.2 Semantic enrichment: Green roofs (3/3)

♦ Output: (a) green roof prediction

iLab

♦ Validation: (b) screenshot of Google Earth

(a) Prediction results (dark green = turf, light green = potted)

(b) Screenshot of the mesh models on Google Maps

2.3 Semantic enrichment: Symmetry

iLab

♦ 3D point cloud → symmetry hierarchy (Xue et al., 2019)

■ Time = 98.6s

■ A knowledge discovery tool for further 3D modeling

ightharpoonup PCR = 93.7%

3.1 Discussion

iLab

- ♦ A pilot study of predicting rooftop materials
 - From LiDAR
 - Using geometric features (from LiDAR)
 - Using laser reflectance (from LiDAR)
 - For smart city
- Pros
 - Automated
 - Data readiness
- Cons
 - A small-scale test
 - No benchmarking against other methods
 - More supervised, unsupervised, reinforcement learning methods

References

iLab

- ♦ Birkmann, J., Welle, T., Solecki, W., Lwasa, S., & Garschagen, M. (2016). Boost resilience of small and mid-sized cities. *Nature News*, 537(7622), 605.
- ♦ Chen, K., Lu, W., **Xue**, **F**., Tang, P., & Li, L. H. (2018a). Automatic building information model reconstruction in high-density urban areas: Augmenting multi-source data with architectural knowledge. Automation in Construction, 93, 22-34.
- Nowley, J., & Hartley, R. (2017). Organizing knowledge: an introduction to managing access to information. Routledge.
- World Health Organization. (2015). Global Report on Urban Health—Executive Summary. http://www.who.int/kobe_centre/measuring/urban-global-report/en/
- ❖ Xue, F., Chen, K., & Lu, W. (2019). Architectural symmetry detection from 3D urban point clouds: A derivative-free optimization (DFO) approach. In *Advances in Informatics and Computing in Civil and Construction Engineering* (pp. 513-519). Springer, Cham.

THE UNIVERSITY OF HONG KONG 香港大學 faculty of architecture 建築學院

