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Abstract 
Building information modeling (BIM) detailing, the process of adding the level of graphical 
and non-graphical details, is required in many BIM stages and applications; however, manual 
BIM detailing is a resource-intensive and costly process. This study proposes an automatic 
BIM detailing method based on deep features (DFs) of BIM 3D views in three steps. First, a 5 

BIM’s 3D view and semantics were extracted automatically. Then, machine learning (ML) 
algorithms learned the DFs to predict the target BIM’s invisible details. Finally, the details 
were automatically added to BIM by a Dynamo program. A case study of motion-bearing 
component detailing for 86 doors through three DFs and five ML algorithms revealed that 
DFs improved the automatic detailing results comprehensively (29 out of 32 scenarios) and 10 

significantly. This paper’s contribution includes an effective, novel approach for automatic 
BIM detailing as well as quantified experimental evidence about the effectiveness of DFs for 
BIM applications. 
 

Highlights 15 

• An automatic BIM detailing method using machine learning (ML) and deep features (DFs). 
• A case study of motion-bearing component detailing for 86 door types in NBS BIM Library. 
• Experiments conducted for 7 detailing tasks using 5 ML algorithms and 3 DFs. 
• Comprehensiveness: 29 out of 32 ML-task combinatorial scenarios improved by DFs. 
• Significance: averagely 47.7% error reduction for classification and 18.8% for regression. 20 
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1 Introduction 25 

The architecture, engineering, construction, and operation (AECO) sector is pursuing a digital 
transformation to evolve the traditional workflow (NIC 2017; CIC 2021). Building 
information modeling (BIM) is ‘a comprehensive digital representation of physical and 
functional characteristics of a facility’ (NIBS 2015). In addition to the geometric 3D model, 
BIM can store various types of non-geometric data, relationships, and documentation. The 30 

benefits and impacts of BIM adoption have been agreed upon and discussed by researchers 
worldwide (Barlish & Sullivan 2012; Ghaffarianhoseini et al. 2017). BIM has had a positive 
impact on many construction applications, such as workflow standardization, information 
integration, project management, and data analytics. Therefore, the AECO industry has 
advocated and promoted the importance of mandating BIM around the world (Chan et al. 35 

2019) and is gearing up with online and offline BIM libraries (Kim et al. 2015). 
 
BIM detailing refers to the process of increasing the level of detail (LOD) for construction 
projects. Unlike the level of development (LoD), referring to the development of reliable and 
concrete BIM at different lifecycles of the project, LOD refers to the accurate details of BIM. 40 

In general, the development of the LOD of BIM will increase progressively as the project 
moves on. The design stage will primarily have BIM with lower LOD, while during the 
construction period, BIM will be further enhanced and detailed by engineers from different 
disciplines. The process of BIM detailing is labor-intensive and time-consuming, leading to a 
need for an automation process. Currently, the performance and applications of BIM heavily 45 

depend on the quality, semantics, and LOD of BIM. Meanwhile, research also emphasized 
the importance of information depth and pointed out the consequences of information loss 
(Borrmann et al. 2018).  
 
BIM detailing is vital to the BIM lifecycle. The insufficient LOD of BIM can lead to the 50 

failure of performing time dynamic simulation for digital twin applications. A digital twin is 
a virtual representation of a physical object or system across its lifecycle, using real-time data 
to enable understanding, learning, and reasoning (NIC 2017). The International Council for 
Building also suggests that the digital twin is a prominent topic in the AECO sector as it 
provides a cyber-physical integration of the dynamic building status, including the 55 

construction and operation phase (Seaton et al. 2022). For example, a door without detailed 
hinges falls rather than opens after a simulated push, as shown in Figure 1. In contrast, the 
constraint from hinges leads to a correct motion behavior in a digital twin. Nevertheless, due 
to the low added value of manually created high LOD of BIM objects, many BIM objects 
might not have adequate components of information needed in the digital twin applications. 60 

One distinct example would be the motion-bearing components. Without the motion-bearing 
components, the digital twin might not be able to accurately present and visualize the 
collected real-time data. Therefore, an efficient method for automatic BIM detailing should 
be developed.  



