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Abstract 1 

There are various scenarios challenging human experts to judge the interior of something based 2 

on limited surface information. Likewise, at waste disposal facilities around the world, human 3 

inspectors are often challenged to gauge the composition of waste bulks to determine 4 

admissibility and chargeable levy. Manual approaches are laborious, hazardous, and prone to 5 

carelessness and fatigue, making unattended gauging of construction waste composition using 6 

simple surface information highly desired. This research attempts to contribute to automated 7 

waste composition gauging by harnessing a valuable dataset from Hong Kong. Firstly, visual 8 

features, called visual inert probability (VIP), characterizing inert and non-inert materials are 9 

extracted from 1,127 photos of waste bulks using a fine-tuned convolutional neural network 10 

(CNN). Then, these visual features together with easy-to-obtain physical features (e.g., weight 11 

and depth) are fed to a tailor-made support vector machine (SVM) model to determine waste 12 

composition as measured by the proportions of inert and non-inert materials. The visual-13 

physical feature hybrid model achieved a waste composition gauging accuracy of 94% in the 14 

experiments. This high performance implies that the model, with proper adaption and 15 

integration, could replace human inspectors to smooth the operation of the waste disposal 16 

facilities. 17 

 18 

Keywords: Construction and demolition waste; Construction waste management; Waste 19 

composition; Computer vision; Deep convolutional neural network; Support Vector machine. 20 

 21 

1. Introduction 22 

In industrial activities or daily life, human experts often need to “look beneath the surface” of 23 

a subject matter using limited information from exterior visual and physical features. An 24 

Internet-era example is tele-diagnosis, use of which has increased amid COVID-19 pandemic 25 

social distancing (Larner, 2020) and which requires doctors to consult patients and make 26 
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diagnoses remotely by video call and with very limited information of medical history of the 27 

patients. In infrastructure inspection, engineers need to evaluate structural condition using 28 

external appearances (e.g., cracks or other damages) and limited information collected by 29 

sensors (Koch et al., 2015; Li et al., 2012). Energy analysts in the petroleum industry use 30 

satellite imagery of oil storage facilities to better understand change in reserve volumes (Watts, 31 

2019). Remote sensing has also been used in minefield detection to infer areas of buried 32 

unexploded ordnance (Bennett, 1999; Maathuis, 2003). 33 

 34 

Similarly in solid waste management, people need to judge the internal composition of waste 35 

materials (Sauve and Van Acker, 2020) for subsequent processing (e.g., recycling or landfilling) 36 

based on a limited set of features, such as visual appearance, moisture, weight, and volume. 37 

With increasing environmental awareness in Mainland China, the authority has begun to 38 

advocate municipal solid waste (MSW) segregation at source. In Tier-1 cities such as Shanghai 39 

and Beijing, this has been made compulsory (Arantes et al., 2020; Zuo and Yan, 2019). 40 

Household MSW generally comprises organic waste, non-recyclable inorganic waste and 41 

recyclable waste (Zhang et al., 2010). Within these broad categories are hundreds of different 42 

waste materials and it is difficult for both citizens and enforcers, who have little knowledge 43 

and experience in garbage classification, to distinguish among them based on appearance. It is 44 

no surprise that residents “were almost driven crazy by garbage classification” (Yu, 2019).  45 

 46 

Even more challenging is gauging the composition of a mixture of bulky construction waste 47 

(CW), also referred to as construction and demolition (C&D) waste. This is exactly the 48 

dilemma now confronting many countries and regions, including Hong Kong. In 2006, the 49 

Hong Kong Environmental Protection Department (EPD) launched the Construction Waste 50 

Disposal Charging Scheme (CWDCS), imposing scaled waste disposal fees on contractors or 51 

waste haulers according to the proportion of inert content in a waste dump (e.g., HK$200 per 52 

ton for waste dumps with less than 50% inert content, and HK$71 per ton for entirely inert 53 

waste content). The CWDCS relies on the reliable and efficient gauging of inert waste 54 

proportions. In current practice, human inspectors have to judge whether the composition of an 55 

incoming waste dump meets the criteria based on limited data, including weight and depth of 56 

the waste and overhead photos. In case of dispute, entire truckloads of waste have to be 57 

manually separated and examined. This human-reliant practice is laborious, inefficient, and can 58 

be affected by fatigue, sloppiness, or even bribery. 59 

 60 

Recent technological advancements offer means to overcome the limitations of human-reliant 61 

decision-making. With explosive growth in available data and computing power, knowledge to 62 

assist human decision-makers can be extracted using computer vision (CV), data mining, 63 

machine learning (ML), and other techniques. Such domain knowledge can be used to train 64 

intelligent machines to support or even replace human experts for biomedical image analysis 65 

