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Abstract

There are various scenarios challenging human experts to judge the interior of something based
on limited surface information. Likewise, at waste disposal facilities around the world, human
inspectors are often challenged to gauge the composition of waste bulks to determine
admissibility and chargeable levy. Manual approaches are laborious, hazardous, and prone to
carelessness and fatigue, making unattended gauging of construction waste composition using
simple surface information highly desired. This research attempts to contribute to automated
waste composition gauging by harnessing a valuable dataset from Hong Kong. Firstly, visual
features, called visual inert probability (VIP), characterizing inert and non-inert materials are
extracted from 1,127 photos of waste bulks using a fine-tuned convolutional neural network
(CNN). Then, these visual features together with easy-to-obtain physical features (e.g., weight
and depth) are fed to a tailor-made support vector machine (SVM) model to determine waste
composition as measured by the proportions of inert and non-inert materials. The visual-
physical feature hybrid model achieved a waste composition gauging accuracy of 94% in the
experiments. This high performance implies that the model, with proper adaption and
integration, could replace human inspectors to smooth the operation of the waste disposal
facilities.

Keywords: Construction and demolition waste; Construction waste management; Waste
composition; Computer vision; Deep convolutional neural network; Support Vector machine.

1. Introduction

In industrial activities or daily life, human experts often need to “look beneath the surface” of
a subject matter using limited information from exterior visual and physical features. An
Internet-era example is tele-diagnosis, use of which has increased amid COVID-19 pandemic

social distancing (Larner, 2020) and which requires doctors to consult patients and make
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diagnoses remotely by video call and with very limited information of medical history of the
patients. In infrastructure inspection, engineers need to evaluate structural condition using
external appearances (e.g., cracks or other damages) and limited information collected by
sensors (Koch et al., 2015; Li et al., 2012). Energy analysts in the petroleum industry use
satellite imagery of oil storage facilities to better understand change in reserve volumes (Watts,
2019). Remote sensing has also been used in minefield detection to infer areas of buried
unexploded ordnance (Bennett, 1999; Maathuis, 2003).

Similarly in solid waste management, people need to judge the internal composition of waste
materials (Sauve and Van Acker, 2020) for subsequent processing (e.g., recycling or landfilling)
based on a limited set of features, such as visual appearance, moisture, weight, and volume.
With increasing environmental awareness in Mainland China, the authority has begun to
advocate municipal solid waste (MSW) segregation at source. In Tier-1 cities such as Shanghai
and Beijing, this has been made compulsory (Arantes et al., 2020; Zuo and Yan, 2019).
Household MSW generally comprises organic waste, non-recyclable inorganic waste and
recyclable waste (Zhang et al., 2010). Within these broad categories are hundreds of different
waste materials and it is difficult for both citizens and enforcers, who have little knowledge
and experience in garbage classification, to distinguish among them based on appearance. It is
no surprise that residents “were almost driven crazy by garbage classification” (Yu, 2019).

Even more challenging is gauging the composition of a mixture of bulky construction waste
(CW), also referred to as construction and demolition (C&D) waste. This is exactly the
dilemma now confronting many countries and regions, including Hong Kong. In 2006, the
Hong Kong Environmental Protection Department (EPD) launched the Construction Waste
Disposal Charging Scheme (CWDCS), imposing scaled waste disposal fees on contractors or
waste haulers according to the proportion of inert content in a waste dump (e.g., HK$200 per
ton for waste dumps with less than 50% inert content, and HK$71 per ton for entirely inert
waste content). The CWDCS relies on the reliable and efficient gauging of inert waste
proportions. In current practice, human inspectors have to judge whether the composition of an
incoming waste dump meets the criteria based on limited data, including weight and depth of
the waste and overhead photos. In case of dispute, entire truckloads of waste have to be
manually separated and examined. This human-reliant practice is laborious, inefficient, and can

be affected by fatigue, sloppiness, or even bribery.

