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Abstract 
Quantifying the amount of truck-loaded materials is a universal problem encountered in 
numerous industrial operation scenarios. Likewise, in construction waste management, 
inspectors at disposal facilities are often required to measure the amount of construction and 
demolition waste (CDW) loaded by incoming trucks to determine their admissibility. Due to 5 

the bulky and clutter nature of construction materials, accurate waste quantification without 
sacrificing the operability in field has always been a challenge. This study proposes a CDW 
volume estimation algorithm based on monocular vision, which can automatically quantify 
the amount of specific material components, e.g., rock, gravel, and wood, in waste mixtures 
from a single image. The algorithm achieved a relative error of 0.065 in estimating tuck 10 

bucket dimensions, and consumed 3.3 s in average to process per image. The results 
demonstrate the efficacy of the proposed algorithm in achieving material-level CDW volume 
estimation. The algorithm was applied to analyze 2,914 waste truckloads received by an off-
site sorting facility in Hong Kong. It was observed that the facility entrance received around 
800.0 m3 CDW per day, of which about 10.8 m3 were rejected. The non-inert wood/cardboard 15 

accounts for the highest proportion among all material types, implying many waste dumps 
accepted by the facility might have violated the admissibility criteria. The study contributes 
to the knowledge body by providing a novel, non-destructive approach to quantify CDW via 
monocular vision. It can also be extended to address the general problem of truck payload 
quantification in other scenarios such as road construction, warehouse inventory 20 

management, and logistics and supply chain management. 
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1. Introduction 25 
In many industrial activities, it is a conventional need to measure the amount or properties of 
truck payloads. A typical example is the operation of expressway, which measures the weight 
of incoming vehicles to prevent overloaded trucks from causing road damages (Visco India, 
2020). In infrastructure development, load volume of outgoing dump trucks needs to be 
tracked and monitored to estimate earthwork volumes and construction intensity (Loadscan 30 

Ltd., 2021). For special materials, it is also required to ensure their physical properties, e.g., 
temperature for asphalt concrete and moisture for earth-fill materials (Liu et al., 2013), have 
met relevant construction standards. In cross-region logistics, truck cargo needs to be 
inspected with cameras, radio frequency identification devices (RFID), and other sensing 
approaches to ensure quality and completeness of the payload before delivery (Zhong et al., 35 

2017). 
 
Similar scenarios are also observed in construction and demolition waste (CDW) 
management. A huge amount of CDW is generated globally every day (Kaza et al., 2018). 
The generated waste materials are transported by truck trailers to designated disposal 40 

facilities, and different levies are charged according to their compositions. In Australia, for 
example, the state authority of New South Wales has released clear guidelines (NSWEPA, 
2020) and criteria (NSWEPA., 2018) to levy different disposal fees for waste loads with 
different composition. In Hong Kong, CDW, according to their non-inert and inert properties, 
should be directed to landfills and public fills, respectively, while waste mixture with more 45 

than 50% inert content should be transported to off-site sorting facilities (HKEPD, 2019). 
Therefore, the truck payloads need to be estimated to ensure waste materials have reached the 
designated destinations. Despite the clarity and explicitness of the control criteria, how to 
operatize them in field is a challenge. Physical separation by digging into each waste dump 
can surely provide precise amount of specific waste types, but is difficult to implement due to 50 

efficiency issues.  
 
In reality, the criteria have always been, more or less, simplified in engineering practice to 
ensure operability. For example, the Hong Kong Environmental Protection Department 
(HKEPD) materialized the “50% inert content requirements” into two easy-to-measure 55 

indices based on the weight and depth of the waste dumps. A bunch of sensors (e.g., 
weighbridge, range finders, and cameras) have been set up at the entrance of the waste 
disposal facilities to collect relevant data. However, the simplification might have led to 
significant deviations as the simplified indices do not directly reflect the amount of different 
material type in the waste mixture. This is confirmed by a report from the Hong Kong Audit 60 

Commission (Audit Commission, 2016), which revealed that the waste dumps of many truck 
loads accepted have not met the inert content requirement. The deficiency of existing 
approach calls for a new quantification approach for truck-loaded CDW, which should not 
only be efficient enough to implement in field, but also have sufficient granularity to 
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precisely sense the volume of the diverse materials in waste mixtures. 65 

 
The recent development in computer vision (CV) and artificial intelligence (AI) provides 
opportunities to tackle the conundrum of CDW quantification. This is especially true as the 
stereo vision technology greatly expands the capability of CV, from the original 2D images to 
the understanding and perception of 3D information (Liu and Aggarwal, 2005). The 70 

technological advancement has fostered the development of research fields such as robotics, 
and is becoming a catalyst for new industries such as autonomous driving (Singh, 2020a) and 
augmented reality (Pollefeys, 2017). The technology has also entered people’s daily life with 
functionalities unimaginable in the past. For example, people can easily measure objects’ 
dimension with the cameras of their smart phones (Singh, 2020b); the generation Z is 75 

enjoying videogames with an unprecedented immersive experience by using stereo cameras 
such as Kinect and RealSense. 
 
It would be promising if stereo vision can be used to quantify CDW amount without direct 
contact or sorting of the waste materials. However, exiting stereo vision solutions either rely 80 

on binocular cameras or utilize the rational of structure-from-motion (SfM) to obtain a sense 
of depth from images. These requirements are difficult to meet in CDW disposal facilities, as 
the most common setting is monocular cameras installed in fixed places. Quantifying CDW 
from monocular vision is notably more challenging for the following reasons. First, there is a 
lack of semantic information on waste composition from the raw images, making it difficult 85 

to directly obtain detailed quantities of specific material components. Second, because only 
one single image can be captured, the depth dimension is lost, leading to the difficulty of 
recovering waste dumps’ 3D geometry. 
 