(Tschandl et al., 2020), ambient intelligence-based healthcare (Haque et al., 2020), 66 
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infrastructure condition evaluation (Bhola et al., 2018; Chen and Liu, 2021; Wu et al., 2019) 67 

and oil storage estimation from satellite imagery (Mubasir, 2020). Emerging technologies can 68 

be applied to automate the gauging of CW composition as well. With a big enough dataset, it 69 

is viable to find the hidden correlation between surface features of waste dumps and human 70 

judgements on their composition. If a machine can learn the correlation, it can then be used to 71 

automatically gauge CW composition, not only outperforming human inspectors in terms of 72 

efficiency, but also freeing us from such issues as fatigue, sloppiness, and corruption. 73 

 74 

Since AlexNet won the ImageNet competition in 2012 (Krizhevsky et al., 2012), convolutional 75 

neural network (CNN) has become a state-of-the-art approach to CV-related tasks. Over the 76 

course of nearly a decade, it evolved into numerical variants with different architectures, such 77 

as DenseNet for image classification, Faster R-CNN for object detection, and DeepLab for 78 

semantic segmentation. CNNs and other CV techniques are increasingly being used in waste 79 

management for better efficiency and productivity. Nowakowski and Pamuła (2020) applied 80 

Faster R-CNN to process smartphone-captured photos to categorize and detect e-wastes, which 81 

is beneficial to waste collection planning. Arebey et al. (2012) used image features for 82 

automatic waste bin level detection. Manufacturers (BHS, 2017) are incorporating deep CNNs 83 

into the sorting lines in waste recovery facilities to replace humans for quality control. However, 84 

existing studies mainly focus on recognizing or detecting individual waste items in a structured 85 

or semi-structured environment. Few of them, if any, has used CV to understand the internal 86 

composition of a dump of mixed waste. In addition, stand-alone use of CV might be biased as 87 

it only reflects part of the characteristics of an object via visual appearance. To better estimate 88 

the interior of an object, more features should be incorporated. There exist studies (Chu et al., 89 

2018; Koyanaka and Kobayashi, 2011) in the waste sorting sector that integrated visual features 90 

with physical properties such as conductivity to detect materials on conveyor belts. However, 91 

for waste dumps, it remains unclear what types of physical features should be selected, and 92 

how they should be integrated with visual recognition to gauge waste composition. 93 

 94 

The aim of this study is to provide a machine learning-based approach to automatically gauge 95 

the interior composition of construction waste through hybrid use of its visual appearance and 96 

physical features. The contribution is twofold. From a theoretical perspective, this study 97 

innovatively integrates visual features extracted by a CNN and physical properties of a waste 98 

dump to estimate its interior composition. In our experiments, the accuracy of a visual-physical 99 

integrated model significantly outperforms that of a model based solely on visual appearance, 100 

thus demonstrating the superiority of the hybrid approach. From a practical point of view, the 101 

approach is expected to improve the efficiency and reliability of waste composition gauging 102 

and can be deployed to enable a shift towards unattended operations in waste disposal facilities, 103 

similarly to recently unmanned kitchens, groceries, and warehouses. The automation frees 104 

humans from repetitive and hazardous tasks, enabling them to pursue more value-added jobs. 105 

 106 
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2. Research needs 107 

CW comprises both inert and non-inert contents. Inert construction waste, including concrete, 108 

bricks, and rubble, can be reused in future projects. Non-inert materials such as bamboo, 109 

plastics, and paper have limited residual value and thus should be landfilled (HKEPD, 2019). 110 

To appropriately manage such waste according to its composition, the Hong Kong EPD 111 

launched the CWDCS in 2006. As shown in Fig. 1, the CWDCS imposes different levels of 112 

levy on contractors/waste haulers based on the amount of inert waste materials they dispose of. 113 

A truckload full of inert waste is charged HK$71 per ton at the public fills, while a levy of 114 

HK$200 per ton is imposed for disposal in landfill if it comprises less than 50% inert waste by 115 

weight. Loads comprising no less than 50% inert waste are directed to off-site sorting facilities 116 

(OSF) for a levy of HK$175 per ton. 117 

 118 

Since implementation, the CWDCS has undoubtedly played a significant role in CW 119 

minimization in Hong Kong (Lu et al., 2015). However, it has been a challenge to efficiently 120 

and reliably gauge the CW composition, and thus decide whether the inert content meets the 121 

required proportion of 50% by weight. To implement the CWDCS, the EPD set up sensors such 122 

as weighbridges, rangefinders and cameras at the OSFs to measure surface features of the 123 

incoming waste loads, e.g., tare weight, depth, and photos of the top surface. The image at the 124 

upper right corner of Fig. 1 shows how the system works. Human inspectors sit in an office at 125 

the OSF entrance and, when a truck arrives, they need to evaluate the inert content proportion 126 

in the waste dump based on the given data (e.g., tare weight, depth and photos), and decide if 127 

it is acceptable to the facility (i.e., it comprises no less than 50% inert waste). In the event of 128 

dispute, they are even required to manually separate the entire truckload of waste to determine 129 

its composition. Such human-engaged practice is problematic not only because it is inefficient 130 

and laborious, but also owing to the issue of fatigue and sloppiness that can impair the 131 

inspectors’ judgements, as well as the potential risk of corruption that will undermine the 132 

credibility of the system. 133 
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 134 