Recent technological advancements offer means to overcome the limitations of human-reliant
decision-making. With explosive growth in available data and computing power, knowledge to
assist human decision-makers can be extracted using computer vision (CV), data mining,
machine learning (ML), and other techniques. Such domain knowledge can be used to train
intelligent machines to support or even replace human experts for biomedical image analysis

(Tschandl et al., 2020), ambient intelligence-based healthcare (Haque et al., 2020),
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infrastructure condition evaluation (Bhola et al., 2018; Chen and Liu, 2021; Wu et al., 2019)
and oil storage estimation from satellite imagery (Mubasir, 2020). Emerging technologies can
be applied to automate the gauging of CW composition as well. With a big enough dataset, it
is viable to find the hidden correlation between surface features of waste dumps and human
judgements on their composition. If a machine can learn the correlation, it can then be used to
automatically gauge CW composition, not only outperforming human inspectors in terms of
efficiency, but also freeing us from such issues as fatigue, sloppiness, and corruption.

Since AlexNet won the ImageNet competition in 2012 (Krizhevsky et al., 2012), convolutional
neural network (CNN) has become a state-of-the-art approach to CV-related tasks. Over the
course of nearly a decade, it evolved into numerical variants with different architectures, such
as DenseNet for image classification, Faster R-CNN for object detection, and DeepLab for
semantic segmentation. CNNs and other CV techniques are increasingly being used in waste
management for better efficiency and productivity. Nowakowski and Pamuta (2020) applied
Faster R-CNN to process smartphone-captured photos to categorize and detect e-wastes, which
is beneficial to waste collection planning. Arebey et al. (2012) used image features for
automatic waste bin level detection. Manufacturers (BHS, 2017) are incorporating deep CNN5s
into the sorting lines in waste recovery facilities to replace humans for quality control. However,
existing studies mainly focus on recognizing or detecting individual waste items in a structured
or semi-structured environment. Few of them, if any, has used CV to understand the internal
composition of a dump of mixed waste. In addition, stand-alone use of CV might be biased as
it only reflects part of the characteristics of an object via visual appearance. To better estimate
the interior of an object, more features should be incorporated. There exist studies (Chu et al.,
2018; Koyanaka and Kobayashi, 2011) in the waste sorting sector that integrated visual features
with physical properties such as conductivity to detect materials on conveyor belts. However,
for waste dumps, it remains unclear what types of physical features should be selected, and
how they should be integrated with visual recognition to gauge waste composition.

The aim of this study is to provide a machine learning-based approach to automatically gauge
the interior composition of construction waste through hybrid use of its visual appearance and
physical features. The contribution is twofold. From a theoretical perspective, this study
innovatively integrates visual features extracted by a CNN and physical properties of a waste
dump to estimate its interior composition. In our experiments, the accuracy of a visual-physical
integrated model significantly outperforms that of a model based solely on visual appearance,
thus demonstrating the superiority of the hybrid approach. From a practical point of view, the
approach is expected to improve the efficiency and reliability of waste composition gauging
and can be deployed to enable a shift towards unattended operations in waste disposal facilities,
similarly to recently unmanned kitchens, groceries, and warehouses. The automation frees

humans from repetitive and hazardous tasks, enabling them to pursue more value-added jobs.



2. Research needs

CW comprises both inert and non-inert contents. Inert construction waste, including concrete,
bricks, and rubble, can be reused in future projects. Non-inert materials such as bamboo,
plastics, and paper have limited residual value and thus should be landfilled (HKEPD, 2019).
To appropriately manage such waste according to its composition, the Hong Kong EPD
launched the CWDCS in 2006. As shown in Fig. 1, the CWDCS imposes different levels of
levy on contractors/waste haulers based on the amount of inert waste materials they dispose of.
A truckload full of inert waste is charged HK$71 per ton at the public fills, while a levy of
HK$200 per ton is imposed for disposal in landfill if it comprises less than 50% inert waste by
weight. Loads comprising no less than 50% inert waste are directed to off-site sorting facilities
(OSF) for a levy of HK$175 per ton.

Since implementation, the CWDCS has undoubtedly played a significant role in CW
minimization in Hong Kong (Lu et al., 2015). However, it has been a challenge to efficiently
and reliably gauge the CW composition, and thus decide whether the inert content meets the
required proportion of 50% by weight. To implement the CWDCS, the EPD set up sensors such
as weighbridges, rangefinders and cameras at the OSFs to measure surface features of the
incoming waste loads, e.g., tare weight, depth, and photos of the top surface. The image at the
upper right corner of Fig. 1 shows how the system works. Human inspectors sit in an office at
the OSF entrance and, when a truck arrives, they need to evaluate the inert content proportion
in the waste dump based on the given data (e.g., tare weight, depth and photos), and decide if
it is acceptable to the facility (i.e., it comprises no less than 50% inert waste). In the event of
dispute, they are even required to manually separate the entire truckload of waste to determine
its composition. Such human-engaged practice is problematic not only because it is inefficient
and laborious, but also owing to the issue of fatigue and sloppiness that can impair the
inspectors’ judgements, as well as the potential risk of corruption that will undermine the
credibility of the system.
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Fig. 1. A schematic diagram showing construction waste management practice in Hong Kong.