 65 

 
Figure 1. A failed door simulation resulting in falling without hinge details in the BIM 
 
Machine learning (ML), including deep learning, has been demonstrated to be a set of 
effective approaches to facilitate and automate BIM detailing and enrich construction 70 

information. ML and deep learning can be used to automate and optimize BIM applications 
(Zabin et al. 2022) and predict missing construction data (Yang et al. 2021). Recent studies 
(Dargan et al. 2020) showed that deep features (DFs) could be successfully integrated into 
many applications (e.g., image recognition, semantic image segmentation, and object 
detection). The results of such applications can be further applied in assisting BIM parametric 75 

design through various tools. For example, Dynamo from Autodesk Revit provides a visual 
programming environment to quickly perform a data-driven parametric BIM design process 
(Kensek 2015).  
 
This study presents an automatic BIM detailing approach through the exploitation of the 80 

target BIM’s DFs. To validate the presented approach, we collected a set of training BIM 
objects from the NBS National BIM Library (NBS 2022). Based on the learning results of 
DFs in the training of BIM objects, the missing BIM components can automatically be 
predicted as three classification tasks and four regression tasks; and created via a Dynamo 
program. The contribution of this paper is two-fold. First, from the perspective of knowledge, 85 

the outcomes of this paper confirmed that DFs could considerably facilitate the ML-based 
BIM detailing; for example, all the classification tasks were improved by 30.4~58.7% on 
average, while four regression tasks were improved by 9.5~33.6%. For BIM practitioners, 
automatic detailing based on the BIM sketch design can escalate productivity and save costs 
in terms of human resources and machine hours.  90 

 
Following this introduction, Section 2 provides a literature review of BIM, detailing deep 
learning applications for BIM. Section 3 presents a proposed three-step BIM detailing 
approach, that is, feature extraction, component parameters prediction, and parametric design. 
Section 4 shows a case study of detailing door hinges with a training set of 86 BIM objects, 95 



together with evaluations and analyses of various deep features and ML methods. Section 5 
discusses the findings and potential impacts, along with the limitations. Section 6 concludes 
this study and points out future works.  
 
2 Literature review 100 

2.1 BIM detailing 
BIM has been increasingly adopted in the AECO sector. On the one hand, BIM provides a 
systematic information hub for various project practitioners to collaborate at the same pace. 
On the other hand, BIM is considered a ‘blind and deaf’ model as the information stored 
inside cannot be easily synchronized with actual built assets as the project progresses (Chen 105 

et al. 2015). To alleviate such static, outdated, and lacking detail issues in BIM, the concepts 
of as-built BIM and digital twin building emerged (Wu et al. 2021). The as-built BIM 
provides up-to-date information on the current built assets (Xue 2022), while the digital twin 
provides a systematic and dynamic virtual environment for retrieving, simulating, and 
manipulating different levels of information. However, there are two main gaps between BIM 110 

and digital twin: the LOD of the model and the capability of handling the dynamic data 
collected from reality (Opoku et al. 2021).  
 
To bridge the gaps between a ‘blind and deaf’ BIM and digital twin, academic research and 
industrial applications in the literature have reported three aspects of BIM detailing, as 115 

contrasted in Table 1. An example group of research is BIM integration with other 
technologies, such as light detection and ranging (LiDAR) (Xue et al. 2019), Internet of 
Things (IoT) (Tang et al. 2019), geographic information system (GIS) (Wang et al. 2019), 
and machine learning (ML) (Zabin et al. 2022); BIM data exchange and interoperability (Lou 
et al. 2020), and optimization (Lou et al. 2020); BIM interactive application through virtual 120 

reality (VR) (Zhang et al. 2021) and gaming technology (Potseluyko et al. 2022). On the 
other way, as the guidelines and standards of BIM have been developed by both international 
and local institutions (CIC 2020; ISO 2018), the application of BIM in the industry is 
booming and based mostly on the stage of the project: the design stage focuses on the 
simulation and planning of the models; the construction stage focuses on BIM detailing, 4D 125 

BIM, and project monitoring; and the operation stage focuses on the documentation and 
maintenance of the project. As construction projects by nature are dynamic and contain lots 
of variables and uncertainties, the industry is seeking a more dynamic BIM to reveal an 
accurate and instant project status, such as motion and load analysis during the design and 
construction stage.  130 

 
Table 1. BIM detailing research direction 

BIM detailing aspects Research direction Technologies adoption 
Semantic enrichment BIM integration LiDAR, IoT, GIS, ML 
Semantic constitution BIM interoperability & optimization BIM 
Semantic implementation BIM simulation & visualization VR, gaming technology 



