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Abstract: Many studies have been conducted to create building information models (BIMs) or 

city information models (CIMs) as the digital infrastructure to support various smart city 

programs. However, automatic generation of such models for high-density (HD) urban areas 

remains a challenge owing to (a) complex topographic conditions and noisy data irrelevant to 

the buildings, and (b) exponentially growing computational complexity when the task is 

reconstructing hundreds of buildings at an urban scale. This paper develops a method — multi-

Source recTification of gEometric Primitives (mSTEP) — for automatic reconstruction of 

BIMs in HD urban areas. By retrieving building base, height, and footprint geodata from 

topographic maps, level of detail 1 (LoD1) BIMs representing buildings with flat roof 

configuration were first constructed. Geometric primitives were then detected from LiDAR 

point clouds and rectified using architectural knowledge about building geometries (e.g. a 

rooftop object would normally be in parallel with the outer edge of the roof). Finally, the 

rectified primitives were used to refine the LoD1 BIMs to LoD2, which show detailed 

geometric features of roofs and rooftop objects. A total of 1,361 buildings located in a four 

square kilometer area of Hong Kong Island were selected as the subjects for this study. The 
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evaluation results show that mSTEP is an efficient BIM reconstruction method that can 

significantly improve the level of automation and decrease the computation time. mSTEP is 

also well applicable to point clouds of various densities. The research is thus of profound 

significance; other cities and districts around the world can easily adopt mSTEP to reconstruct 

their own BIMs/CIMs to support their smart city programs.  

 

Keywords: building information model; city information model; LiDAR point clouds; 

topographic map; architecture; high-density city 

 

1. Introduction 

City reconstruction in 3D digital format emerges popularity in the era of information (Heo et 

al. 2013). A city information model (CIM) contains spatial data and virtual representations of 

all objects of interest in an urban area. A well-developed CIM can facilitate the work of city 

planners and urban designers in addressing urban problems such as traffic congestion, 

accessibility, connectivity, and the potential impact of natural disasters (AECbytes 2016). From 

a city administrator’s perspective, a CIM with rich information can be useful for city 

governance, while at the individual citizen level, a CIM enables applications such as 

transportation navigation, emergency response, and many other location-based services. Cities 

such as New York, London, Berlin, and Adelaide have all created their CIMs to support many 

of the applications cited above (Over et al. 2010; Gröger and Plümer 2012; Sun and Salvaggio 

2013).  

 

Buildings are the most important manmade objects in the urban scene (Henricsson and 

Baltsavias, 1997). Many studies, over the years, have focused on the reconstruction of building 

information models (BIMs) (e.g. Tang et al. 2010; Xue et al. 2018) which can be stitched 

together to form a CIM. Another approach is to create CIMs using Geographic Information 

Systems (GIS) (Li et al. 2015) and remote sensing (Haala and Kada 2010; Lillesand et al. 2015). 

In these CIMs, individual buildings could be roughly represented by prisms or “boxes” without 

precise information on the “as-is” condition. With the advancements of data acquisition and 

processing technologies, the trend is to reconstruct BIMs that contain detailed geometric 

features of roofs and rooftop objects (so termed as Level of Detail 2 [LoD2] defined by the 

Open Geospatial Consortium [OGC] [2012]) to extend CIM applications, e.g. green roof 

development (Choi et al. 2017) and energy performance improvement (Yang and Zou 2016). 
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However, the reconstruction of BIMs, particularly those with greater details, is labor-intensive, 

time-consuming, and error-prone (Volk et al. 2014). The process requires a considerable 

amount of manual rectifications and computational power, and this becomes extreme 

burdensome when the task is at the urban scale (Sun and Salvaggio 2013; Li et al. 2016; Wu 

et al. 2017).  

 

Researchers have attempted to improve the efficiency of BIM reconstruction by introducing 

automatic or semi-automatic approaches. Images, 3D laser scanning point clouds, and total 

station surveying data are commonly used for model reconstruction (e.g. Awrangjeb et al. 2013; 

Li et al. 2016; Wu et al. 2017). Algorithms have been developed to process different types of 

data and reconstruct BIMs (e.g. Heo et al. 2013; Xue et al. 2018). In addition, with data from 

multiple sources become affordable, it is now possible to use multi-source data to overcome 

some of the inherent problems (e.g. inaccurate/”noisy” data, incomplete information) 

associated with single-source data  (e.g. Habib et al. 2010; Cheng et al. 2011; Gilani et al. 

2016). Acknowledging considerable achievements in the field of BIM/CIM reconstruction, 

BIM/CIM reconstruction in high-density (HD) urban areas remains an open problem 

(Musialski et al. 2013). Firstly, city features such as trees, roads, and terrain introduce a lot of 

noise that undermines the quality of the measurement data. Secondly, densely-distributed 

buildings make it difficult to segment data for generating individual BIMs. Lastly, 

reconstructing thousands of buildings at an urban scale exponentially increases the 

computational complexity, bringing many difficulties for methods which rely on general object 

recognition approaches to derive geometric primitives to form the building models. 