The conundrum in Hong Kong is not unique; instead, similar dilemmas surrounding solid waste
management exist in Mainland China and around the world. Parallels can be found in a broad
range of contexts (e.g., telediagnosis, minefield detection and structure condition assessment)
where human experts are relied on to make judgements with very limited relevant surface
information. Given humans’ physical and mental limits, such judgements are prone to low
efficiency while factors such as fatigue and corruption can lower productivity. For better
efficiency and reliability in scenarios such as waste composition gauging, an automated
approach is needed to replace human experts.

3. Technical viability

Recent technological developments (e.g., data mining, CV and ML) provide opportunities to
overcome the limitations of human-reliant CW composition gauging. As society enters an era
of big data (Donoho, 2000), big data analytics may offer solutions to problems that are
traditionally difficult to solve in a small data context. The magnitude of available data is
unprecedented, and by mining it latent knowledge, hidden patterns and unknown correlations
can be extracted. Where a dataset is sufficiently large to include human decisions on a matter
of interest and the factors that influence their decisions, one can reconstruct, from the dataset,
the mapping relationship between the influencing factors and the human decisions. Such
insights into how domain experts make decisions have been used to develop expert systems,
which can operate independently for medical diagnosis (Malmir et al., 2017), automobile repair

(Fang and Fang, 2013), structural condition assessment (Fabianowski et al., 2020) and other
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domain-specific purposes.

If big data is the fuel driving the intelligence of machines, then the ML algorithm is the engine.
The advent of deep learning in recent years provides powerful tools to process and analyze
massive amounts of high-dimensional visual data. In the domain of CV, the processing of
images for classification, detection and segmentation was traditionally dependent on domain
expertise for feature extraction to reduce the complexity of the data (Mahapatra, 2018). CNN,
a representative deep learning algorithm, revolutionized the domain by substituting the
traditional problem-solving paradigm with an end-to-end approach. With such an approach, no
human intervention is required (O’Mahony et al., 2019); instead, the networks can
automatically learn high-level features from the input raw images in an incremental manner
(Goodfellow et al., 2016). Owing to its robust performance and being free of feature
handcrafting, CNN and its variants have been widely applied to solve, with super-human
accuracy, problems that were assumed unsolvable (O’Mahony et al., 2019), e.g., biomedical
image analysis (Tschandl et al., 2020), facial expression recognition (He et al., 2021), structure
defects recognition (Dorafshan and Azari, 2020), and ambient intelligence-enabled healthcare
(Haque et al., 2020).

External visual appearances only reveal some of the characteristics of a subject. To
comprehensively characterize the subject, more information such as physical features should be
taken into account. This is especially true for solid waste separation as materials sharing similar
visual features, such as glass and a transparent plastic sheet, can maintain different physiochemical
properties. Previous research has endeavored to use both visual and physical features to improve
waste sorting performance. Chu et al. (2018) used waste images associated with numerical
information measured by sensors to sort recyclable from other waste items. Koyanaka and
Kobayashi (2011) considered both weight and 3D shape of waste fragments for the segregation of
metal scraps from end-of-life vehicles. A prevalent ML algorithm for visual-physical feature
fusion is support vector machine (SVM), which aims to find the optimal hyperplane that can
best separate data samples of different classes. The superiority of SVM in integrating visual
features extracted from CNN with other features has been demonstrated by a previous study
(Xue et al., 2016).

The operation of the CWDCS over a span of more than 10 years in Hong Kong has resulted in
a valuable big dataset comprising not only visual photos and physical properties (e.g., weight,
height and depth) of tens of thousands of waste dumps, but also judgements made by inspectors
regarding waste composition. With such a big dataset at hand, it is viable to apply emerging
technologies such as CNN and SVM to train a hybrid model that can automatically gauge the
proportion of inert content in CW.

