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Section 1

BACKGROUND



i 1.1 Background
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@ Global urbanization
iLab
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= By 2050, 65% world’s population will live in cities (WHO,
2015)

@ Irreversible; Even faster in China

© Leads to urban vulnerability (a.k.a. ‘city diseases’)

= ‘Dead’ space/landscape, low familiarity with surroundings,
China’s and global urbanization rates

= Poor waste treatment, environment (air, water) pollution, source: gov.cn

= Heritage destruction, aging town blocks, inefficient traffic, s il
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= (a) Smarter decision supports in multiple disciplines o @, “
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Global urban vulnerability level (Birkmann
F. Xue: Semantic Enrichment using LiDAR, IEEE ICSPCC 2019, Dalian, China et al, 2016) source: nature.com

= Disasters (earthquake, climate change), resource crisis, ...

® Demands smarter and more resilient development

= (b) On basis of accurate, timely urban semantics
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1.2 Urban semantics

o

& Why semantics from signals? (Rowley & Hartley, 2017)
iLab ) . . .
= Answering interrogative questions (what, who, where, when)

= Enabling automated reasoning / checking —
. Data: Digital pixels
= Abstracted, processed from data and signals (0-255 R, G. B)

® Types of urban semantics

@ Geometric: Dimension, location, rotation, color, ...
= Non-geometric facts: Function, materials, history, owner, ...
= Instructions (how-to): Manufacturing, installation, access, ...

<® Common databases / interfaces

= BIM: building information model

. . . -_H_.
= GIS: geographic information system Semantics: Car,

building, tree, ...
F. Xue: Semantic Enrichment using LiDAR, IEEE ICSPCC 2019, Dalian, China



7 1.3 Motivation and aims
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“ @ LiDAR data
Lab = Light Detection and Ranging ®

; ; : : e o
o Different devices: total station, vehicle-borne, drone -

Fiust return
Last setuen

= Aerial LIDAR from drones / fixed-wing aircraft

o Large-scale o
o Uniform point density (4~1,000 pts/m?) ' P
o Laser reflectance (received photons from object surface) Ilustration of aer;alLlD AR
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o Rooftop details Ml | &

© Semantic enrichment using LiDAR ?
= Geometry
= Non-geometric, e.g., green roof

(=] topology 2.5D “block” map | Infrared laser reflectance

(warmer color = less received)
F. Xue: Semantic Enrichment using LiDAR, IEEE ICSPCC 2019, Dalian, China



Section 2

SEMANTIC ENRICHMENT USING
LIDAR



B 2.1 Semantic enrichment: Geometry
id &® LiDAR = RANSAC = rectification = LoD2 model (Chen et al. 2018)
iLab

(Language: C-++; Data formats: COLLADA, Las, csv)
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F 2.2 Semantic enrichment: Green roofs (1/3)

id © Inputs of a pilot area: (a) LIDAR
iLab . . . . .
. = Intermediate input: (b) Rooftop elements from geometric modeling (previous page)

(a) Input L DAR point cloud of 55,000[{12 pilot (298,126 (b) 158 reconstructed rooftop elements using [2], where color
points), where color indicates the laser reflectance (warmer = less) indicates average reflectance (warmer = less)
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B 2.2 Semantic enrichment: Green roofs (2/3)

= Decision tree (ctree on R)
o Human readable result
= Label: Potted, turf, non-green

Generated rooftop Identified green roof areas
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2.2 Semantic enrichment: Green roofs (3/3)
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id ® Output: (a) green roof prediction
iLab

< Validation: (b) screenshot of Google Earth
B . —
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(a) Prediction results (dark green= turf. light green = potted) (b) S:u'cenot of the m 10dcls on Goglc Maps .
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2.3 Semantic enrichment: Symmetry
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© 3D point cloud = symmetry hierarchy (Xue et al., 2019) = Time = 98.6s
= A knowledge discovery tool for further 3D modeling = PCR =93.7%
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(a) The detected reflections (b) Symmetry hierarchy (e} A symmetry-guided model
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(1) The optimization viewport (descending of
the objective function by CMA-ES) L
(iii) The Point cloud viewport (lesling a series of symmetries)

(a) The building (b] Photos by a drone

(¢) A dense point cloud
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Section 3




B 3.1 Discussion

@ A pilot study of predicting rooftop materials
= From LiDAR

o Using geometric features (from LiDAR)

o Using laser reflectance (from LiDAR)

= For smart city
® Pros

= Automated

= Data readiness

® Cons

= A small-scale test

= No benchmarking against other methods

o More supervised, unsupervised, reinforcement learning methods
F. Xue: Semantic Enrichment using LiDAR, IEEE ICSPCC 2019, Dalian, China
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