Fig. 1. A schematic diagram showing construction waste management practice in Hong Kong. 135 

 136 

The conundrum in Hong Kong is not unique; instead, similar dilemmas surrounding solid waste 137 

management exist in Mainland China and around the world. Parallels can be found in a broad 138 

range of contexts (e.g., telediagnosis, minefield detection and structure condition assessment) 139 

where human experts are relied on to make judgements with very limited relevant surface 140 

information. Given humans’ physical and mental limits, such judgements are prone to low 141 

efficiency while factors such as fatigue and corruption can lower productivity. For better 142 

efficiency and reliability in scenarios such as waste composition gauging, an automated 143 

approach is needed to replace human experts. 144 

 145 

3. Technical viability 146 

Recent technological developments (e.g., data mining, CV and ML) provide opportunities to 147 

overcome the limitations of human-reliant CW composition gauging. As society enters an era 148 

of big data (Donoho, 2000), big data analytics may offer solutions to problems that are 149 

traditionally difficult to solve in a small data context. The magnitude of available data is 150 

unprecedented, and by mining it latent knowledge, hidden patterns and unknown correlations 151 

can be extracted. Where a dataset is sufficiently large to include human decisions on a matter 152 

of interest and the factors that influence their decisions, one can reconstruct, from the dataset, 153 

the mapping relationship between the influencing factors and the human decisions. Such 154 

insights into how domain experts make decisions have been used to develop expert systems, 155 

which can operate independently for medical diagnosis (Malmir et al., 2017), automobile repair 156 

(Fang and Fang, 2013), structural condition assessment (Fabianowski et al., 2020) and other 157 
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domain-specific purposes. 158 

 159 

If big data is the fuel driving the intelligence of machines, then the ML algorithm is the engine. 160 

The advent of deep learning in recent years provides powerful tools to process and analyze 161 

massive amounts of high-dimensional visual data. In the domain of CV, the processing of 162 

images for classification, detection and segmentation was traditionally dependent on domain 163 

expertise for feature extraction to reduce the complexity of the data (Mahapatra, 2018). CNN, 164 

a representative deep learning algorithm, revolutionized the domain by substituting the 165 

traditional problem-solving paradigm with an end-to-end approach. With such an approach, no 166 

human intervention is required (O’Mahony et al., 2019); instead, the networks can 167 

automatically learn high-level features from the input raw images in an incremental manner 168 

(Goodfellow et al., 2016). Owing to its robust performance and being free of feature 169 

handcrafting, CNN and its variants have been widely applied to solve, with super-human 170 

accuracy, problems that were assumed unsolvable (O’Mahony et al., 2019), e.g., biomedical 171 

image analysis (Tschandl et al., 2020), facial expression recognition (He et al., 2021), structure 172 

defects recognition (Dorafshan and Azari, 2020), and ambient intelligence-enabled healthcare 173 

(Haque et al., 2020).  174 

 175 

External visual appearances only reveal some of the characteristics of a subject. To 176 

comprehensively characterize the subject, more information such as physical features should be 177 

taken into account. This is especially true for solid waste separation as materials sharing similar 178 

visual features, such as glass and a transparent plastic sheet, can maintain different physiochemical 179 

properties. Previous research has endeavored to use both visual and physical features to improve 180 

waste sorting performance. Chu et al. (2018) used waste images associated with numerical 181 

information measured by sensors to sort recyclable from other waste items. Koyanaka and 182 

Kobayashi (2011) considered both weight and 3D shape of waste fragments for the segregation of 183 

metal scraps from end-of-life vehicles. A prevalent ML algorithm for visual-physical feature 184 

fusion is support vector machine (SVM), which aims to find the optimal hyperplane that can 185 

best separate data samples of different classes. The superiority of SVM in integrating visual 186 

features extracted from CNN with other features has been demonstrated by a previous study 187 

(Xue et al., 2016). 188 

 189 

The operation of the CWDCS over a span of more than 10 years in Hong Kong has resulted in 190 

a valuable big dataset comprising not only visual photos and physical properties (e.g., weight, 191 

height and depth) of tens of thousands of waste dumps, but also judgements made by inspectors 192 

regarding waste composition. With such a big dataset at hand, it is viable to apply emerging 193 

technologies such as CNN and SVM to train a hybrid model that can automatically gauge the 194 

proportion of inert content in CW. 195 

 196 

4. The visual-physical feature hybrid approach 197 
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4.1. Visual feature extraction 198 

Inert (e.g., concrete and bricks) and non-inert materials (e.g., wood, plastic and bamboo) in 199 