4. The visual-physical feature hybrid approach



4.1. Visual feature extraction

Inert (e.g., concrete and bricks) and non-inert materials (e.g., wood, plastic and bamboo) in
CW are visually distinct. Hence, top-down photos taken by surveillance cameras at OSFs can
provide visual clues on whether the percentage of inert waste exceeds a certain level (e.g., 50%).

CNN is applied to exploit the visual differentiation between inert and non-inert contents to
automate waste composition gauging. There are many different off-the-shelf CNN
architectures, among which DenseNet has demonstrated robust performance in waste
recognition by previous studies (Lu and Chen, 2020; Mao et al., 2021). Our study uses
DenseNet169 (Huang et al., 2018), a variation of DenseNet, to extract critical high-level visual
features for inert content gauging. As shown in Fig. 2, transfer learning technique (Zhang et al.,
2019) is applied to train a classification model for which the input is top-down truckload photos
captured by surveillance cameras and the output is labels indicating whether the transactions
of the concerned truckloads were completed. The model comprises a DenseNet169 structure at
the bottom, which has been pre-trained on ImageNet (Stanford Vision Lab et al., 2016), and
three self-designed layers on the top, which include a global average pooling layer and two
fully-connected layers (with 4,096 and 1 neurons respectively). The neuron of the last fully
connected layer uses sigmoid as activation function, and outputs a scale value ranging from 0
to 1. Based on the scale value, a class label is assigned to the corresponding input image: if the
value is no less than 0.5, the input image belongs to the “Completed” class (implying a
composition with over 50% inert contents); otherwise, the image belongs to the “Rejected”
class (implying inert content is less than 50%).

) Completed Rejected
Output: (Inert = 50%) (Inert < 50%)
Class label B 4

VIP=05 o VIP<05

. | Extract _Visual inert probability (VIP)
A scale in the range of [0,1]
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Fig. 2. Model structure based on DenseNet169 for visual feature extraction.

If the model is well trained, the output of the last fully connected layer forms a high-level
indicator of proportion of inert content from a visual perspective. It also makes sense from the
mathematical point of view, as the value gives the probability of the sample being positive (i.e.,
completed or inert > 50% in our case). Therefore, the model output scale value is extracted as
a high-level visual feature of the concerned truckload, which we refer to as visual inert
probability (VIP).

4.2. Physical features

Different materials have different physical properties. One of the most common and
measurable physical properties is density. Most inert materials are of higher densities than their
non-inert counterparts (Lu and Yuan, 2020). Thus, a waste load with more inert content is
generally heavier than a load of similar volume with more non-inert content. In practice, it is
both difficult and inefficient to directly measure the density of a truckload of construction waste.
However, it is possible to reflect the variation of waste composition by developing a set of
indirect features based on sensing data (e.g., weight and depth) collected at the OSFs. Here,
four such feature indexes are introduced as follows.

(1) iWD
The iWD index is defined as a ratio of the gross weight of an incoming truck Wi, to the
waste depth, as shown by Eq. (1).

iWDzﬁ'Ziepth (1
waste depth = H1— H > (2)
where H; and H: are the respective heights from the surface of the waste and the dump bed to
the floor of weighbridge.
(2) nWD

The nWD index is defined as a ratio of the net weight of construction waste loaded by
the incoming truck to the waste depth, as shown by Eq. (3).
nwp = = Weare 3)
waste depth
where Wiare 1s the tare weight of the truck. Despite the absence of the bottom area of the loading
bucket in the denominator, the index can be expected to reflect to a certain extent the overall
density of the loaded waste materials, as a higher density usually (but not necessarily) indicates

a higher net weight and a shallower waste depth.

(3) GVW ratio
The GVW ratio is defined in Eq. (4), which has been used by the Hong Kong EPD for
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many years to guide the operation of OSFs. This demonstrates the significant role of the index
in helping to infer the composition of inert contents, and thus is also considered as a potential
physical feature for our model.
GVW Ratio = L= Were (4)
PGYW
where PG VW is the permitted gross vehicle weight, which can be deemed as a fixed value that

can be obtained from the manufacturing specifications of the corresponding truck model.