 
 
The detail of the model is critical to the successful implementation of BIM in managing 135 

dynamic projects. A higher LOD of BIM enables different applications to perform more 
dynamically and store more semantic information in the models, which can further affect and 
assist stakeholders in the decision-making process (Boje et al. 2020) as well as provide 
engineers a comprehensive project status (Lu et al. 2020). However, as BIM detailing is time-
consuming and requires interdisciplinary engineers to create detailed components and 140 

collaborate throughout the project, an appropriate LOD of BIM would be preferred and 
suggested based on different stages of the project (Fai & Rafeiro 2014). Similarly, 
researchers suggested different BIM applications should imply different LOD to achieve cost 
savings (Hong et al. 2019). Therefore, some components and items are often neglected during 
BIM detailing, as they will not affect the construction process or technical analysis or conflict 145 

with any stakeholder’s interest.  
 
2.2 Machine learning and deep learning applications for BIM 
Machine learning (ML) refers to the scientific study of algorithms and models that enable 
computer systems performing certain tasks without predefined and explicitly programmed 150 

processes (Han et al. 2011). These algorithms and models can be categorized into different 
groups based on how they are being trained and their applications. For applications in the 
AECO sector, there are three categories, instance-based ML, rule/tree-based ML, and 
function-based ML (Hall et al. 2009) that are commonly used for data prediction, image 
processing, simulation, and modeling. In all, the conventional ML techniques require 155 

structured and well-organized input data. 
 
Deep learning (DL) techniques, in contrast, allow models to learn representations of raw data 
with multiple levels of abstraction (LeCun et al. 2015). The capabilities of deep learning to 
analyze data, provide insights, optimize workflows, and make predictions have become a new 160 

method for the AECO sector to process BIM data across the BIM lifecycle. For the design 
stage, deep learning has been proven to be an effective method to perform generative design 
(Bianconi et al. 2019; Chen et al. 2022), clash prediction along with resolution (Hu & Castro-
Lacouture 2019), and compliance checking (Song et al. 2018) by manipulating BIM data. For 
the construction stage, deep learning can provide cost estimation (Banihashemi et al. 2022) 165 

and optimize project schedules (Torres-Calderon et al. 2019) by fully utilizing the 
information stored in BIM. Lastly, during the operation stage, deep learning can be used to 
classify the building type (Lomio et al. 2018), enrich semantic information in the as-built 
BIM (Xue et al. 2021; Xue 2022), automatically conduct the property valuation (Su et al. 
2021), and assist the defect surveying (Valero et al. 2018). As deep learning progressively 170 

develops, more potential applications for BIM will be explored. 
 



Since current technologies of deep learning cannot directly use native BIM-format data as the 
training data and output data, an appropriate data exchange method should be adopted for 
BIM. Currently, many BIM plug-ins have been developed and can fill this gap, such as 175 

Grasshopper for Rhinoceros, PARAM-O for ArchiCAD, and Dynamo for Revit. These plug-
ins enable users to use the external data for parametric design and export the needed data for 
analyses (Natanian et al. 2019). Take Dynamo as an example; it provides a graphical 
interface for users to perform parametric-related functions of BIM objects (Kensek 2015). 
Research also shows that Dynamo can effectively facilitate complex model generation (Yang 180 

et al. 2020) and extract data for operational usage (Sadeghi et al. 2019; Thabet et al. 2022). 
Another illustrated the adoption of Dynamo to facilitate the process of 3D concrete printing 
(Weng et al. 2021).  
 
In summary, as the adoption of BIM increases in the AECO sector, various BIM applications 185 

have been explored and adopted rapidly, including the digital twin of the project. However, 
the current industrial practice requires great resources to achieve a higher LOD of BIM to 
perform dynamic and accurate project status. Meanwhile, the rapid development and 
application of deep learning technologies in BIM have proven to be effective in facilitating 
BIM-related works. As a result, inspired by previous research, this project will utilize deep 190 

features to fill in the missing motion components in BIM objects to increase the interactive 
and dynamic performance of BIM applications.  
 