This research attempts to take the challenges of CDW quantification based on monocular 90 

vision, and proposes an automated volume estimation algorithm for truck-loaded waste 
dumps. It does so by leveraging deep learning-enabled semantic segmentation to recognize 
waste materials from mixed CDW, and compensating the loss of depth information with prior 
knowledge on truck dimension profiles. Our study reaffirms the power of computer 
algorithms. With a single camera and a bunch of sensors, 3D geometry of diverse materials in 95 

the truck-loaded CDW dumps can be reconstructed in a matter of seconds. The required 
sensors (i.e., camera, range finders, and weight-bridge) are all common configurations at 
existing waste disposal facilities. Without any additional hardware, the proposed algorithm 
can be easily deployed to existing facilities, benefiting policy makers, waste processing 
contractors and other stakeholders with a valuable information on CDW volume to help 100 

determine admissibility of waste truckloads.  
 
The remaining of this paper is organized as follows. Subsequent to this introductory section, 
Section 2 describes the current state of construction waste quantification and vision-based 
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object dimension measurement. Section 3 illustrates the proposed monocular vision algorithm 105 

for CDW volume estimation, Section 4 delivers its experimental results, and Section 5 
presents preliminary applications of the algorithm in a case study. Section 6 discussed general 
implications of the research findings and conclusions are drawn in Section 7. 
 
2. Literature review 110 

2.1 Estimating construction and demolition waste amount 
Quantifying CDW has been investigated since around three decades ago (Gavilan and 
Bernold, 1994). CDW quantification can be roughly classified into two directions according 
to the difference of measuring unit, namely, quantification by weight (ton, kg, or lb) and by 
volume (m3). While the former can provide accurate information on the amount of waste 115 

dumps as a whole, it is difficult to weigh each specific material component in the mixture 
without onerous physical separation. By comparison, quantification by volume might be a 
more operable approach as waste volume is directly related to its visual appearance, floor 
space, geometric profiles. This is especially the case in certain scenarios. For example, 
volume-based quantification was demonstrated to be more suitable when planning 120 

construction waste hauling trucks (Lu et al., 2021b).  
 
Scholars have proposed various approaches for volume-based CDW quantification. Most 
previous studies focus on predicting project-level waste generation by utilizing historical 
statistics, because of the extensive project waste management demand. For example, Gavilan 125 

and Bernold (1994) developed a waste‐management system to estimate the quantity of CDW 

in residential projects, based on the data collected through field observation. Llatas (2011) 
presented a model which allows technicians to estimate construction waste amount (by 
volume) according to building design documents. The basis of this model is the European 
Waste List. A similar study can also be found in (Lam et al., 2019). The mentioned studies 130 

aim to forecast future construction waste generation at the design stage. Based on the context 
of residential building construction in Spain, Villoria Sáez et al. (2011) developed a 
quantification tool to predict the volume of CDW generated during different project stages. 
Historical statistics and related indices such as GDP have also been used to predict the CDW 
generation volumes at a country level, such as the United States (Prairie Village, 1998), 135 

Greece (Fatta et al., 2003), and so forth.  
 
To serve on-site waste processing, disposal and transport dispatching, research efforts have 
been made to estimate CDW volume in field. They did so by harnessing learned waste 
accumulation regularities (Katz and Baum, 2011), or by simplifying profiles of waste dumps 140 

as either pyramidal or rectangular shapes (Arumugam et al., 2020). In (Hoang et al., 2020; 
Lau et al., 2008), the authors assumed the waste materials are stored in the layout of either 
stockpiled, gathered, scattered or stacked. Based on the types of layouts, material volumes 
can be estimated accordingly. Despite the easiness of implementation of such methods, they 
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tend to oversimplify the cluttered and heterogeneous characteristics of CDW mixture, and fail 145 

to provide accurate material composition information with sufficient granularity. Thus, a 
better CDW volume estimation approach is in need, which should not only be precise enough 
to sense fine-grained compositions of waste mixtures, but also be efficient and operable 
enough to implement in field.  
 150 

2.2 Measuring object dimension by computer vision 
Measuring dimensions of objects in photographs is not a new problem; rather, it has been 
researched for over a century, and was first addressed with the term “Photogrammetry” in 
1870s. The basic rationale of photogrammetry is the geometrical-mathematical model of how 
light travels from the objects, distorted when passing through camera lens, and finally casts 155 

onto the sensor (Aber et al., 2010). In its early days, the technique of photogrammetry was 
implemented manually and relied on delicately designed instruments for the purpose of 
topographic mapping and architectural survey (The Center for Photogrammetric Training, 
2008). The invention of computers made it possible to process photographs in batch, which 
significantly improved the efficiency and push the discipline to a new phase called analytical 160 

photogrammetry (The Center for Photogrammetric Training, 2008). In addition, the 
subsequent advancements of computer vision further expand the capability of 
photogrammetry by augmenting it with the intelligence to recognize objects in images.  
 
In computer vision, an active research field is computer stereo vision, which aims to obtain 165 

3D information from digital images based on the basic principles of photogrammetry. In the 
most common setting, two cameras installed at different known locations are used to capture 
photographs of the same scene; thus, depth perception can be achieved by triangulating 
features correspondences between the two photographs. Torr and Zisserman (2000) proposed 
a robust method to estimate multiple view relations from point correspondences. Hamdan et 170 

al. (2021) demonstrated the viability to extract 3D geometry of structural damages from 
multiple overlapped photographs in the lab environments. Other than infrastructure 
monitoring, stereo vision has been used in environmental engineering as well for the 
monitoring of deep-sea ecosystems (Aguzzi et al., 2019). Where the “two (or multiple) 
cameras” setting is not available, multiple photographs taken from different locations and 175 

with different postures are required to extract the 3D information of a stationary object. This 
is widely known as the “structure-from-motion (SfM)” technique. Ost et al. (2021) presented 
such a SfM system that used overlapping secondary electron images to reconstruct three-
dimensional topography models of soil microaggregates. Isailović et al. (2020) applied 
sequential aerial images to reconstruct point cloud models of bridges, from which geometry 180 

of spalling damages recognized by deep neural networks can be extracted.  
 