(4) iGVW ratio
The definition of iGVW ratio is similar to that of GVW ratio, but instead of net weight it
uses the gross weight of an incoming truck as the numerator.
Win
PGVW
The use of PGVW in Eq. (4) and (5) normalizes the respective indexes to allow direct

iIGVW ratio = (5)

comparison between different types of trucks with different loading capacity.

Among the above four physical features, i WD and nWD are dimensional variables with the unit
of “ton/m”, while GVW ratio and iGVW ratio are dimensionless variables. They were proposed
based on an assumption that a truckload of waste with considerable portion of inert substance,
given its density, should not be too deep and too light. However, the assumption does not
guarantee their actual correlations with the corresponding inert waste proportion. Quantitative
statistical analysis is thus required to select suitable ones from the four candidates for the hybrid
model, as will be discussed in section 5.3.

4.3. Visual-physical hybrid model

In contrast to standalone visual (VIP) or physical features (iWD, nWD, GVW ratio and iGVW
ratio), hybrid use of these features can allow a more comprehensive consideration of
construction waste characteristics, leading to higher gauging accuracy. To train our inert
content gauging model, support vector machine (SVM), a ML technique famous for its solid
performance in classification problems and only requiring a small amount of training data, is
used to fuse both the visual and physical features. Fig. 3 shows structure of the hybrid model
based on SVM. The model takes a vector containing both visual and physical features proposed
above as input, and then gives a prediction on whether the truckload corresponding to the input
features contains more than 50% inert content by weight.
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Fig. 3. Visual-physical feature hybrid model based on support vector machine.

5. Experimental studies

5.1. Data collection and preprocessing

Over the past few years, our research team has collected a large construction waste
management dataset in Hong Kong (Lu, 2019; Lu and Yuan, 2020). In the dataset, records of
truckloads received by the OSFs are of significance for this study. Fig. 4 shows a spreadsheet
with information on all incoming trucks for one OSF in October 2019. The recorded data
includes not only physical properties of the received waste, such as W;,, net weight, PGV W and
weight depth, but also top-down photos of all truckloads captured by surveillance cameras.
Another data field is the record state of each truckload, which indicates whether the concerned
load of waste was accepted or rejected by the facility. The record state “Completed” or
“Rejected” provides an indicator of the proportion of the inert content—"“Completed” implies
a proportion of over 50%, while “Rejected” means the opposite.

The data includes 5,347 transaction records of 666 trucks over a duration of one month. Among
these, only 296 transactions were rejected for not meeting the criterion of “more than 50% of
inert contents by weight”. Training ML models on such an imbalanced dataset can lead to
overfitting, where the resulting model favors the majority class while performs poorly on the
minority. To address this issue, the majority class (i.e., records with the “Completed” label) and
the minority class (i.e., records with the “Rejected” label) were respectively downsampled and
upsampled. The results were then further processed to remove records with missing data fields
(e.g., waste depth), which resulted in a dataset of 1127 records. Finally, the dataset was divided
into a training set, a validation set and a test set, according to a ratio of 7:1.5:1.5. The detailed

composition is shown in Table 1.
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Table 1. Composition of the dataset used for experimental studies.

Dataset separation

Label — —

Training Validation Test Total
Completed (inert > 50%) 415 91 91 597
Rejected (inert < 50%) 376 75 79 530
Total 791 166 170 1127

*Note: The numbers are quantities of records.

5.2. Results of visual recognition

A DenseNet169 model was fine-tuned on the training set for “completed (inert > 50%)/rejected
(inert < 50%)” classification. The Keras library on the TensorFlow 2 framework was used to
train the model. The training parameters were set as follows: Adam algorithm with a learning
rate of 0.001 was used for optimization; the used loss function was binary cross-entropy; batch
size, step per epoch, and number of epochs were set as 4, 200 and 20, respectively.