CW are visually distinct. Hence, top-down photos taken by surveillance cameras at OSFs can 200 

provide visual clues on whether the percentage of inert waste exceeds a certain level (e.g., 50%). 201 

 202 

CNN is applied to exploit the visual differentiation between inert and non-inert contents to 203 

automate waste composition gauging. There are many different off-the-shelf CNN 204 

architectures, among which DenseNet has demonstrated robust performance in waste 205 

recognition by previous studies (Lu and Chen, 2020; Mao et al., 2021). Our study uses 206 

DenseNet169 (Huang et al., 2018), a variation of DenseNet, to extract critical high-level visual 207 

features for inert content gauging. As shown in Fig. 2, transfer learning technique (Zhang et al., 208 

2019) is applied to train a classification model for which the input is top-down truckload photos 209 

captured by surveillance cameras and the output is labels indicating whether the transactions 210 

of the concerned truckloads were completed. The model comprises a DenseNet169 structure at 211 

the bottom, which has been pre-trained on ImageNet (Stanford Vision Lab et al., 2016), and 212 

three self-designed layers on the top, which include a global average pooling layer and two 213 

fully-connected layers (with 4,096 and 1 neurons respectively). The neuron of the last fully 214 

connected layer uses sigmoid as activation function, and outputs a scale value ranging from 0 215 

to 1. Based on the scale value, a class label is assigned to the corresponding input image: if the 216 

value is no less than 0.5, the input image belongs to the “Completed” class (implying a 217 

composition with over 50% inert contents); otherwise, the image belongs to the “Rejected” 218 

class (implying inert content is less than 50%). 219 

 220 
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Fig. 2. Model structure based on DenseNet169 for visual feature extraction. 221 

 222 

If the model is well trained, the output of the last fully connected layer forms a high-level 223 

indicator of proportion of inert content from a visual perspective. It also makes sense from the 224 

mathematical point of view, as the value gives the probability of the sample being positive (i.e., 225 

completed or inert ≥ 50% in our case). Therefore, the model output scale value is extracted as 226 

a high-level visual feature of the concerned truckload, which we refer to as visual inert 227 

probability (VIP). 228 

 229 

4.2. Physical features 230 

Different materials have different physical properties. One of the most common and 231 

measurable physical properties is density. Most inert materials are of higher densities than their 232 

non-inert counterparts (Lu and Yuan, 2020). Thus, a waste load with more inert content is 233 

generally heavier than a load of similar volume with more non-inert content. In practice, it is 234 

both difficult and inefficient to directly measure the density of a truckload of construction waste. 235 

However, it is possible to reflect the variation of waste composition by developing a set of 236 

indirect features based on sensing data (e.g., weight and depth) collected at the OSFs. Here, 237 

four such feature indexes are introduced as follows. 238 

 239 

(1) iWD 240 

The iWD index is defined as a ratio of the gross weight of an incoming truck Win to the 241 

waste depth, as shown by Eq. (1). 242 

 
=

inWiWD
waste depth

                            (1) 243 

1 2 = −waste depth H H                           (2) 244 

where H1 and H2 are the respective heights from the surface of the waste and the dump bed to 245 

the floor of weighbridge. 246 

 247 

(2) nWD 248 

The nWD index is defined as a ratio of the net weight of construction waste loaded by 249 

the incoming truck to the waste depth, as shown by Eq. (3). 250 

 
−

=
in tareW WnWD

waste depth
                            (3) 251 

where Wtare is the tare weight of the truck. Despite the absence of the bottom area of the loading 252 

bucket in the denominator, the index can be expected to reflect to a certain extent the overall 253 

density of the loaded waste materials, as a higher density usually (but not necessarily) indicates 254 

a higher net weight and a shallower waste depth.  255 

 256 

(3) GVW ratio 257 

The GVW ratio is defined in Eq. (4), which has been used by the Hong Kong EPD for 258 
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many years to guide the operation of OSFs. This demonstrates the significant role of the index 259 

in helping to infer the composition of inert contents, and thus is also considered as a potential 260 

physical feature for our model. 261 

 −
=

in tareW WGVW Ratio
PGVW

                         (4) 262 

where PGVW is the permitted gross vehicle weight, which can be deemed as a fixed value that 263 

can be obtained from the manufacturing specifications of the corresponding truck model. 264 

 265 

(4) iGVW ratio 266 

The definition of iGVW ratio is similar to that of GVW ratio, but instead of net weight it 267 

uses the gross weight of an incoming truck as the numerator. 268 

 =
inWiGVW ratio

PGVW
                          (5) 269 

The use of PGVW in Eq. (4) and (5) normalizes the respective indexes to allow direct 270 

comparison between different types of trucks with different loading capacity. 271 