 

This study aims to improve automatic BIM reconstruction in HD urban areas by proposing a 

reconstruction method called multi-Source recTification of gEometric Primitives (mSTEP). 

mSTEP harnesses the data from multiple sources and makes use of architectural features (e.g. 

parallels and symmetries) to reduce the noisy data and fine-tune the geometric primitives to 

reconstruct LoD2 BIMs automatically. The data employed in this study comes from the Hong 

Kong governmental agencies, comprising digital topographic map and light detection and 

ranging (LiDAR) point cloud. Given the fact that such types of data are extensively available 

in many cities and districts around the world, mSTEP can be applied to reconstruct their 

BIMs/CIMs in an efficient manner. 
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The organization of the paper is as follows: Section 2 reviews the state-of-the-art studies on 

BIM reconstruction. Section 3 describes the overall research progress, the subject area and 

characteristics of the corresponding topographic map and LiDAR point clouds. Section 4 

details the BIM reconstruction method – mSTEP. Section 5 provides a comprehensive 

discussion of the evaluation results, discusses the parameter configuration of mSTEP, and 

shows the compatibility of mSTEP with a denser point cloud. Section 6 concludes with a 

summary and highlights future research directions.  

 

2. Literature Review 

Previous studies on the generation of BIMs in the urban environment can be viewed from two 

different perspectives: (1) The raw data used for BIM reconstruction; and (2) the methods 

employed in processing the data. While the two perspectives are related, the discussion deals 

with each perspective separately for the sake of clarity. 

 

2.1 Original datasets  

Aerial and satellite images are typical data sources for large-scale BIM reconstruction. 

Spaceborne sensors like IKONOS, QuickBird, and GeoEye-1 have provided 1m-resolution 

satellite images for 3D building reconstruction (Lafarge et al. 2008; Poli et al. 2015). Aerial 

image resolution can be even higher than that of satellite images, in some cases, reaching 

decimeter accuracy. Owing to their high image resolution as well as the widespread use of 

unmanned aerial vehicles (UAVs), the uses of aerial images to create 3D models of individual 

buildings or even to reconstruct the entire urban scenes are increasing (Li et al. 2016).  

 

LiDAR point clouds have also been widely used for BIM reconstruction. It typically utilizes 

laser light which is projected on surfaces and its reflected backscattering is captured for 

generating 3D point clouds. Heo et al. (2013) used LiDAR point clouds to develop the models 

of 29 buildings. Other studies including Sun and Salvaggio (2013), Xiong et al. (2014), and 

Yan et al. (2016) used airborne LiDAR point clouds to model a limited number of buildings 

with roofs of various shapes. With the availability of city-scale LiDAR point clouds, Poullis 

and You (2009) created simplified BIMs within a large city area.  

 

Topographic maps, which describe urban objects in terms of geometry, land use, and other 

attributes, are another important data source for BIM reconstruction at city- or district-scale. In 

addition to the topographic maps produced by government agencies, recent years have seen the 
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emergence of open-access geographic datasets. For example, OpenStreetMap (OSM) – a 

prominent volunteered geographic information service – has been used for BIM reconstruction 

(Over et al. 2010). However, without official verification, the common problem of open-access 

geographic datasets is their completeness and accuracy. 

 

The use of single-source data for BIM reconstruction, be it aerial images or LiDAR point 

clouds, is prevailing but still poses problems such as “noise” data caused by complex urban 

features and incomplete information (Cheng et al. 2011). These drawbacks have given rise to 

increased use of multi-source data for BIM reconstruction. A number of studies have confirmed 

that using multi-source data can overcome some of the problems associated with the use of 

single-source data (Rottensteiner and Jansa 2002; Alexandar et al. 2009; You and Lin 2011; 

Henn et al. 2013; Zhang et al. 2014; Zhu et al. 2015). 

 

2.2 Data processing methods 

Various data processing methods have been proposed for BIM/CIM reconstruction (Haala and 

Kada 2010; Musialski et al. 2013). Aerial or satellite images can be processed into digital 

elevation model (DEM) (Lafarge et al. 2008; Poli et al. 2015) from which building models can 

be extracted by applying height thresholds. With the further development of image matching, 

an alternative way is to generate colored point clouds from a number of aligned aerial images 

and then processed the generated point clouds into textured BIMs, which are formed by a large 

number of small geometric primitives (Singh et al. 2014). This method, however, requires 

careful selection of images and manual interpretation to adjust the building models is often 

needed. Li et al. (2016) also generated point clouds from images, and proposed an object-level 

point cloud segmentation and roof extraction. However, their method was only tested on 

buildings with flat roofs. 

 

Processing LiDAR data starts with segmentation of the point clouds of individual buildings. 