Compared with the common settings in stereo vision, object measurement based on monocular 
vision is notably more challenging as it lacks diverse views of the scene to generate a sense of 
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depth. To compensate that, prior knowledge or certain assumptions of the scene are required by 185 

existing studies (Li et al., 2018; Xue et al., 2018; Zaheer et al., 2018). In (Zaheer et al., 2018), 
the regularities of man-made structures (e.g., orthogonal and parallel lines) were leveraged to 
reconstruct 3D profiles of multi-planar scenes from a single view. Xue et al. (2018) considered 
parametric models of common building elements as a priori, and developed a derivative-free 
optimization approach to generate building information models from 2D images. Lim et al. 190 

(2014) assumed cracks are on the same plane with inspection robots, and proposed an 
algorithm to extract defect geometry on bridge deck by the camera line-of-sight with the deck 
surface. Similar approaches can be used for waste amount estimation as well. As truck 
manufacturers all follow designated assembly standards and regulations, it would not be too 
difficult to make certain assumptions on the distribution of truck dimensions. Based on such 195 

assumptions, the problem of monocular vision can be simplified, making it solvable to recover 
3D geometry of truck-loaded wastes from single images. 
 

3. Methods 
3.1. Construction waste semantic segmentation 200 

The rapidly developing deep learning (DL) makes it possible to train computer algorithms to 
detect objects from images with a pixel-level granularity. This pixel-level image recognition 
task is known as semantic segmentation in the computer science community. Semantic 
segmentation based on DL can be used to recognize specific waste components from images 
of mixed CDW dumps as well. There are many off-the-shelf semantic segmentation 205 

techniques that have achieved solid performance on public datasets, e.g., Mask R-CNN (He 
et al., 2017), U-Net (Ronneberger et al., 2015), and the DeepLab series (Li, 2020). In our 
previous work (Lu et al., 2021a), a DeepLabv3+ model was trained to segment 9 types of 
CDW materials and relevant objects. Fig. 1 shows some examples of CDW semantic 
segmentation, where the meanings of encoded colors in the semantic maps have been 210 

explained in the table at the right side. Note that the area of trucks is also recognized by the 
model, which lays the foundation to detect boundary of the dump bucket and further calculate 
its dimension in Section 3.3. 

 
Fig. 1. CDW semantic segmentation. 215 
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3.2. Creation of truck dimension profiles 
A major challenge for 3D reconstruction from monocular vision is the loss of depth information. 
Previous researches have more or less utilized some sort of prior knowledge or assumptions on 
the objects of interests to compensate the loss of the depth dimension, e.g., the principle of 220 

perspective (Asadi et al., 2019), and the Manhattan world assumption for built environment scene 
reconstruction (Li et al., 2018). 
 
In 3D geometry reconstruction of truck-loaded wastes, similar priori on truck dimensions might 
also be leveraged to confine the solution space, making the problem solvable. We notice that 225 

there is a certain level of flexibility in bucket dimensions, as waste haulers can customize their 
dump buckets. Nevertheless, the front cabins of trucks are relatively stable, and the bucket size 
shall generally be in line with the cabin to abide relevant transportation rules and regulations. 
According to Code of Practice for Loading of Vehicles (CPLV) released by the HONG KONG 
Transport Department (HONG KONGTD, 2019) , the truck side mirrors should extend beyond 230 

the its payload so that driver can the traffic condition behind. This means the truck bucket has 
roughly the same width as front cabin. Meanwhile, to load as much cargo as possible in a single 
trip, waste haulers tend to extend their buckets to as high as the cabin. 
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Fig. 2. (a) Schematic diagram showing how truck dimensions are defined; (b) Relationship 235 

between CH and PGVW; (c) Relationship between CW and PGVW; (d) Relationship between 
CL and PGVW. 
 
Here we develop a mathematical model called truck profiles to describe the variations of truck 
dimensions for different types of trucks. The basic rationale is based on the concept of user 240 

profiles, which are frequently used in social media, online shopping, and other Internet sectors to 
retrieve useful patterns from users’ behaviors and features. To create the truck profile model, we 
have investigated more than 90 truck models from 3 main manufacturers in the CDW 
management industry of HONG KONG, i.e., Isuzu, Hino, and Fuso. The investigated factors 
include cabin height (CH), cabin width (CW), cabin length (CL), and permitted gross vehicle 245 

weight (PGVW) of the respective truck model, which were collected from the official HONG 
KONG websites of the three manufacturers. 
 
Fig. 2 (a) shows how the truck CH, CW, and CL are defined by a schematic diagram, while Fig. 2 
(b)~(d) present the scatter plots between the cabin dimensions with the PGVW of all investigated 250 

trucks. It was observed that CH and CW demonstrate significant correlation with the PGVW, 
both with their coefficients of determination larger than 0.9. The findings implicate the viability 
to estimate the height and width of the cabin (and thus the bucket) according to the truck’s 
PGVW, which is a major truck manufacturing parameter that can be easily obtained. 
 255 

3.3. Construction waste volume estimation 
3.3.1. Camera calibration 
The purpose of camera calibration is to obtain both its intrinsic and extrinsic parameters. The 
intrinsic parameters are those that describe the internal characteristics of a camera, e.g., focal 
length, resolution, and distortion coefficients. The extrinsic parameters, on the other hand, 260 

describe the camera’s posture relative to a global coordinate system. The acquisition of the two 
aspects of parameters is a basic prerequisite in many photogrammetric applications, including 
CDW volume estimation in our case.  
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Fig. 3. (a) Example photos of checkboard pattern used for camera calibration Point cloud; (b) The 265 

created global coordinate system and some of the selected reference points for camera extrinsic 
parameter calculation; (c) Layout of ranger finders on top of the toll gate entrance. 
 