 272 

Among the above four physical features, iWD and nWD are dimensional variables with the unit 273 

of “ton/m”, while GVW ratio and iGVW ratio are dimensionless variables. They were proposed 274 

based on an assumption that a truckload of waste with considerable portion of inert substance, 275 

given its density, should not be too deep and too light. However, the assumption does not 276 

guarantee their actual correlations with the corresponding inert waste proportion. Quantitative 277 

statistical analysis is thus required to select suitable ones from the four candidates for the hybrid 278 

model, as will be discussed in section 5.3. 279 

 280 

4.3. Visual-physical hybrid model 281 

In contrast to standalone visual (VIP) or physical features (iWD, nWD, GVW ratio and iGVW 282 

ratio), hybrid use of these features can allow a more comprehensive consideration of 283 

construction waste characteristics, leading to higher gauging accuracy. To train our inert 284 

content gauging model, support vector machine (SVM), a ML technique famous for its solid 285 

performance in classification problems and only requiring a small amount of training data, is 286 

used to fuse both the visual and physical features. Fig. 3 shows structure of the hybrid model 287 

based on SVM. The model takes a vector containing both visual and physical features proposed 288 

above as input, and then gives a prediction on whether the truckload corresponding to the input 289 

features contains more than 50% inert content by weight. 290 
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 291 

Fig. 3. Visual-physical feature hybrid model based on support vector machine. 292 

 293 

5. Experimental studies 294 

5.1. Data collection and preprocessing 295 

Over the past few years, our research team has collected a large construction waste 296 

management dataset in Hong Kong (Lu, 2019; Lu and Yuan, 2020). In the dataset, records of 297 

truckloads received by the OSFs are of significance for this study. Fig. 4 shows a spreadsheet 298 

with information on all incoming trucks for one OSF in October 2019. The recorded data 299 

includes not only physical properties of the received waste, such as Win, net weight, PGVW and 300 

weight depth, but also top-down photos of all truckloads captured by surveillance cameras. 301 

Another data field is the record state of each truckload, which indicates whether the concerned 302 

load of waste was accepted or rejected by the facility. The record state “Completed” or 303 

“Rejected” provides an indicator of the proportion of the inert content—“Completed” implies 304 

a proportion of over 50%, while “Rejected” means the opposite. 305 

 306 

The data includes 5,347 transaction records of 666 trucks over a duration of one month. Among 307 

these, only 296 transactions were rejected for not meeting the criterion of “more than 50% of 308 

inert contents by weight”. Training ML models on such an imbalanced dataset can lead to 309 

overfitting, where the resulting model favors the majority class while performs poorly on the 310 

minority. To address this issue, the majority class (i.e., records with the “Completed” label) and 311 

the minority class (i.e., records with the “Rejected” label) were respectively downsampled and 312 

upsampled. The results were then further processed to remove records with missing data fields 313 

(e.g., waste depth), which resulted in a dataset of 1127 records. Finally, the dataset was divided 314 

into a training set, a validation set and a test set, according to a ratio of 7:1.5:1.5. The detailed 315 

composition is shown in Table 1. 316 
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 317 

Fig. 4. Data records of received truckloads at an OSF. 318 

 319 

Table 1. Composition of the dataset used for experimental studies. 320 

Label 
Dataset separation 
Training Validation Test Total 

Completed (inert ≥ 50%) 415 91 91 597 
Rejected (inert < 50%) 376 75 79 530 
Total 791 166 170 1127 
*Note: The numbers are quantities of records. 

 321 

5.2. Results of visual recognition 322 

A DenseNet169 model was fine-tuned on the training set for “completed (inert ≥ 50%)/rejected 323 

(inert < 50%)” classification. The Keras library on the TensorFlow 2 framework was used to 324 

train the model. The training parameters were set as follows: Adam algorithm with a learning 325 

rate of 0.001 was used for optimization; the used loss function was binary cross-entropy; batch 326 

size, step per epoch, and number of epochs were set as 4, 200 and 20, respectively.  327 

 328 

Figs. 5 (a) and (b), respectively, depict the change of accuracy and loss during the 20 epochs 329 

of training. We observed that, despite the fluctuation, the evolvement of performance on the 330 

validation set was in general consistent with that on the training set in the first 10 epochs, both 331 

experiencing an increase on accuracy and a drop of loss. The observation indicates the model 332 

was being properly trained and was learning generalizable patterns from the training data. 333 

However, after 10 epochs, while the model performance kept improving on the training set, its 334 

accuracy on the validation set started decreasing drastically; meanwhile, the loss on the 335 

validation set remained fluctuating at the same level after 10 epochs. This phenomenon 336 

signifies the occurrence of overfitting, where the model performs extremely well on the training 337 

set but fails to generalize to the new samples in the validation/test set. 338 
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 339 

Fig. 5. Change of (a) accuracy and (b) loss during training process; confusion matrix of 340 

selected model on (c) training set, (d) validation set and (e) test set. 341 

 342 

To prevent overfitting, the “early stopping” strategy was adopted (Brownlee, 2018a). The 343 

model after 10 epochs of training was selected for performance evaluation. Figs. 5 (c), (d), and 344 