This can generally be achieved using semantic segmentation approach (Lin et al. 2013), 

classification or clustering algorithms (Zhu et al. 2015; Cao et al. 2017) or the reflectance value 

captured by the LiDAR sensors (Sun and Salvaggio 2013). LiDAR point clouds can also be 

integrated with other datasets. For example, building footprints retrieved from a topographic 

map can provide a reference for segmenting the point clouds of buildings (Alexander et al. 

2009; Ledoux and Meijers 2011). The segmentation of LiDAR point clouds can also be 

improved with aerial images that provide regions of homogeneous gray level or color 
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distribution (Rottensteiner and Jansa 2002). Once segmented, the point clouds are used to 

model the buildings with roofs and rooftop objects by various methods. A typical method is to 

decompose the roof shapes into simple pre-defined ones by 2D plans (Henn et al. 2013) or 

graph matching technique (Xiong et al. 2014), but the reconstruction may fail if the roof shape 

is not pre-defined in the model library. Connecting the extracted primitives to form the roof 

features is also widely-used due to its flexibility (Poullis and You 2009; Zhang et al. 2014; Yan 

et al. 2016). However, such kind of method is sensitive to noise (Goebbelsa and Pohle-

Fröhlicha 2016) and so far have only been used for specific roof forms. 

 

Although it is difficult to directly compare all these reconstruction methods since they are 

developed under different context with their own emphasis, our review has revealed that 

existing data processing methods usually require much time for noise filtering and assume 

buildings with flat or other simplified roof structures. Those methods that can generate more 

differentiated building and roof structures require considerable manual interpretation for pre- 

or post-processing. Actually, architectural designs commonly exhibit some conventional 

features such as parallels, symmetries or other structural regularities, which are not accidental, 

but often the result of economical, manufacturing, functional, or aesthetic considerations (Mitra 

and Pauly 2008). Parallel and perpendicular features have been used as the constraints to 

segment the point cloud to extract planar segments that constitute approximate building roof 

structure (Dorninger and Pfeifer 2008, Sampath and Shan 2010). However, few studies have 

systematically applied architectural rules to reconstructing BIMs of densely-distributed 

buildings in large-scale urban areas. As will be demonstrated in this study, rules derived from 

architectural conventions can help reduce the noise in the collected data and improve the 

efficiency of the modeling method and the informativeness of the reconstructed models. 

 

3. Research approach  

3.1 Overview of the research process 

Given the aim of this study, a design science research approach (Peffers et al. 2008) is adopted 

to develop an automatic and efficient BIM reconstruction method. Design science focuses on 

not only understanding problems, but also developing methods or artifacts with the explicit 

intention of improving human performance (Van Aken 2005). A diagrammatic illustration of 

the research process is presented in Figure 1.  
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Figure 1 Research process  

 

By identifying the challenges of BIM reconstruction in high-density urban areas, multi-Source 

recTification of gEometric Primitives (mSTEP) was proposed, which takes the topographic 

map, point clouds, and architectural conventions as inputs and generates BIMs with detailed 

rooftop structures and objects identified. A 2km×2km area in northwestern Hong Kong Island, 

containing 1,361 blocks of densely-distributed buildings of varying heights and shapes, was 

selected as the subject area since all identified challenges of BIM reconstruction exist in this 

area: The buildings are surrounded by urban features like trees on hills and slopes, commercial 

signs and power lines, which create noise in the data captured for BIM reconstruction; The 

narrow gaps between buildings also cause severe occlusions in the collected data. In 

combination, these factors present difficulties for segmentation, refinement and other BIM 

reconstruction processes. After applying mSTEP on test datasets, the generated BIMs were 

compared with results from another two reconstruction methods (i.e. methods described in 

Javanmardi et al. [2015] and Wu et al. [2017]) and manual modeling for evaluation. 

 

3.2 Test datasets  

The topographic map used in this study was purchased from the Lands Department (LD) of 

HKSAR. It is in Geodatabase (GDB) format with a scale of 1:1000. The Hong Kong 1980 Grid 

Coordinates provides the latitude and longitude of the map, and heights are in meters above 

the Hong Kong Principal Datum. The topographic map contains feature datasets including 

buildings, land cover, transportation, etc. As shown in Figure 2, the buildings in the selected 

region are shown in green with their boundaries in black. The map also contains data on 

building ID, shape, shape area, type of building block, base level, roof level, and data source. 

A preliminary analysis of the base and roof levels found that the datasets in the topographic 

map are collected from various sources such as building plans, photogrammetry, and 
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topographic survey. Data for the buildings was last updated in the period 1 July 2014 to 27 

April 2016. 