(1) Intrinsic parameters 
The camera to be calibrated is a DS-2CD2025FWD-IHONG KONG 4mm from the 270 

Hikvision Digital Technology. The camera is installed around 6 m above the ground at the 
tollgate of an off-site sorting facility in HONG KONG, as shown in Fig. 3 (b). We used the 
Zhang’s method (Zhang, 2000) to calibrate the camera. As the camera is relatively distant from 
the ground, the checkboard pattern was printed on an A2 paper to ensure its clear presence on the 
corresponding photos. Fig. 3 (a) presents part of the collected photos, which were then input to 275 

the MatLab toolbox for calibration. The second column of Table 1 lists the output intrinsic 
parameters. 
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Table 1. Details information of the calibrated camera. 280 

Model Intrinsic parameters Extrinsic parameters 

DS-
2CD2025FW
D-IHONG 
KONG 4mm 

• Distortion coefficients: 
[-0.523, 0.278, 0, 0] 

• Intrinsic matrix: 

�
1530.2 0 0

0 1550.5 0
843.3 635.1 1

� 

• Position (mm): 
[3151, 575, 6455] 

• Orientation matrix: 

�
0.185 0.924 0.336
0.9654 -0.107 -0.238
-0.184 0.369 -0.911

� 

 
(2) Extrinsic parameters 
To calculate the camera pose, i.e., extrinsic parameters, a global coordinate system needs to 

be set up first. As shown in Fig. 3 (b), we use the upper-left corner of the weighbridge as origin. 
The system follows the basic rules of Cartesian coordinates, and its X and Y axes are respectively 285 
along the short and long side of the weighbridge. On the weighbridge, we measured the actual 
coordinates of around 8 points in the coordinate system. With these reference points, the extrinsic 
parameters of the camera can be obtained by solving the classic Perspective-n-Points (PnP) 
problem in photogrammetry. The third column in Table 1 lists the derived position and orientation 
matrix of the camera. 290 
 
3.3.2. Truck bucket boundary detection 
Different from irregular heterogeneous CDW dumps, a truck bucket is a hollow cubic box with 
explicit regularity. Thus, it is sensible to first detect and measure the boundaries of truck buckets, 
and then estimate volumes of CDW contained inside. Based on the semantic maps provided by 295 

CDW semantic segmentation in Section 3.1, the procedure of bucket boundary detection includes 
four steps, i.e., distortion rectification, candidate point detection, line fitting and line refinement.  

(1) Distortion rectification 
As the camera has a wide-angle lens, the radial distortion is too significant to neglect. The 

camera intrinsic parameters can be used to rectify the distortion. Fig. 4 shows photos of an identical 300 
scene before and after distortion rectification, from which it can be observed that the bended bucket 
boundaries have been successfully undistorted to straight lines. The same rectification is also 
applied to the semantic maps as they will be used for line detection in later steps. 

 
Fig. 4. Comparison between photos before and after distortion rectification. 305 
 

(2) Candidate point detection 
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The bucket boundaries comprise four lines extending along its edges. Facing the direction of 
truck front cabin, they can be defined as front line lfront, left line lleft, rear line lrear, and right line lright, 
respectively, as shown by Fig. 5 (a). To obtain mathematical expression of lfront, lleft, lrear, and lright, 310 

we first find collections of candidate points, i.e., {𝑃𝑃𝑖𝑖
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 }, {𝑃𝑃𝑖𝑖

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 }, {𝑃𝑃𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 }, and {𝑃𝑃𝑖𝑖
𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 }, 

scattered along the four lines. As the camera is in the rear-right direction of the trucks, the rear and 
right end of the bucket can be detected by detected and reflected in the semantic maps in most cases. 

Thus, the acquisition of {𝑃𝑃𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟} and {𝑃𝑃𝑖𝑖
𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡} is straightforward: subsample the leftmost pixels 

(corresponding to the bucket rear end) and bottommost pixels (corresponding to the bucket right 315 
end) of areas recognized as truck in the semantic map. As illustrated by the first diagram in Fig. 5 
(a), the subsampling is conducted according to a predetermined distance interval (e.g., every 20 
pixels), and should avoid starting regions of the leftmost pixels as those pixels are corresponding 
to the vertical lines of the bucket rear end.  

The detection of {𝑃𝑃𝑖𝑖
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙} is comparatively more complicated as the payload in the bucket 320 

could occlude the bucket left boundary, as illustrated by the second diagram in Fig. 5 (a). The 
algorithm described in Fig. 6 is adopted to address the issue. First, a similar procedure of iterative 
subsample is performed to the uppermost pixels, and if the corresponding semantic labels of the 

subsampled pixel is “Truck”, the pixel coordinates [u,v] will be added to the {𝑃𝑃𝑖𝑖
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙}. After iteration, 

the number of points in {𝑃𝑃𝑖𝑖
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙} will be compared with a preset threshold th (e.g., th = 5). If it is 325 

greater than th, either there is no occlusion or the occlusion is not severe enough to hide most of 

the boundary points. In such case, the {𝑃𝑃𝑖𝑖
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙} will be preserved for later line fitting. Otherwise, a 

compromise solution will be used. The solution assumes that even though the CDW can occlude 
most area of the left boundary, it will not normally cover the upper-left corner of the bucket and the 
upper-right area of the truck. Therefore, the “truck” pixels on the upper-left corner and upper-right 330 

area can be detected and added to {𝑃𝑃𝑖𝑖
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙} as candidate fit points. 

The detection of {𝑃𝑃𝑖𝑖
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓} is different from the others because the bucket front boundary does 

not explicitly show in the “Truck” labels of semantic maps, as illustrated by the third diagram in 
Fig. 5 (a). Bucket boundaries after rectification are straight lines. This empirical observation can be 
used to detect the front boundary candidate points. First, Hough transform is performed to detect 335 
lines in the truck region. Among the detected results, we only consider the vertical (or nearly 
vertical) ones in the front half of the truck region. The lines closest to the upper-left corner of the 
image are most likely to the bucket front boundary. Thus, their starting and end points are selected 

to be included in {𝑃𝑃𝑖𝑖
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓}. 



12 
 

 340 
Fig. 5. (a) Schematic diagram for boundary candidate points detection; (b) Line fitting based on 
least square method; (c) Bucket vertices calculation; (d) Rationale of estimating world coordinates 
from 2D pixel coordinates. 
 