(e) show the confusion matrices of the model on training set, validation set and test set, 345 

respectively. It can be observed that the accuracies on the three subsets are all around 0.75, 346 

demonstrating the model’s ability to generalize to new test samples. Based on the model, the 347 

visual features, VIP, of all samples in the dataset can be extracted for further analysis. 348 

 349 

5.3. Feature correlation analysis 350 

The correlation between the proposed visual/physical features and waste composition was 351 

analyzed with Pearson’s correlation coefficients. The analysis was performed in IBM SPSS 352 

based on the entire dataset with 1127 samples. Through correlation analysis, features with less 353 

significant coefficients can be excluded from the hybrid model. 354 

 355 

Figs. 6 (a) ~ (e) show the distribution of the five features (1 visual, 4 physical) by box plots. 356 

Their Pearson’s correlation coefficients with the “Completed/Rejected” labels are listed in Fig. 357 

6 (f). The most significant feature is VIP with a coefficient of 0.531, followed by the physical 358 

features nWD and iGVW ratio with coefficients of 0.335 and 0.325, respectively. The 359 

correlation of the remaining physical features iWD and GVW ratio is comparatively weak, and 360 

thus we exclude them from the hybrid model. The correlation analysis implies that a truckload 361 
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with a higher VIP, a higher net weight/waste depth, and a higher inweight/PGVW is more likely 362 

to contain no less than 50% of inert materials, and hence is more likely to be accepted by an 363 

OSF. 364 

 365 

Fig. 6. Box plots of (a) nWD, (b) iWD, (c) VIP, (d) GVW ratio, and (e) iGVW ratio; (f) a table 366 

listing the Pearson’s coefficients of all the five features. 367 

 368 

5.4. Performance of the hybrid model 369 

A hybrid SVM model integrating the visual feature VIP and physical properties nWD and iGVW 370 

ratio was trained to gauge whether a waste dump comprises more than 50% inert material. Due 371 

to the differences in dimension and range of distribution, feature values of all samples in the 372 

dataset were first normalized to the range of [0, 1] with the Min-Max normalization approach 373 

(Codecademy, 2020). The Python package scikit-learn was used to train and test the SVM. 374 

Model training and hyperparameter tuning was undertaken with 10-fold cross validation 375 

(Brownlee, 2018b). Detailed information of the hyperparameter tuning process can be found 376 

in the Supplementary Material. 377 

 378 

When hyperparameters were specified as “kernel = rbf, C = 9000, and gamma = 6000”, best 379 

performance in terms of prediction accuracy (i.e., 0.928) was observed on the training and 380 

validation set. The model trained with these hyperparameters was used to predict whether 381 

truckloads in the test set comprised more than 50% inert waste by weight. The prediction 382 

performance is shown in Fig. 7. The model’s predictions had a very high chance (i.e., 94%) of 383 

being identical to evaluations made by human inspectors, which are deemed as the ground-384 

truth. Such high accuracy demonstrates the model’s promise for deployment in OSFs, replacing 385 

humans for efficient and reliable inert proportion gauging. 386 
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 387 

Fig. 7. Performance of the hybrid model in predicting inert waste proportion on test set. 388 

 389 

6. Discussion 390 

6.1. A peek into the black box using visual recognition 391 

The visual recognition model based on DenseNet169 achieved an accuracy of 74.7% on the 392 

test set, which is quite acceptable. This is especially true given that the input photos have not 393 

been preprocessed to remove background areas surrounding the trucks, and that the visual 394 

appearance of a waste dump does not necessarily reflect its interior composition. The VIP 395 

extracted from the visual recognition model correlated to the inert content proportion with a 396 

coefficient of 0.531, playing a critical role in the solid performance of the hybrid model. 397 

Therefore, it is important to understand what kind of patterns the visual model learnt that are 398 

crucial for distinguishing between waste loads with different inert proportions. A neural 399 

network has been traditionally deemed as a black box, inside which the learnt patterns are 400 

difficult for humans to interpret. Thanks to recent developments in explainable machine 401 

learning, it is now possible for us to glance into the black box through emerging techniques 402 

such as class activation mapping (CAM) (Zhou et al., 2016) and gradient-weighted CAM 403 

(Grad-CAM) (Selvaraju et al., 2017). We used Grad-CAM in this study because, unlike CAM, 404 

it does not require modification of the original network and model re-training (Chetoui, 2019). 405 

Grad-CAM calculates the importance weight of a feature map with respect to the output class 406 

via gradients, and then computes the weighted sum of all the feature maps to produce a heat 407 

map indicating salient regions that affect the model’s decision. 408 
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 409 

Fig. 8. Grad-CAM heatmaps indicating salient regions/features that affect the model decision. 410 