 

Figure 2 Data of the topographic map of the subject area 

 

The LiDAR point clouds used in this study was provided by the Civil Engineering and 

Development Department (CEDD) of HKSAR. The data, comprising buildings, roads, and 

many other urban features, was collected between 1 December 2010 and 8 January 2011 by 

the CEDD by hiring an airborne LiDAR surveying company. In the original dataset, the point 

density is about 4 points/m2. Points classified according to American Society for 

Photogrammetry and Remote Sensing (ASPRS) laser (LAS) format specification 1.1 (ASPRS 

2005) are shown in different colors (see Figure 3). The classification codes represent the type 

of object that has reflected the laser pulse.  
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Figure 3 An illustration of the LiDAR point clouds 

 

4. BIM reconstruction method  

The main purpose of the proposed method — multi-Source recTification of gEometric 

Primitives (mSTEP) — is to enable automatic and efficient BIM reconstruction. The overall 

procedure of mSTEP is shown in Figure 4, which consists of four main phases. In this section, 

each of the four phases of mSTEP is introduced in details.   

 

Figure 4 Overall procedure of mSTEP  

 

4.1 Reconstructing LoD1 BIMs from topographic map 

In the first phase, data in the topographic map is filtered to retrieve the data of building footprint, 

base level, and top level. By vertically stretching the footprint of each building according to 

the base level and top level of that building, the LoD1 BIM with flat roof configuration can be 

created (see Figure 5).  
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Figure 5 An illustration of created LoD1 BIMs 

 

4.2 Filtering the LiDAR point clouds 

The LiDAR point clouds is first filtered in ESRI ArcScene by using the classification codes to 

separate building point clouds from those of trees, terrain, and other features (ESRI 2016). 

However, it was found that many points of building structures were unclassified (see the circled 

area in Figure 6). Therefore, points classified as either “building” or “unclassified” were thus 

kept for further rectifications and other points were removed. Then, the point cloud of 

individual buildings was obtained by segmentation, a process accelerated through the use of 

building footprints contained in the topographic map. After converting the LiDAR point clouds 

and topographic map in the same coordinate system, points with XY-coordinates falling into 

the area zoned by a building footprint was segmented to that building.  

 

Figure 6 An example of unclassified points in the raw LiDAR point clouds 

 

4.3 Developing object rectification rules from conventional architectural features 

Architectural conventions refer to the domain knowledge applied in the architectural design, 

such as geometrical or physical features (e.g. flatness, parallels, and symmetries) of building 

objects and their spatial relationships (Cantzler 2003). Some of the conventions can be obtained 
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from ordinances or standards, while others can be originated from general observation in real-

world situations. In this study, two object rectification rules are developed based on very simple 

architectural conventions to ensure “structural regularity”: (1) the top surface of rooftop objects 

are either in parallel with the horizontal plane or with a considerable angle of dip; and (2) the 

rooftop objects are normally in parallel with the outer edge of roof.  

 

Both rules should be satisfied when rectifying the geometric primitives detected from the 

segmented LiDAR point clouds to form roofs and rooftop objects. An illustration of 

rectification by the first rule is presented in Figure 7(a). The rectangle in blue is the top surface 

of a rooftop object, which has a very small angle β of dip to the horizontal plane (i.e. the roof). 

Therefore, this detected primitive is against the first rule, and should be rotated to be the 

rectangle in gray, which is in parallel with the horizontal plane. An illustration of rectification 

by the second architectural rule is shown in Figure 7(b). The rectangle in dashed line is not in 

parallel with the outer edge of the roof, but has a deviation of angle α. This is rare in 

architectural conventions, therefore, it should be rotated to be the rectangle in gray.  

 

 

 

(a) First object rectification rule 

 

(b) Second object rectification rule 

Figure 7 An illustration of the two rules of rectification  

 

In order to enable automatic application of these two rules, especially the second one, guiding 

directions were are derived from the building footprints since the outer edge of the roof and 

building footprint usually have the same shape, unless it is an irregular-shaped building. As 

can be seen in Figures 8(a) and (b), for simple, regular-shaped building footprint, its centerline 

provide the guiding direction for the rooftop object to be in parallel with, while for irregular-

shaped building footprint, the centerlines of its top 25% longest lines will provide guiding 

directions for the computer to check whether the rooftop object is in parallel with at least one 

of the directions. 
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(a) Regular-shaped footprint 

 

(b) Irregular-shaped footprint 

Figure 8 An illustration of deriving guiding direction(s) from building footprints 

 

4.4 Reconstructing LoD2 BIM by using object rectification rules 

In the last phase of mSTEP, LoD2 BIM is developed by using the two object rectification rules. 

The pseudo code of this process is shown in Figure 9. Given a target building, its LoD1 model 

is inherited from the topographic map (Line 6). A variant of RANSAC (Fischler and Bolles 

1981; Schnabel et al. 2007) is adopted for detecting geometric primitives from LiDAR point 

cloud of the building rooftop (Lines 7-8). The application of RANSAC requires a set of 

parameters to be determined (see Table 1). Different values of these parameters have been 

tested in order to find the optimal parameter set regarding the LiDAR point clouds to be 

processed. It is decided to set minimum number of support points to 10, maximum distance to 

primitive to 0.02m, and sampling resolution to 1.0. Maximum normal deviation and 

overlooking probability, are set to 25o and 1.0×10-6 respectively. More details regarding the 

parameters configuration are provided in Section 5.2. 