Figs. 5 (a) and (b), respectively, depict the change of accuracy and loss during the 20 epochs
of training. We observed that, despite the fluctuation, the evolvement of performance on the
validation set was in general consistent with that on the training set in the first 10 epochs, both
experiencing an increase on accuracy and a drop of loss. The observation indicates the model
was being properly trained and was learning generalizable patterns from the training data.
However, after 10 epochs, while the model performance kept improving on the training set, its
accuracy on the validation set started decreasing drastically; meanwhile, the loss on the
validation set remained fluctuating at the same level after 10 epochs. This phenomenon
signifies the occurrence of overfitting, where the model performs extremely well on the training
set but fails to generalize to the new samples in the validation/test set.
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To prevent overfitting, the “early stopping” strategy was adopted (Brownlee, 2018a). The
model after 10 epochs of training was selected for performance evaluation. Figs. 5 (¢), (d), and
(e) show the confusion matrices of the model on training set, validation set and test set,
respectively. It can be observed that the accuracies on the three subsets are all around 0.75,
demonstrating the model’s ability to generalize to new test samples. Based on the model, the
visual features, VIP, of all samples in the dataset can be extracted for further analysis.

5.3. Feature correlation analysis

The correlation between the proposed visual/physical features and waste composition was
analyzed with Pearson’s correlation coefficients. The analysis was performed in IBM SPSS
based on the entire dataset with 1127 samples. Through correlation analysis, features with less
significant coefficients can be excluded from the hybrid model.

Figs. 6 (a) ~
Their Pearson’s correlation coefficients with the “Completed/Rejected” labels are listed in Fig.
6 (f). The most significant feature is VIP with a coefficient of 0.531, followed by the physical
features nWD and iGVW ratio with coefficients of 0.335 and 0.325, respectively. The
correlation of the remaining physical features iWD and GVW ratio is comparatively weak, and
thus we exclude them from the hybrid model. The correlation analysis implies that a truckload

(e) show the distribution of the five features (1 visual, 4 physical) by box plots.
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5.4. Performance of the hybrid model

Ahybrid SVM model integrating the visual feature V'/P and physical properties nWD and iGVW
ratio was trained to gauge whether a waste dump comprises more than 50% inert material. Due
to the differences in dimension and range of distribution, feature values of all samples in the
dataset were first normalized to the range of [0, 1] with the Min-Max normalization approach
(Codecademy, 2020). The Python package scikit-learn was used to train and test the SVM.
Model training and hyperparameter tuning was undertaken with 10-fold cross validation
(Brownlee, 2018b). Detailed information of the hyperparameter tuning process can be found

in the Supplementary Material.

When hyperparameters were specified as “kernel = rbf, C = 9000, and gamma = 6000, best
performance in terms of prediction accuracy (i.e., 0.928) was observed on the training and
validation set. The model trained with these hyperparameters was used to predict whether
truckloads in the test set comprised more than 50% inert waste by weight. The prediction
performance is shown in Fig. 7. The model’s predictions had a very high chance (i.e., 94%) of
being identical to evaluations made by human inspectors, which are deemed as the ground-
truth. Such high accuracy demonstrates the model’s promise for deployment in OSFs, replacing

humans for efficient and reliable inert proportion gauging.
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Fig. 7. Performance of the hybrid model in predicting inert waste proportion on test set.

6. Discussion

6.1. A peek into the black box using visual recognition

The visual recognition model based on DenseNet169 achieved an accuracy of 74.7% on the
test set, which is quite acceptable. This is especially true given that the input photos have not
been preprocessed to remove background areas surrounding the trucks, and that the visual
appearance of a waste dump does not necessarily reflect its interior composition. The VIP
extracted from the visual recognition model correlated to the inert content proportion with a
coefficient of 0.531, playing a critical role in the solid performance of the hybrid model.
Therefore, it is important to understand what kind of patterns the visual model learnt that are
crucial for distinguishing between waste loads with different inert proportions. A neural
network has been traditionally deemed as a black box, inside which the learnt patterns are
difficult for humans to interpret. Thanks to recent developments in explainable machine
learning, it is now possible for us to glance into the black box through emerging techniques
such as class activation mapping (CAM) (Zhou et al., 2016) and gradient-weighted CAM
(Grad-CAM) (Selvaraju et al., 2017). We used Grad-CAM in this study because, unlike CAM,
it does not require modification of the original network and model re-training (Chetoui, 2019).
Grad-CAM calculates the importance weight of a feature map with respect to the output class
via gradients, and then computes the weighted sum of all the feature maps to produce a heat
map indicating salient regions that affect the model’s decision.
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(c) Examples of erroneous cases

Fig. 8. Grad-CAM heatmaps indicating salient regions/features that affect the model decision.