 411 

Figs. 8 (a) and (b) show the heatmaps of the input images when the model correctly identified 412 

the proportion of inert contents. As can be seen from the figure, despite the existence of 413 

irrelevant background (e.g., ground, vegetation and exterior of toll gate office), the model has 414 

learnt to focus on pixel areas where the truck buckets are located, forming a premise for 415 

subsequent inert content gauging. For samples with more than 50% inert content (Fig. 8 (a)), 416 

image regions with salient features appear to be larger than those observed in samples with less 417 

than 50% inert content (Fig. 8 (b)). In addition, it seems the model tends to pay more attention 418 

to the grab buckets mounted on the truck, and to correlate these buckets with greater likelihood 419 
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of over 50% inert content. The phenomenon can be explained by empirical observations. 420 

Specifically, construction waste with greater inert content tends to weigh more, and hence is 421 

more likely to be loaded and transported by larger trucks with higher tonnage and grab buckets. 422 

The model has also acquired the visual pattern of non-inert materials, and successfully 423 

correlated pixel regions with bright colors and relatively smooth textures to the label of “inert 424 

< 50%” (Fig. 8 (b)). 425 

 426 

Fig. 8 (c) shows Grad-CAM heatmaps of some erroneous cases. The full load of concrete 427 

fragments in #3-1 is not a normal case like those displayed in #1-1 ~ #1-3 where the different 428 

inert (and non-inert) materials are randomly mixed together. The model may have been 429 

confused by the relative infrequency of #3-1, leading to an incorrect judgement. In #3-2, the 430 

model fails to detect where the truck bucket is, and thus the incorrect prediction is not surprising. 431 

For #3-3, from the human visual perspective, the sample looks as though it contains a large 432 

portion of non-inert materials, consistent with the predictive label. However, there might be a 433 

large amount of inert content hidden in a lower layer, which cannot be picked up by visual 434 

sensors. This highlights the importance of integrating both visual and physical features to 435 

achieve a more comprehensive evaluation. 436 

 437 

6.2. Adaptability of the proposed approach to broader contexts 438 

Although developed in the Hong Kong context, the proposed approach can be adapted to waste 439 

management dilemmas in other countries/regions. The differences between inert and non-inert 440 

waste with respect to physical properties and visual appearance are universal, so the visual 441 

feature VIP and physical features iWD, nWD, GVW ratio and iGVW ratio can serve as universal 442 

indicators to gauge inert and non-inert contents. With regards to interior waste composition 443 

corresponding to each of waste dumps, this can be obtained via approaches applicable to the 444 

local context. In our study, such information was inferred from the OSF binary labels indicating 445 

whether the waste dumps were “Completed” (and hence comprised more than 50% inert waste) 446 

or “Rejected” (comprising less than 50% inert waste). Thus, the model is actually a binary 447 

classifier gauging whether the relevant mixed waste is made up of more than 50% inert content. 448 

This is not necessarily the case in other countries/regions, as those places might manage 449 

construction waste using trisection or quarter division. One can even meticulously segregate 450 

and probe into the waste mixture to get a continuous and accurate waste composition value of 451 

each truckload. In this way, it is viable to reconstruct a regression model (rather than a classifier) 452 

that can make explicit the waste dump composition. In addition, the incoming trucks do not 453 

have to be inspected one by one through the toll gates; rather, it is worth exploring to deploy 454 

unmanned aerial vehicles (UAV) and object detection models to enable inspection of multiple 455 

trucks at the same time. In such a way, the efficiency can be further improved. 456 

 457 

6.3. Significance of the research findings 458 

The experimental studies demonstrate a 94% accuracy of our hybrid approach in gauging 459 
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composition of CW. To evaluate the performance, results obtained from the field of waste 460 

image classification can be used for comparison. State-of-the-art performance of waste 461 

classification on TrashNet (Thung and Yang, 2019), a public open trash dataset, is around 96% 462 

(Huang et al., 2020; Yang and Li, 2020). The TrashNet dataset mainly consists of photos of 463 

individual waste items appeared on relatively simple background. Compared with the 464 

classification on TrashNet, it is more difficult to recognize composition of a bulk of mixed 465 

waste. Thus, the 94% accuracy of our approach is rather satisfactory. 466 

 467 

The visual-physical feature hybrid model proposed in this study contributes to the general 468 

problem of “looking beneath the surface”. To get to the essence of something, humans often 469 

have to make inferences from external appearances. Knowledge of such human inference can 470 

be extracted to train intelligent machines. This is demonstrated by our study from a perspective 471 

of waste management, which has successfully reconstructed the mapping between the surface 472 

features of waste dumps and their interior composition from more than 1,000 pieces of data. 473 