 

Then, the detected geometric primitives are rectified to form the building roofs and rooftop 

objects. A tolerance level (ε), which is set to 0.05π, is used to determine whether one primitive 

needs rectification or not. The detected geometric primitives of roofs and rooftop objects will 

be rectified by the horizontal plane (Lines 9-13) and the guiding directions (Lines 14-21). After 

rectification, the volumetric models of roofs and rooftop objects can be created by projection 

to the top level of individual buildings, and will be integrated with the LoD1 BIMs created in 

the first phase to enrich them into LoD2 ones that have differentiated roof structures with higher 

completeness and accuracy (Lines 22-24).  

1 procedure multi-source primitives rectification 
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     input: a set of building exterior data sources (S) of a building, including data in topographic map and 

LiDAR point clouds, 

                five parameters (param) of RANSAC, 

                a tolerance level (ε) for orientation rectification (default value of 0.05π) 

     output: an LoD2 building model (M) with detailed roof and rooftop objects 

     M  a LoD1 model from topographic map (S)                        //referring to subsection 4.1 
     r  filter point cloud of rooftops (S);                                       //referring to subsection 4.2 

     P  RANSAC (r, param);                                                        //detecting geometric primitives 

     loop for each p in P                                                                      //for each detected geometric primitive 

         α  heading of normal (p);  β  dip of plane (p);               // for α and β referring to Figure 7 

          if  |β| < ε or  | π - β| < ε                                                          //if β is close to the horizontal plane  

               β  0                                               //rectify w.r.t. the horizontal plane (as shown in Figure 7[a]) 

          end if 

          A  derived guiding directions; 

          loop for each α* in A                                                            //for each direction α* 

               loop for q = -2 to 2                                                          //for each quadrant 

                    if | α - α* + q × π / 2| < ε                                              //if α is close to α* 

                         α  α* - q × π / 2                 //rectify w.r.t. the direction α* (as shown in Figure 7[b]) 

                    end if 

               end loop 

          end loop 

          if α, β meets the two object rectification rules 

              M  M∪update and 3D projection(p, α, β)      //enrich LoD1 BIM with roof and rooftop objects 

          end if 

     end loop 

     return M   

Figure 9 Pseudo code of the multi-source rectification 

 

Table 1 Descriptions of the RANSAC parameters 

Parameter Description 

minimum number of support 

points 

The minimum number of points required to identify a geometry. A larger 

minimum support points means a more rigorous geometry detection process. 

maximum distance to primitive The maximum distance of an inlier point to a geometry. 

sampling resolution The parameter determines the sample rate of neighboring points 

maximum normal deviation The difference between the normal at a point and the normal of a geometry 

at the closest project of that point onto that geometry. 

overlooking probability The parameter controls the population size of the primitive candidates. 
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A demonstration of multi-source rectification is shown in Figure 10. At the beginning, 

geometric primitives are detected from LiDAR point clouds (see Figure 10[a]) by RANSAC, 

but the detected geometric primitives may not be corrected from an architectural point of view. 

For instance, in Figure 10(b), the rectangle marked in red circle conjuncts to the roof surface 

at an angle. Then, the detected primitives are rectified according to the horizontal plane and 

the guiding direction(s). After that, the rectified primitives will be projected to create 

volumetric models of roofs and rooftop objects (see Figure 10[c]).  

Figure 10 A demonstration of the multi-source rectification 

 

5. Evaluation 

5.1 Overall results 

In this study, the first phase of mSTEP is performed in ESRI ArcScene, and the remaining three 

phases are automatically performed by using a plug-in of CloudComapre which is tailor-

programmed in C++ by the authors. A screenshot of the plug-in is shown in Figure 11. The 

computation environment was a personal notebook with 2.6GHz Quad-core CPU, 16 GB RAM, 

and a 64-bit Microsoft Windows 10 operating system. Applying mSTEP, the automatic 

generation of BIMs in the subject area took 319.7 seconds. 81.9% of the 1,361 buildings were 

successfully modeled. Among the remainder, 113 buildings do not have either the base level 

or the roof level in the topographic map, and 134 buildings lacked points in the LiDAR dataset 

for modeling of the roofs and the rooftop objects.  

   

(a) LiDAR  point clouds of one 

building roof of the subject area 

(b) Geometric primitives detected 

by using RANSAC 

(c) Rectified geometric primitives 
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Figure 11 The screenshot of the developed CloudCompare plug-in 

 

Some examples of the reconstructed models are shown in Figure 12. Among the buildings 

shown include a building on a university campus (ID: 11**374), Edwardian Baroque in style 

with a central clock tower and several turrets; a residential building with a pyramid-shaped 

roof and many rooftop objects (ID: 11**486); a wholesale food market with a strip-shaped 

roof and several box-shaped air conditioners (ID: 11**535); and a residential building (ID: 

11**845) with flat roof and cuboid-shaped rooftop objects. Other building models shown in 

Figure 12 also have their roof and rooftop objects in the correct shapes constituted without the 

need for manual post-modifications. By manually checking the 3D building models and the 

actual buildings, it can be seen that the models reach the LoD2 that possess more detailed 

information than simple “boxes”. It can also be seen that the models are in an acceptable 

standard of accuracy. 