3 The proposed automatic BIM detailing method 
3.1 Overview 195 

The proposed method aims to automatically create detailed BIM components with the deep 
features of 3D views. Figure 2 shows the developed three-step method for the automated 
generation of BIM details. The three steps are (1) characteristic 3D views of BIM, (2) deep 
learning of BIM details, and (3) parametric BIM detailing. Each step has a set of inputs, 
which in part depend on the prior step. 200 

 



 
Figure 2. Method of the proposed three-step automatic BIM detailing using deep features 

 
3.2 BIM 3D views and semantics extraction 205 

The first step extracts the semantics and 3D views of an input BIM for the subsequent deep 
learning processes. BIM can be considered a well-structured information hub (Heaton et al. 
2019). However, the BIM software ecosystem has unsatisfactory interoperability with 
existing ML and deep learning algorithms in the computer science field. Therefore, the 
semantics and 3D view imagery of an input BIM must be converted from the BIM object to 210 

machine learning-friendly formats. Given a BIM object with expected details in BIM 
software, users can use the built-in functions or plug-ins or self-programming to generate the 
data for machine learning use. Using Dynamo, a Revit plug-in for extracting data from the 
BIM family, as an example, the general steps are shown in figure 3. First, the Dynamo scripts 
enable Revit to load family documents in batches. The 3D views of the BIM objects can be 215 

generated by image export Revit, or users can predefine the angle and export images through 
Dynamo or self-programming in C#. Meanwhile, the semantic data can be filtered and 
retrieved through Dynamo or using Revit API. Finally, 3D views in PNG format and 
parameters in CSV format are extracted, stored, and ready for the next step.  
 220 

 
Figure 3. Data conversion from BIM to ML  

 
3.3 DF-based BIM details prediction 
This step aims to train the ML algorithms for the capability of predicting the parameter 225 

values of BIM objects. To achieve this target, the adoption of DFs was proposed during the 
ML training process. Three well-known DFs, VGG19, InceptionV3, and SqueezeNet, are 
investigated in this study. DFs of the images can represent the unstructured image in a tabular 
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format. VGG19 is a typical 19-layer deep convolutional neural network (CNN) proposed in 
2014 and widely used in the medical sector for disease diagnosis (Alhindi et al. 2018). 230 

InceptionV3 (InceptV3) is a 48-layer deep CNN proposed in 2015 that uses a splitting 
method to effectively extract the DFs (Dong et al. 2020). SqueezeNet is a 48-layer deep CNN 
proposed in 2016 that uses fewer parameters for the feature extraction with competitive 
accuracy and smaller model sizes (Lee et al. 2019).  
 235 

As shown in Figure 2, a comparative study is conducted to select the most suitable model. 
The DF-based learning process of the model includes two types of features, 3D views’ DFs 
and BIM semantic features. The prediction targets of BIM details can be broadly classified 
into two types: discrete values for classification and continuous values for regression. 
Examples of classification are types of family and materials of parts, while regression is the 240 

locational values of the components. This study adopts five representative ML algorithms 
from three ML categories, as listed in Table 2. K-nearest neighbors (KNN) algorithm is 
selected as a representative in the instance-based ML category. From the rule/tree-based 
category, decision tree (Tree) is a typical and well-known ML algorithm, while the eXtreme 
Gradient Boosting (XGBoost) is selected as a more advanced algorithm that exploits the 245 

second order gradient statistics of the loss function. From the function-based category, linear 
regression (LR) and support vector machine (SVM) are selected for their linear relationship 
and kernel function models.  
 
Table 2. Selected ML algorithms for BIM details classification and regression 250 

ML category ML algorithm Classification Regression Reference 
Instance-based  KNN Y Y (Zhang & Zhou 2007) 
Rule/tree-based  Tree Y Y (Han et al. 2011) 

XGBoost Y Y (Chen & Guestrin 2016) 
Function-based  LR N Y (Han et al. 2011) 

SVM Y Y (Hearst et al. 1998) 

 
Both classification and regression training processes are based on 5-fold cross-validation. To 
evaluate the performance of the trained models, F1 will be used for the comparison of 
classification algorithms, while RMSE will be used for the comparison of regression 
algorithms. Table 3 lists the error metrics and selection in the two processes.  255 