While the idiom “seeing is believing” reflects the importance of visual information, our study 474 

implies depending merely on vision can bring bias. One possible way to overcome such bias is 475 

to consider information from other sources to complement visual features. When visual and 476 

physical features were integrated, satisfactory performance was attained. From a practical point 477 

of view, the proposed approach facilitates the trend towards unmanned/unattended gauging of 478 

CW composition, reducing investment in manpower, improving efficiency, and also ensuring 479 

reliability and credibility of waste management systems. Our approach vividly demonstrates 480 

how unattended operations, driven mainly by algorithms and big data, can address the problems 481 

associated with human-in-the-loop operations. 482 

 483 

7. Conclusions 484 

There are many scenarios in which human experts need to make inferences about something 485 

from its outward appearance. Likewise, current practice in gauging construction waste 486 

composition requires human inspectors to judge whether the inert content in a waste dump 487 

exceeds required proportions based on limited information. This practice is inefficient, 488 

laborious, hazardous, and can be undermined by fatigue, sloppiness and corruption. To address 489 

these limitations, this paper presents an automated approach for inert waste content gauging 490 

through the hybrid use of both visual and physical features of construction waste. A fine-tuned 491 

CNN model was trained to extract a high-level feature index called visual inert probability (VIP) 492 

from more than 1,000 photos of waste dumps. The VIP demonstrated a correlation coefficient 493 

of 0.531 with inert content proportion. It thus can provide important visual clues on the 494 

composition of construction waste. Four different physical features were defined based on the 495 

collected sensing data (e.g., weight and depth), of which the nWD and iGVW ratio presented 496 

moderate correlations with inert content proportion. Our visual-physical feature hybrid 497 

approach achieved 94% accuracy in gauging construction waste composition at an off-site 498 

sorting facility in Hong Kong. The accuracy is almost equally as well as human inspectors. 499 



18 
 

Since it can work automatically without human intervention, this approach is not prone to 500 

fatigue or bribery from waste haulers/contractors. The solid performance of the proposed 501 

approach and its advantages thus demonstrate its promise in replacing human inspectors at 502 

waste disposal facilities for unattended operation. 503 

 504 

Future studies are recommended to further facilitate waste composition gauging. First, 505 

semantic segmentation techniques such as DeepLabv3 can be applied to recognize the specific 506 

types of material on the surface of the waste dumps, which will provide more visual information 507 

on waste composition, and thus can potentially lead to higher accuracy. Second, the concept of 508 

bulk density can be utilized to better characterize the physical properties of waste dumps. As 509 

bulk density is directly correlated to waste composition from a theoretical perspective, 510 

incorporating it into the hybrid model can be expected to further improve the model 511 

performance. 512 
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Supplementary material: 673 

 674 

S1. Hyperparameter Tuning for the Hybrid SVM model 675 

 676 

When training a support vector machine (SVM) model with Python scikit-learn package, three 677 

important hyperparameters need to be specified, i.e., kernel, C and gamma. The “kernel” 678 

designates the type of hyperplane used to separate the data. For example, “linear” kernel is 679 

effective for linear-separable data while the other kernels (e.g., “poly”, and “rbf”) are normally 680 

used to deal with nonlinear data. C is the regularization parameter that defines the tolerance 681 

level of misclassification, while the gamma defines the range of influence a training sample 682 

should reach. 683 

 684 

We used 10-fold cross validation to tune the above three hyperparameters. The implementation 685 

of k-fold cross validation has two benefits. First, it allows full utilization of the dataset for 686 

training since a separate validation set is not needed. This is critically important when the 687 

amount of available data is limited. Second, it mitigates the adverse influence of different data 688 

splits on the performance metrics, thus allowing for a more objective performance evaluation. 689 

The training and validation sets in Table 1 of the paper were combined to form a new dataset 690 

(including 957 samples in total) for 10-fold cross validation. Table S1 lists the results of 10-691 

fold cross validation under different hyperparameters. When hyperparameters were specified 692 

as “kernel = rbf, C = 9000, and gamma = 6000”, best performance in terms of prediction 693 

accuracy (i.e., 0.928) was observed on the dataset. 694 

 695 

Table S1. Cross validation results of the hybrid model trained with different hyperparameters. 696 

No
. 

Hyperparameters  Performance metrics 
Kernel degree* C gamma  Training time/fold 

(s) 
accuracy F1-

score 
1 

Poly 

2 300 10  1.67 0.757 0.756 
2 2 5000 40  98.3 0.771 0.771 
3 2 100 0.5  0.01 0.76 0.759 
4 3 100 0.4  0.01 0.766 0.764 
5 

rbf 

/ 100 0.8  0.01 0.85 0.85 
6 / 300 10  0.06 0.866 0.866 
7 / 600 120  0.06 0.889 0.889 
8 / 600 300  0.03 0.91 0.91 
9 / 9000 6000  0.04 0.928 0.927 

* The hyperparameter is only applicable to “Poly” kernel, which represents the degree of the polynomial kernel  
 697 

 698 

 699 
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