 345 
Fig. 6. Pseudo code for detecting bucket left boundary candidate points. 
 

(3) Line fitting 
Mathematical expressions of bucket boundaries lfront, lleft, lrear, and lright can be obtained by fitting 

them to candidate points {𝑃𝑃𝑖𝑖
𝑓𝑓 }, {𝑃𝑃𝑖𝑖𝑙𝑙 }, {𝑃𝑃𝑖𝑖𝑟𝑟𝑟𝑟 }, and {𝑃𝑃𝑖𝑖𝑟𝑟𝑟𝑟 }, respectively. The fitting process is 350 

essentially an optimization problem aiming to minimize the square error between the predictive 
and observation values, as shown by Fig. 5 (b). Suppose kf and df are the slope and intercept of lfront 
respectively, the fitting of lfront(kf, df) is mathematically formulated as:  
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�
𝑣𝑣 = 𝑓𝑓front(𝑢𝑢) = 𝑘𝑘f𝑢𝑢 + 𝑑𝑑f

s. t.  min
(𝑘𝑘f,𝑑𝑑f)

∑ [𝑣𝑣𝑖𝑖 − 𝑓𝑓front(𝑢𝑢𝑖𝑖)]2𝑁𝑁
𝑖𝑖=1

                        (1) 

Where, (ui, vi) is an observed value in the collection of candidate point {𝑃𝑃𝑖𝑖
𝑓𝑓}(i = 1,2,…, N). 355 

Similarly, mathematical expressions of the other boundaries can be obtained and denoted as 
lleft(kl, dl), lrear(kre, dre), and lright(kri, dri). 
 

(4) Line refinement 
The fitted lines need to be further refined to obtain bucket boundaries as precise as possible. 360 

The refinement includes two aspects. First, as the camera is at the rear-right direction of the trucks, 
the original lrear(kre, dre) and lright(kri, dri) only reflects the bottom boundaries of the bucket. They thus 
should be translated from the bottom to the upper edge. The refinement can be implemented by 
iteratively changing the values of intercepts (i.e., dre and dri) until certain termination conditions are 
met. Second, empirical rules are used to rectify lfront(kf, df) and lleft(kl, dl) that contradict with 365 
common sense. For example, as an effect of perspective projection, lfront and lrear, and lleft and lright 
should intersect somewhere in the negative V axis and positive U axis direction respectively. If the 
pattern is not followed, slope k of violating lines will be adjusted accordingly to ensure intersection 
at the correct direction. In addition, the bucket front line lfront should neither be too close nor too far 
away from the camera viewpoint, and if it happens, its intercept df would be adjusted to put lfront in 370 
a proper place (e.g., 1/6 of total truck length to the tuck front end). Fig. 7 shows some examples of 
detected bucket boundaries after refinement. 

 
Fig. 7. Examples of detected boundary lines before and after refinement. 
 375 

3.3.3. Bucket dimension calculation 
The pixel coordinates of bucket vertices on respective images are calculated first. As shown by Fig. 
5 (c), suppose P1, P2, P3, and P4 are vertices of four corner of the bucket, their pixel coordinates in 
the image coordinate system can be obtained by calculating intersections between the boundary 
lines: 380 
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⎩
⎪
⎪
⎨

⎪
⎪
⎧
𝑘𝑘l𝑢𝑢1 − 𝑣𝑣1 + 𝑑𝑑l = 0
𝑘𝑘f𝑢𝑢1 − 𝑣𝑣1 + 𝑑𝑑f = 0
𝑘𝑘f𝑢𝑢2 − 𝑣𝑣2 + 𝑑𝑑f = 0
𝑘𝑘ri𝑢𝑢2 − 𝑣𝑣2 + 𝑑𝑑ri = 0
𝑘𝑘ri𝑢𝑢3 − 𝑣𝑣3 + 𝑑𝑑ri = 0
𝑘𝑘re𝑢𝑢3 − 𝑣𝑣3 + 𝑑𝑑re = 0
𝑘𝑘re𝑢𝑢4 − 𝑣𝑣4 + 𝑑𝑑re = 0
𝑘𝑘l𝑢𝑢4 − 𝑣𝑣4 + 𝑑𝑑l = 0

                            (2) 

Where, (u1, v1), (u2, v2), (u3, v3), and (u4, v4) are pixel coordinates of P1, P2, P3, and P4 respectively.  
 
Let Pj, (uj, vj), and (xj, yj, zj) (j = 1,2,3,4) denote any one of the bucket vertices and its corresponding 
pixel coordinates and world coordinates in the global coordinate system. According to the 385 
coordinate transformation model of pin-hole cameras (see Fig. 5 (d)), we have: 

𝑧𝑧𝑐𝑐�𝑢𝑢𝑗𝑗  𝑣𝑣𝑗𝑗  1�
𝑇𝑇

= 𝐾𝐾[𝑅𝑅|𝑇𝑇][𝑥𝑥𝑗𝑗  𝑦𝑦𝑗𝑗  𝑧𝑧𝑗𝑗  1]𝑇𝑇                   (3) 

 
Where K and [R|T] are the camera intrinsic and extrinsic matrix respectively; zc is the scale factor. 
Let CaMAT denote the overall camera matrix after the multiplication of K and [R|T], and assume 390 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = �
𝑚𝑚11 𝑚𝑚12 𝑚𝑚13
𝑚𝑚21 𝑚𝑚22 𝑚𝑚23
𝑚𝑚31 𝑚𝑚32 𝑚𝑚33

    
𝑚𝑚14
𝑚𝑚24
𝑚𝑚34

�. Then Eq. (3) can be transformed to the following:  

�

𝑧𝑧𝑐𝑐𝑢𝑢𝑗𝑗
𝑧𝑧𝑐𝑐𝑣𝑣𝑗𝑗
𝑧𝑧𝑐𝑐
1

� = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 �

𝑥𝑥𝑗𝑗
 𝑦𝑦𝑗𝑗
𝑧𝑧𝑗𝑗
1

� = �

𝑚𝑚11 𝑚𝑚12
𝑚𝑚21 𝑚𝑚22

𝑚𝑚13 𝑚𝑚14
𝑚𝑚23 𝑚𝑚24

𝑚𝑚31 𝑚𝑚32
0 0

𝑚𝑚33 𝑚𝑚34
0 1

� �

𝑥𝑥𝑗𝑗
 𝑦𝑦𝑗𝑗
𝑧𝑧𝑗𝑗
1

�           (4) 