Building ID in the 
topographic map 

Reconstructed model (colors 

are for distinguishing only) 
Photo (collected from the 

Internet or taken by the authors) 

11**374 

  

11**486 
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11**535 

  

11**845 

  

11**386 

  

11**200 

  

11**500 

  

11**345 

  
Figure 12 An illustration of the reconstructed models and actual buildings  

 

5.1.1 Efficiency assessment 

To assess the efficiency of reconstruction, the time spent on reconstructing buildings by using 

mSTEP was compared with the time required for manual modeling. In SketchUp, two human 

modelers, who have over four years’ experience in architectural drawing, created LoD2 BIMs 

based on base and roof levels from the topographic map and the segmented LiDAR point clouds. 

They began modeling at the same time and alerted the researchers once they finished each of 

the nine models so that the time they spent on modeling each building was recorded. In addition, 

mSTEP was compared with: (1) a concave hull and Hough transform based reconstruction 

method (take LiDAR point cloud and topographic map as inputs) introduced in Javanmardi et 
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al. (2015); and (2) a bipartite graphic matching-based reconstruction method introduced in Wu 

et al. (2017). The two reconstruction methods were selected for comparison due to two reasons. 

First, all the three methods share the same vision of enhancing 3D model reconstruction by 

taking advantage of architectural conventions and graph theory. The other reason was that their 

input point clouds were all airborne LiDAR data of HD urban areas. The comparison was based 

on three commonly-adopted metrics, including (1) reconstruction time; (2) percentage of 

points that are segmented to support the detection of geometric primitives; and (3) root mean 

square error (RMSE) of the distances of points to their corresponding primitives. The 

assessment results on nine randomly-selected buildings are presented in Table 2.  

Table 2 Assessment results   

No. 
Number 
of 
points 

mSTEP Javanmardi et al. (2015)† Wu et al. (2017)‡ Manual 

Time 
(s) 

Segmented 
(%)# 

RMSE 
(m)* 

Time 
(s) 

Segmented 
(%)# 

RMSE 
(m)* 

Time 
(s) 

Segmented 
(%)# 

RMSE 
(m)* 

Time (In 
average; s) 

1 270 0.03 75.2 0.114 0.02 63.1 0.119 0.01 88.3 0.341 266.65 

2 372 0.03 77.7 0.048 0.01 58.7 0.157 0.01 60.4 0.223 171.23 

3 620 0.40 87.6 0.065 0.02 84.7 0.098 0.01 78.8 0.370 94.33 

4 2,491 0.16 48.6 0.196 0.05 31.6 0.199 0.01 99.8 0.315 2,486.75 

5 2,682 0.09 90.0 0.057 0.03 60.2 0.049 0.01 89.6 0.251 515.65 

6 7,212 0.23 91.1 0.067 0.04 26.4 0.067 0.01 90.4 0.280 597.92 

7 8,987 0.26 85.1 0.065 0.09 18.8 0.097 0.01 100.0 0.257 1,386.16 

8 24,878 2.23 86.3 0.068 0.13 66.2 0.163 0.02 99.1 0.340 2,498.84 

9 29,506 0.47 90.1 0.088 0.21 71.1 0.230 0.02 99.9 0.291 701.43 

†: The paprameter β of Javanmardi et al. (2015)’s method was set to 0.5m as the average point distance; 

‡: The two parameters, i.e., variable n and contour interval di, were set as 250 and 0.5m based on Wu et al. 

(2017)’s experimental results. 
#: Percentage of points that are segmented to support the detection of geometric primitives. 
*: Root mean square error of the distances of segmented points to their corresponding primitives. 

 

The results in Table 2 showed that mSTEP achieved a competitive performance. Specifically, 

both mSTEP and Javanmardi et al. (2015)’s method reconstructed accurate geometric 

primitives for segmenting the point clouds. The proposed mSTEP segmented more points than 

Javanmardi et al. (2015)’s to support the detection of geometric primitives and reconstruct 

BIMs with less RMSE. In contrast, Wu et al. (2017)’s method achieved a fast reconstruction 

with a high-level of segmentation; yet at a significant cost of error (see the level of RMSE). 

The results confirmed that mSTEP could overcome the three identified challenges in BIM 

reconstruction in HD urban areas, i.e., much noise in measurement data, difficulties in 

segmenting data of densely-distributed buildings, and high computational complexity. With 
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the help of mSTEP, the efficiency of BIM reconstruction in HD urban areas can be 

considerably improved. 