Figs. 8 (a) and (b) show the heatmaps of the input images when the model correctly identified
the proportion of inert contents. As can be seen from the figure, despite the existence of
irrelevant background (e.g., ground, vegetation and exterior of toll gate office), the model has
learnt to focus on pixel areas where the truck buckets are located, forming a premise for
subsequent inert content gauging. For samples with more than 50% inert content (Fig. 8 (a)),
image regions with salient features appear to be larger than those observed in samples with less
than 50% inert content (Fig. 8 (b)). In addition, it seems the model tends to pay more attention
to the grab buckets mounted on the truck, and to correlate these buckets with greater likelihood
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of over 50% inert content. The phenomenon can be explained by empirical observations.
Specifically, construction waste with greater inert content tends to weigh more, and hence is
more likely to be loaded and transported by larger trucks with higher tonnage and grab buckets.
The model has also acquired the visual pattern of non-inert materials, and successfully
correlated pixel regions with bright colors and relatively smooth textures to the label of “inert
<50%” (Fig. 8 (b)).

Fig. 8 (¢) shows Grad-CAM heatmaps of some erroneous cases. The full load of concrete
fragments in #3-1 is not a normal case like those displayed in #1-1 ~ #1-3 where the different
inert (and non-inert) materials are randomly mixed together. The model may have been
confused by the relative infrequency of #3-1, leading to an incorrect judgement. In #3-2, the
model fails to detect where the truck bucket is, and thus the incorrect prediction is not surprising.
For #3-3, from the human visual perspective, the sample looks as though it contains a large
portion of non-inert materials, consistent with the predictive label. However, there might be a
large amount of inert content hidden in a lower layer, which cannot be picked up by visual
sensors. This highlights the importance of integrating both visual and physical features to
achieve a more comprehensive evaluation.

6.2. Adaptability of the proposed approach to broader contexts

Although developed in the Hong Kong context, the proposed approach can be adapted to waste

management dilemmas in other countries/regions. The differences between inert and non-inert

waste with respect to physical properties and visual appearance are universal, so the visual

feature VIP and physical features iWD, nWD, GVW ratio and iGVW ratio can serve as universal

indicators to gauge inert and non-inert contents. With regards to interior waste composition

corresponding to each of waste dumps, this can be obtained via approaches applicable to the

local context. In our study, such information was inferred from the OSF binary labels indicating

whether the waste dumps were “Completed” (and hence comprised more than 50% inert waste)

or “Rejected” (comprising less than 50% inert waste). Thus, the model is actually a binary

classifier gauging whether the relevant mixed waste is made up of more than 50% inert content.

This is not necessarily the case in other countries/regions, as those places might manage

construction waste using trisection or quarter division. One can even meticulously segregate

and probe into the waste mixture to get a continuous and accurate waste composition value of
each truckload. In this way, it is viable to reconstruct a regression model (rather than a classifier)
that can make explicit the waste dump composition. In addition, the incoming trucks do not

have to be inspected one by one through the toll gates; rather, it is worth exploring to deploy

unmanned aerial vehicles (UAV) and object detection models to enable inspection of multiple

trucks at the same time. In such a way, the efficiency can be further improved.

6.3. Significance of the research findings

The experimental studies demonstrate a 94% accuracy of our hybrid approach in gauging
16
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composition of CW. To evaluate the performance, results obtained from the field of waste
image classification can be used for comparison. State-of-the-art performance of waste
classification on TrashNet (Thung and Yang, 2019), a public open trash dataset, is around 96%
(Huang et al., 2020; Yang and Li, 2020). The TrashNet dataset mainly consists of photos of
individual waste items appeared on relatively simple background. Compared with the
classification on TrashNet, it is more difficult to recognize composition of a bulk of mixed
waste. Thus, the 94% accuracy of our approach is rather satisfactory.

The visual-physical feature hybrid model proposed in this study contributes to the general
problem of “looking beneath the surface”. To get to the essence of something, humans often
have to make inferences from external appearances. Knowledge of such human inference can
be extracted to train intelligent machines. This is demonstrated by our study from a perspective
of waste management, which has successfully reconstructed the mapping between the surface
features of waste dumps and their interior composition from more than 1,000 pieces of data.
While the idiom “seeing is believing” reflects the importance of visual information, our study
implies depending merely on vision can bring bias. One possible way to overcome such bias is
to consider information from other sources to complement visual features. When visual and
physical features were integrated, satisfactory performance was attained. From a practical point
of view, the proposed approach facilitates the trend towards unmanned/unattended gauging of
CW composition, reducing investment in manpower, improving efficiency, and also ensuring
reliability and credibility of waste management systems. Our approach vividly demonstrates
how unattended operations, driven mainly by algorithms and big data, can address the problems
associated with human-in-the-loop operations.