Multiply both ends with the inverse of CaMAT, and we can obtain:  

�

𝑥𝑥𝑗𝑗
 𝑦𝑦𝑗𝑗
𝑧𝑧𝑗𝑗
1

� = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶−1 �

𝑧𝑧𝑐𝑐𝑢𝑢𝑗𝑗
𝑧𝑧𝑐𝑐𝑣𝑣𝑗𝑗
𝑧𝑧𝑐𝑐
1

� = �

𝑛𝑛11 𝑛𝑛12
𝑛𝑛21 𝑛𝑛22

𝑛𝑛13 𝑛𝑛14
𝑛𝑛23 𝑛𝑛24

𝑛𝑛31 𝑛𝑛32
0 0

𝑛𝑛33 𝑛𝑛34
0 1

� �

𝑧𝑧𝑐𝑐𝑢𝑢𝑗𝑗
𝑧𝑧𝑐𝑐𝑣𝑣𝑗𝑗
𝑧𝑧𝑐𝑐
1

�          (5) 

In Eq. (5), the scale factor zc represents how far the object point corresponding to pixel (uj, vj) is 395 
away from the camera along the principal optic axis, or the so-called depth. Not knowing zc, Eq. 
(5) is unsolvable because numerous points in the real world can be projected onto an identical 
image pixel, as the P4

’ and P4
’’ in Fig. 5 (d). 

 
The analysis of trunk dimension profile in Section 3.2 indicates the viability to estimate bucket 400 
height based on PGVW of the truck. Leveraging this priori, zc can be calculated as follows: 

𝑧𝑧𝑗𝑗 = 𝑓𝑓truckDim(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)                          (6) 

𝑧𝑧𝑐𝑐 = 𝑓𝑓truckDim(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)−𝑛𝑛34
𝑛𝑛31𝑢𝑢𝑗𝑗 + 𝑛𝑛32𝑣𝑣𝑗𝑗+ 𝑛𝑛33

                          (7) 

Where ftruckDim(x) is the regression model in Fig. 2 (b) that estimates bucket height from PGVW; 
n31, n32, n33 and n34 are values in the third row of CaMAT-1.  405 
 
With the calculated zc, the world coordinates of P1, P2, P3, and P4 can be easily obtained by via Eq. 
(5) Finally the calculation of bucket dimensions (i.e., bucket length (BL) and bucket width (BW)) 
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is straightforward, which is simply the Euclidean distance between the bucket vertices: 
𝐵𝐵𝐵𝐵 = [𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑃𝑃1,𝑃𝑃4) + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑃𝑃2,𝑃𝑃3)]/2                   (8) 410 
𝐵𝐵𝐵𝐵 = [𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑃𝑃1,𝑃𝑃2) + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑃𝑃3,𝑃𝑃4)]/2                  (9) 

Where dist(A, B) gives the Euclidean distance between world coordinates of point A and B. 
 

 

Fig. 8. Orthogonal rectification and subsequent world coordinate calculation for arbitrary points in 415 
truck bucket. 
 
3.3.4. Orthogonal rectification 
With the pixel coordinates of bucket vertices, the original image and its semantic map can be 
rectified to an orthogonal view by applying homography transformation (Kim et al., 2019), as 420 
shown by Fig. 8. The rectification mitigates the effect of perspective projection, and thus allow 
dimension measurement of the waste materials in the bucket. Based on the bucket dimensions 
obtained in previous step, it is viable to derive world coordinates corresponding to arbitrary pixels 
inside the bucket area, or vice versa: 

𝑥𝑥𝑘𝑘 − 𝑥𝑥4 =  𝐵𝐵𝐵𝐵
𝑣𝑣3′−𝑣𝑣4′

(𝑣𝑣𝑘𝑘′ − 𝑣𝑣4′)                       (10) 425 

𝑦𝑦𝑘𝑘 − 𝑦𝑦4 =  𝐵𝐵𝐵𝐵
𝑢𝑢1′−𝑢𝑢4′

(𝑢𝑢𝑘𝑘′ − 𝑢𝑢4′ )                       (11) 

Where (𝑢𝑢4′ , 𝑣𝑣4′) and (𝑢𝑢𝑘𝑘′ , 𝑣𝑣𝑘𝑘′ ) are pixel coordinates after rectification of P4 and arbitrary point inside 
the bucket respectively; and (x4, y4) and (xk, yk) are their corresponding X and Y components of 
world coordinates. 
 430 
3.3.5. Waste volume estimation 
The range finders installed at the entrance of the sorting facility provide further information to 
precisely estimate waste volumes. As shown by Fig. 3 (c), there are totally 8 range finders, denoted 
by RF#1~#8 respectively. Table 2 lists installation position of the sensors in relative to the global 
coordinate system. The range finders have been calibrated in prior so that the data given by the 435 
sensors directly represents the distance of targets from the weighbridge. 
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Table 2. Range finder installation position.  

ID RF#1 RF#2  RF#3 RF#4 RF#5 RF#6 RF#7 RF#8 
X (m) 1.0 2.0 1.0 2.0 1 2 1 2 
Y (m) 6.0 6.0 4.5 4.5 3 3 1.5 1.5 
Z (m) 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 

 440 
Let Ω(𝑃𝑃4,𝐵𝐵𝐵𝐵,𝐵𝐵𝐵𝐵) denote a rectangular region with P4 as its upper-left corner and BL and BW 
as length and width of along the Y and X axis respectively. It represents the horizontal space 
covered by the truck bucket. Then range finders that fall within this range can be refer to as 𝑀𝑀 =
{RF#𝑘𝑘|RF#𝑘𝑘 ∈ Ω(𝑃𝑃4,𝐵𝐵𝐿𝐿,𝐵𝐵𝐵𝐵)}. Thus, the waste depth corresponding to RF#k is calculated by: 

𝐷𝐷RF#𝑘𝑘 =  𝐻𝐻RF#𝑘𝑘 − 𝐻𝐻0                         (11) 445 
Where 𝐻𝐻RF#𝑘𝑘  is the height data collected by sensor RF#k, and H0 is the height of the bucket 
bottom, which has been pre-stored in the record of the facility system. 
 