 

Nevertheless, there seems no convincing way to measure the exact accuracy of the 

reconstructed BIMs scientifically due to the lack of ground truth (Poullis and You 2009; Sun 

and Salvaggio 2013). It is far from an effective measurement to reflect the resemblance 

between the generated BIMs and the “as-is” condition. Neither can the model accuracy be 

measured using a single index, such as the physical volume. A BIM professional, with expertise 

and insights, can also tell whether the accuracy of a reconstructed 3D model is “acceptable” or 

not. The issue of measurement standard is left for further studies. 

 

5.1.2 Identified problems 

During application of mSTEP, it was found that the modeling outcomes can be affected by the 

accuracy of data used, including the building footprints and heights in the topographic map, 

and the LiDAR point clouds. Regarding the topographic map used in this study, some building 

footprints were inaccurate and some heights were generated by estimation. This affected the 

quality and accuracy of the retrieved guiding directions and, in turn, the accuracy of geometric 

primitives detected from the point clouds.  

 

Regarding the accuracy of the LiDAR point clouds, this is adversely affected by missing points 

and interference caused by densely-distributed buildings, city features, and the like. mSTEP 

can address interference, but not the problem of missing data. In this study, three factors 

resulted in missing data. Firstly, the LiDAR scan pulse typically does not provide a detectable 

return from transparent materials such as glass. Therefore, the points for roofs and rooftop 

objects made of such materials were missing and thus could not be used for BIM reconstruction. 

Secondly, the density of the point cloud was 4 points/m2. This may not be sufficient to capture 

data on certain rooftop objects, such as parapet walls that are relatively thin in the horizontal 

dimension. Thirdly, the LiDAR point clouds, collected from 2010 and 2011, was not up-to-

date.  

 

5.2 Parameter configuration of mSTEP 

A set of tests was performed on the parameter configuration of mSTEP. The purpose is to 

identify the parameters that can significantly impact the modeling outcomes measured by the 

average number of detected geometric primitives. This indicator is chosen because it measures 
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the primitives generated from the LiDAR point clouds to form the roof and rooftop objects. 

Generally, the larger value the indicator, the more details the roof and rooftop objects have 

been reconstructed by mSTEP. However, excessive primitives detected are also undesirable 

since they are often caused by a single rooftop object being separated into several small pieces 

(e.g. a pipe separated into different trunks), which actually decrease the accuracy of 

reconstruction.  

 

The parameters to be tested include the tolerance level and the five RANSAC parameters in 

terms of (a) minimum number of support points, (b) maximum normal deviation, (c) maximum 

distance to primitive, (d) sampling resolution, and (e)overlook probability. The test subject is 

the LiDAR point clouds of a randomly-selected building, which has an ID 11**200 in Figure 

12. The tests aim at evaluating the sensitivity of each parameter, therefore when performing 

the testing one parameter, other five parameters are controlled, i.e.  remaining unchanged. In 

the single factor sensitivity analysis, for each parameter, the tests were replicated for 100 times 

to get the statistic values at 5th and the 95th percentiles. The results of all tests are shown in 

Figure 13. In each of the six sub-figures, the Y-axis on the left denote the number of geometric 

primitives detected by mSTEP, the X-axis denotes the value of the tested parameter. The box 

chart shows the average values, and the 5th and the 95th percentiles of the indicator. The curve 

depicted in each sub-figure illustrates the trend of value changes of the indicator as reflection 

to the value change of the parameter under evaluation. 
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Figure 13 Testing results of parameter configuration of mSTEP 

 

Based on the results shown in Figure 13, it can be confirmed that minimum number of support 

points and maximum normal deviation are the two parameters that have the most significant 

impact on the indicator of average number of detected geometric primitives since the curves 

shown in Figure 13(a) and (b) cover a much wider range in Y-axis than the curves in the other 

four figures. Particularly in Figure 13(a), when minimum number of support points increase 

from 3 to 10, the indicator decreases steeply from 95 to 33.6. Once minimum number of support 

points exceed 10, the indicator will continuously decrease, at a slower pace, to 9. From the 

three outputs of mSTEP when minimum number of support points equal to 3, 10 and 50 

respectively, it can be seen that some of the rooftop objects such as the parapet wall are divided 

into small pieces (see the comparison between the two parts marked in red rectangle of Figure 
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13[a]). When minimum number of support points is set to 3, too many primitives are detected. 

By contrast, when minimum number of support points is set to 50, many details of rooftop 

objects are missing. Setting minimum number of support points to 10 can generate an 

appropriate output. In Figure 13(b),  when maximum normal deviation increases from 0o to 90o, 

the average number of detected geometric primitives increases from 0 to 55.4. Similar to the 

evaluation on minimum support points, three outputs when maximum normal deviation equals 

to 5o, 25o, and 90o are presented, from which, it is found that setting maximum normal deviation 

to 5o and 90o lead to too few and too many detected primitives respectively. When maximum 

normal deviation equals 25o, an appropriate amount of primitives can be detected.  