7. Conclusions

There are many scenarios in which human experts need to make inferences about something
from its outward appearance. Likewise, current practice in gauging construction waste
composition requires human inspectors to judge whether the inert content in a waste dump
exceeds required proportions based on limited information. This practice is inefficient,
laborious, hazardous, and can be undermined by fatigue, sloppiness and corruption. To address
these limitations, this paper presents an automated approach for inert waste content gauging
through the hybrid use of both visual and physical features of construction waste. A fine-tuned
CNN model was trained to extract a high-level feature index called visual inert probability (VIP)
from more than 1,000 photos of waste dumps. The VIP demonstrated a correlation coefficient
of 0.531 with inert content proportion. It thus can provide important visual clues on the
composition of construction waste. Four different physical features were defined based on the
collected sensing data (e.g., weight and depth), of which the nWD and iGVW ratio presented
moderate correlations with inert content proportion. Our visual-physical feature hybrid
approach achieved 94% accuracy in gauging construction waste composition at an off-site

sorting facility in Hong Kong. The accuracy is almost equally as well as human inspectors.
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Since it can work automatically without human intervention, this approach is not prone to
fatigue or bribery from waste haulers/contractors. The solid performance of the proposed
approach and its advantages thus demonstrate its promise in replacing human inspectors at

waste disposal facilities for unattended operation.

Future studies are recommended to further facilitate waste composition gauging. First,
semantic segmentation techniques such as DeepLabv3 can be applied to recognize the specific
types of material on the surface of the waste dumps, which will provide more visual information
on waste composition, and thus can potentially lead to higher accuracy. Second, the concept of
bulk density can be utilized to better characterize the physical properties of waste dumps. As
bulk density is directly correlated to waste composition from a theoretical perspective,
incorporating it into the hybrid model can be expected to further improve the model
performance.
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Supplementary material:

S1. Hyperparameter Tuning for the Hybrid SVM model

When training a support vector machine (SVM) model with Python scikit-learn package, three
important hyperparameters need to be specified, i.e., kernel, C and gamma. The “kernel”
designates the type of hyperplane used to separate the data. For example, “linear” kernel is
effective for linear-separable data while the other kernels (e.g., “poly”, and “rbf”’) are normally
used to deal with nonlinear data. C is the regularization parameter that defines the tolerance
level of misclassification, while the gamma defines the range of influence a training sample
should reach.

We used 10-fold cross validation to tune the above three hyperparameters. The implementation
of k-fold cross validation has two benefits. First, it allows full utilization of the dataset for
training since a separate validation set is not needed. This is critically important when the
amount of available data is limited. Second, it mitigates the adverse influence of different data
splits on the performance metrics, thus allowing for a more objective performance evaluation.
The training and validation sets in Table 1 of the paper were combined to form a new dataset
(including 957 samples in total) for 10-fold cross validation. Table S1 lists the results of 10-
fold cross validation under different hyperparameters. When hyperparameters were specified
as “kernel = rbf, C = 9000, and gamma = 6000”, best performance in terms of prediction
accuracy (i.e., 0.928) was observed on the dataset.

Table S1. Cross validation results of the hybrid model trained with different hyperparameters.

No Hyperparameters Performance metrics
Kernel degree” C gamma Training time/fold accuracy Fl1-
(s) score
1 2 300 10 1.67 0.757 0.756
2 2 5000 40 98.3 0.771 0.771
3 Poly 2 100 0.5 0.01 0.76 0.759
4 3 100 04 0.01 0.766 0.764
5 / 100 0.8 0.01 0.85 0.85
6 / 300 10 0.06 0.866 0.866
7 r1bf / 600 120 0.06 0.889 0.889
8 / 600 300 0.03 0.91 0.91
9 / 9000 6000 0.04 0.928 0.927

* The hyperparameter is only applicable to “Poly” kernel, which represents the degree of the polynomial kernel
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