With a collection of {𝐷𝐷RF#𝑘𝑘} , the waste depth of arbitrary points in Ω(𝑃𝑃4,𝐵𝐵𝐵𝐵,𝐵𝐵𝐵𝐵)  can be 
interpolated, as demonstrated by Fig. 9 (a). The Ω(𝑃𝑃4,𝐵𝐵𝐵𝐵,𝐵𝐵𝐵𝐵) is turn into mesh grid according 450 
to a preset interval (e.g., Δd = 150 mm) to determine positions of interpolation point PIij.  

�
𝑥𝑥PI𝑖𝑖𝑖𝑖 = 𝑥𝑥4 + ∆𝑑𝑑 × 𝑖𝑖, (𝑖𝑖 ∈ 𝑁𝑁∗, 𝑖𝑖 ≤ 𝐵𝐵𝐵𝐵

∆𝑑𝑑
)

𝑦𝑦PI𝑖𝑖𝑖𝑖 = 𝑦𝑦4 + ∆𝑑𝑑 × 𝑗𝑗, (𝑗𝑗 ∈ 𝑁𝑁∗, 𝑖𝑖 ≤ 𝐵𝐵𝐵𝐵
∆𝑑𝑑

)
                 (11) 

Where (xPIij, yPIij) is the coordinates of PIij, and N* denote a set of positive integers. The predictive 

waste depth 𝐷𝐷�PI𝑖𝑖𝑖𝑖 at after interpolation is: 

𝐷𝐷�PI𝑖𝑖𝑖𝑖 = ∑ 𝜆𝜆𝑘𝑘𝐷𝐷RF#𝑘𝑘𝑀𝑀                           (12) 455 

Where 𝑀𝑀 = {RF#𝑘𝑘|RF#𝑘𝑘 ∈ Ω(𝑃𝑃4,𝐵𝐵𝐵𝐵,𝐵𝐵𝐵𝐵)} , and 𝜆𝜆𝑘𝑘  is the weight factor of observed waste 
depth at RF#𝑘𝑘  on the predictive waste depth. Different interpolation methods calculate 𝜆𝜆𝑘𝑘 
differently. With Kriging interpolation, for example, 𝜆𝜆𝑘𝑘 is determined by the relative distance of 
predictive points, spatial layout of observation points, and other factors. 
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Fig. 9. Schematic diagrams of (a) interpolation and 
(b) waste volume estimation. 

 460 
Via Eq. (10) and (11), the type of waste material corresponding to PIij can also be obtained from 
the semantic map, and be denoted by 𝑇𝑇PI𝑖𝑖𝑖𝑖. Hence, geometry and semantic information for all 

interpolation points can be obtained as {𝑥𝑥PI𝑖𝑖𝑖𝑖, 𝑦𝑦PI𝑖𝑖𝑖𝑖,𝐷𝐷�PI𝑖𝑖𝑖𝑖  ,𝑇𝑇PI𝑖𝑖𝑖𝑖}. Assuming that waste materials 

at the bottom are consistent with the surface materials, the volume of any specific type or the entire 
dump of CDW can be then estimated. This is done by simple accumulation of column volumes 465 
corresponding to certain waste materials, as shown by Fig. 9 (b). Eq. (13) shows mathematical 
formula to calculate the volume of a waste dump. 

𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎 = ∑ ∑ 𝐷𝐷�PI𝑖𝑖𝑖𝑖
𝐽𝐽𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗=1

𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖=1 ∆𝑑𝑑2                       (13) 

Where 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 =  �𝐵𝐵𝐵𝐵
∆𝑑𝑑
� and 𝐽𝐽𝑚𝑚𝑚𝑚𝑚𝑚= �

𝐵𝐵𝐵𝐵
∆𝑑𝑑
�, and ⌊𝑥𝑥⌋ gives the floor integer of x. 

 470 
4. Results and analysis 
This section analyzes the results of the proposed algorithms in an off-site sorting facility in 
HONG KONG. The algorithms were implemented with MatLab and Python on an OptiPlex 
7080 computer with Intel(R) Core (TM) i7-10700 CPU and NVIDIA GeoForce RTX 2070 
SUPER GPU. 475 

 
4.1. Results of bucket dimension calculation 
We first evaluated bucket dimensions calculated by the proposed algorithm. As mentioned in 
Section 3.2, the width of dump buckets is supposed to be roughly the same with cabin width so as 
to comply relevant regulations. According to truck models and their PGVW, the width data of 78 480 

trucks passing through the facility entrance was collected from official websites of corresponding 
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manufacturers. Fig. 10 (a) shows a comparison between the estimated bucket width and the 
observed ground-truth values, and the relative error for each sample is represented by a gray bar 
at the bottom. The general trend of the predictive values is consistent with the observed values. 
As summarized by Fig. 10 (b), the average relative error is 0.065, which is satisfactory. 485 

 
Fig. 9. Evaluation of bucket dimension calculation performance: (a) Comparison between 
predictive and observed bucket width of 78 investigated trucks; (b) Histogram distribution of 
relative errors.  
 490 

4.2. Results of waste volume estimation 
The satisfactory precision of bucket dimensions calculation lays the foundation for 3D 
reconstruction of truck-loaded waste and further volume estimation. Fig. 11 shows some example 
results. The first column is the original RGB images, and on top of each image the corresponding 
transaction number, truck plate number, and the estimated bucket dimensions are presented. In 495 

the second column are the reconstructed 3D geometric models with real texture applied onto the 
waste dump surface. In the last column are the reconstructed 3D semantic models with different 
CDW types encoded by different colors. The estimated waste volumes are also listed on the right 
hand side.  
 500 
It can be found that the estimated geometry, semantic types, and volumes of the wastes are 
aligned with the observations from RGB photos. Note that there might be waste areas covered by 
the grippers mounted to the truck buckets. The semantic properties of these areas are replaced 
with the waste types of their nearest voxels when estimating the CDW volumes (An example is 
the fourth row of Fig. 11). The average processing time of the proposed algorithm is 3.3 s per 505 

image, including 3.22 s for bucket dimensions calculation and 0.08 s for volume estimation.  
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Fig. 11. 3D geometric and semantic models reconstructed from monocular vision. 
 