 

For the remaining four parameters, the impact of maximum distance to primitive on the 

indicator is relatively complex. As it increases from 1.0×10-4m to 1.0m, the average number 

of detected geometric primitives fluctuates (see Figure 13[c]). It seems that setting maximum 

distance to primitive to either 1.0×10-4m or 0.02m can deliver similar outputs in terms of 

quantity, but it is found that when maximum distance to primitive equals to 1.0×10-4m, most of 

the detected primitives are too small, which shows a lack of accuracy. Therefore, 0.02m is the 

more appropriate value for maximum distance to primitive. Additionally, when tolerance level 

increases from 0.001π to 0.5π, the average number of detected geometric primitives increases 

from 3.58 to 33.91. Such impact, however, becomes negligible after tolerance level reaches 

0.05π (see Figure 13[f]). For sampling resolution, when it is either less than 1.0 or large than 

1.25, the average number of detected geometric primitives will become less than 30, which 

decreases the accuracy of the reconstructed roof and rooftop objects (see Figure 13[d]). Finally, 

for overlook probability, its overall influence is less significant compared with the other five 

parameters (see Figure 13[e]). Its values between 1.0×10-6 and 5×10-5 can detect an appropriate 

amount of primitives, but the best output is identified when setting overlook probability to 

1.0×10-6.   

 

5.3 Implementing mSTEP on dense point cloud 

The density of LiDAR point clouds used to reconstruct buildings in the subject areas is 4 

points/m2. With the improvement in sensing devices, the cost of data acquisition is expected to 

continuously decrease and denser point clouds will become available. Therefore, it is necessary 

to test the applicability of mSTEP to dense point clouds. Since few buildings in the subject area 

have publicly available dense point cloud, a building at the main campus of the University of 

Hong Kong in Hong Kong Island is selected for the test. 
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The dense point cloud of the selected building contains 482,404 points in total, which is 

obtained by using SfM to process 200 photos taken by a UAV (see Figure 14[a]). Details about 

SfM for processing images into point cloud can be found in Jancosek and Pajdla (2011). When 

applying mSTEP to this dense point cloud, one parameter, i.e. minimum number of support 

points, is changed from 10 to 30 in order to cope with the point density, while other five 

parameters remain unchanged. The rooftop model is developed in 1.41s with 475 geometric 

primitives detected (see Figure 14[b]). In doing so, mSTEP is proved to be capable of 

reconstructing BIMs from a denser point cloud. A conclusion thus can be drawn that mSTEP 

is applicable to both sparse point clouds (e.g. 4 points/m2) and dense point clouds for BIM 

reconstruction. This suggests mSTEP can be applied to 3D building reconstruction in many 

other cities or districts, which possess point clouds of various densities. 

(a) Dense point cloud (482,404 points) 
 

(b) Rooftop model generated from (a) 

Figure 14 An illustration of applying mSTEP to a dense point cloud 

 

6. Conclusions 

The challenges of automatic reconstruction of building information models (BIMs)/city 

information models (CIMs) in high-density (HD) urban areas are predominately twofold: (a) 

the complex topographic conditions and noisy data, and (b) the heavy computational 

complexity when the task is at an urban scale. This paper took the challenges by developing an 

improved method — multi-Source recTification of gEometric Primitives (mSTEP) — for 

automatic BIM reconstruction in complex urban areas. mSTEP comprises of several 

interconnected steps to make good use of multi-source data including light detection and 

ranging (LiDAR) point clouds, and topographic maps. The method has been validated through 

a series of rigorous tests, and the results show that mSTEP is an efficient method to reconstruct 

informative BIMs by significantly improving the level of automation and decreasing the 

computation time.  
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Of particular originality of this research is augmenting the multi-source data with some simple 

architectural conventions, which can effectively tackle the challenges of automatic BIM/CIM 

reconstruction. Another original contribution made by this study is the optimal parameter 

configuration of mSTEP, which is derived from a series of sensitivity analyses of the 

parameters’ impacts on the accuracy of the reconstructed models. As the paper shows, mSTEP 

can be applied to both sparse and dense point clouds. The research is thus of profound 

significance; It can help other cities or districts, which have possessed such “common” datasets 

as topographic map and LiDAR point clouds, to produce their own BIMs/CIMs to support their 

smart city programs. 

 

Future research will be conducted in mainly three aspects. Firstly, the two object rectification 

rules used in the current version of mSTEP might be too restrictive when dealing with atypical 

architectures. Improvements thus are desired to allow reconstruction of buildings with curved 

and irregular-shaped roofs and rooftop objects. Secondly, data from other sources, such as 

aerial images, will be integrated with the topographic map and LiDAR point clouds to increase 

the level of detail (e.g. texture) of the generated models. In this connection, other architectural 

conventions such as symmetries or repetitive patterns should be exploited to facilitate the BIM 

reconstruction processes. 
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