5. Case study 510 

The proposed algorithm was applied to analyze 2,914 transaction records happed in October 
2019 at one lane of the sorting facility. Fig. 12 (a) demonstrates the daily CDW volumes 
arriving at the toll gate of the facility. It can be clearly observed that the waste volumes 
fluctuate periodically according to a cycle of roughly every seven days. Among the seven 
material types, wood/cardboard accounts for the largest proportion, followed by the “Mixed” 515 

waste which is a clutter combination of inert and non-inert materials. The three inert 
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materials, i.e., rock, gravel and earth, have the least proportion, possibly because the waste 
haulers elect to primarily send such waste types to the public fills for lower disposal price. 
 
The facility toll gate received around 800.0 m3 CDW per day, of which about 10.8 m3 were 520 

rejected for not meeting the requirements of inert content proportion (HKEPD, 2019). Fig. 12 
(b) and (c) show volume distribution over diverse materials accepted and rejected by the 
facility, respectively. Most of the rejected materials are non-inert wastes such as wood and 
packaging, implying the rejected waste dumps indeed have not reached the required 
proportion of inert materials. Meanwhile, non-inert materials also account for a great 525 

proportion in the accepted wastes. This is in line with the HONG KONG Audit Commission 
report (Audit Commission, 2016), which criticized that many truck loads accepted by the 
facility not actually meeting the inert-content requirements. 

 
Fig. 12. Statistics of estimated waste volume in October 2019: (a) Amount of daily incoming 530 

waste dumps; (b) Distribution over different materials for the accepted waste dumps; (c) 
Distribution over different materials for the rejected waste dumps. 
 

6. Discussion 
“A picture is worth a thousand words”. From an information technology perspective, the 535 

widespread adage reflects how immense magnitude of information can be conveyed by a 
single image. Indeed, a top-down photo of truck-loaded waste dump not only tells much 
about its composited material components, but also implicitly encodes information of its 
geometry. However, without effective algorithms and proper use of domain knowledge, such 
abundant information will remain undiscovered treasure inaccessible to those in need. This 540 

paper presents a monocular vision algorithm that integrates semantic segmentation and 
domain knowledge of truck dimension profiles to reconstruct 3D geometric and semantic 
models of CDW dumps from single images. The algorithm can estimate truck bucket 
dimensions with a relative error of 0.065, while only consumes 3.3 s to process each image. It 
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only requires common hardware configurations (e.g., camera and weight bridge) at existing waste 545 

disposal facilities, and can estimate CDW volumes in sufficient granularity without physical 
separation. The effectiveness of the algorithm makes it a promising solution to address the 
conundrum of balancing between “accuracy” and “operability” in waste quantification. 
 
The algorithm is primarily implemented and validated in the HONG KONG context. 550 

However, it can be easily extended to other places of the world by simple recalibration of its 
core modules. For example, different countries/regions generate different types of 
construction wastes; thus, the CDW semantic segmentation model needs to be re-train or 
finetuned accordingly based on the specific contexts. In addition, the prevalent manufacturers 
and truck dimensions in other places might be different from those in HONG KONG, making 555 

it necessary to re-calibrate the “Cabin height-PGVW” regression model.  
 
The broad concept of the proposed algorithm can also be generalized to other industries 
where similar truck payload amount estimation requirements and hardware setup are shared. 
An exemplary scenario is infrastructure construction, in which volumetric measurement is an 560 

important task for quality control. Similar systems can be set up at the entrance of such 
infrastructure projects. Then the proposed algorithm can be deployed to calculate volumes of 
incoming materials such as asphalt concrete and rockfill for compliance check or progress 
monitoring.  
 565 

7. Conclusions 
How to accurately quantify construction and demolition waste (CDW) with easy and operable 
approaches in field is an unsolved dilemma. Physically segregating the waste materials can 
certainly provide precise amount information, but is onerous and time-consuming. To tackle 
the dilemma, this paper presents a non-destructive and precise algorithm for truck-loaded 570 

CDW volume estimation based on monocular vision. In the proposed algorithm, a deep 
learning model is trained to extract semantic information of waste types (e.g., rock, gravel, 
and wood); prior knowledge of truck dimension profiles is used to achieve depth perception, 
and recover 3D geometry of the waste dumps. The algorithm achieved a relative error of 
0.065 in estimating bucket dimensions while consumed 3.3 s to process each image. A case 575 

study was carried out to analyze 2,914 waste dumps received by an off-site sorting facility in 
Hong Kong during October 2019. It was found that the facility entrance received around 
800.0 m3 CDW per day, of which about 10.8 m3 were rejected. Among the accepted 
materials, the non-inert wood/cardboard accounts for the highest proportion, revealing many 
CDW dumps accepted by the facility did not actually comply with the inert-content 580 

requirements.   
 
Despite the demonstrated efficacy, future studies are recommended to address the following 
limitations. First, the algorithm might fail to work with oversize trucks of which the buckets 
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cannot be entirely covered by the camera field of view. Thus, further improvement is required 585 

to infer the location of invisible bucket boundaries from the images. Second, although 
materials on waste dump surface provide important clues on the types of underneath waste 
materials, they are not necessarily identical. Integration of physical features such as weight 
and bulk density of the waste dumps might be useful to further distinguish the waste 
materials beneath the surface. Such integration can be realized based on machine learning 590 

techniques such as Bayesian inference. 
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