 
Table 3. Error metrics for BIM details classification and regression 

Task Name Definition Selected? 
Classification Precision the proportion of true positives among instances classified as 

positive 
N 

 Recall the proportion of true negatives among all negative instances N 
 F1 the weighted harmonic mean of precision and recall Y 
Regression RMSE square root of the arithmetic mean of the squares of a set of 

numbers 
Y 



 
A series of comparisons and evolutions of trained models is conducted based on the error 
metrics. First, whether or not the model is improved can be gleaned by comparing the best F1 260 

value for classification or best root mean square error (RMSE) value for regression between 
the control group (i.e., without DF) and the experimental group (i.e., with DF). If the model is 
improved, the CNN DF and ML algorithm are the best settings for the corresponding tasks. In 
contrast, if the model is not improved, the adoption of CNN DF might not be suitable for the 
tasks, and the setting of the ML algorithm becomes the best setting. Once the best training 265 

settings are selected, users can input all the existing features – both 3D views and BIM 
semantics – to train the model. The output of this step is a trained BIM detailing model, 
which can predict the target BIM detail using 3D views and BIM semantics. 
 
3.4 Parametric BIM detailing  270 

This step aims to enrich the BIM objects by adopting the trained model and the predicted 
information of the target details. Therefore, the input of this step is a BIM object without 
target details. Firstly, the 3D views and semantics of the BIM object without details need to 
be extracted as described in Section 3.2. Then users can apply the trained model in Section 
3.3 to predict the discrete or continuous values of the target BIM details.  275 

 
The predicted values are used to create the BIM objects parametrically, which can be done by 
programming and plug-ins as shown in Figure 4. For example, Dynamo provides a node 
where users can create a cylinder by inputting the radius and height; Grasshopper provides a 
node where users can create a cone by inputting the base plane, the radius at the cone base, 280 

and the cone height. Such parametric design can achieve the same goals with less time and 
effort than manual drawing, especially with many duplicate tasks. Eventually, the output of 
this step is the enriched BIM objects with details.  

 

 285 

Figure 4. General framework of Dynamo program 
 
4 A study of NBS doors 
4.1 Case study 
A case study of invisible hinges for swing door families in the UK National Building 290 

Specification (NBS) BIM Library was conducted to advance the proposed method. Doors are 
one of the most common and movable object types in BIM projects, and hinges are the 
critical motion-bearing details. In the NBS BIM Library, 48 of the 94 door families, 



consisting of 86 door types according to the parametric settings, conveyed critical details of 
hinges. The proposed method was tested for predicting and detailing the motion-bearing 295 

components, i.e., invisible hinges. The training BIM object set thus was the collection of all 
86 door types with hinges. It was a challenging task to detail the hinges correctly for various 
door types automatically; it was even more challenging in this case since hinges are invisible 
from the training external 3D views. 
 300 

Table 4 lists the target details, including quantity, depth, radius, and different positions, to 
predict hinges. ML algorithms were trained using native BIM semantics and 3D view’s deep 
features. Table 5 lists the three general parameters, NominalHeight, NominalLength, and 
NominalWidth, of doors defined by NBS BIM Object Standard v2.1 for training the ML 
algorithms. 305 

 
Table 4. List of targets to predict for hinge detailing 

Task Type Task name Definition 
Classification Quantity The quantity of hinge. (either 3-hinge or 4-hinge) 
 Depth The height of the hinge (cylinder). 
 Radius The radius of the hinge (cylinder). 
Regression Position (Top) The ratio of the highest hinge Z-position to the height of the door. 
 Position (Bottom) The ratio of the lowest hinge Z-position to the height of the door. 
 Position (Extra1) The ratio of the 2nd-lowest hinge Z-position to the height of the door. 
 Position (Extra2)* The ratio of the 3rd-lowest hinge Z-position to the height of the door. 

*Only applicable to the 4-hinge door. 
 
Table 5. Selected BIM parameters 310 

Property name Property requirements 
NominalHeight A numerical value of the nominal height (typically the vertical characteristic dimension of 

the product) in millimeters. 
NominalLength A numerical value of the nominal length (typically the primary or larger of the two 

perpendicular horizontal dimensions of the product) in millimeters. 
NominalWidth A numerical value of the nominal width (typically the secondary or smaller of the two 

perpendicular horizontal dimensions of the product) in millimeters. 

 
4.2 Experimental settings 
The experiments were conducted on a MacBook Pro M1 with a CPU (3.2 GHz, 8-core), 16 
GB memory, and MacOS (ver. 12.4). The test software included Autodesk Revit (ver. 2022), 
Dynamo (ver. 2.12), and Orange data mining (ver. 3.31), as listed in table 6.  315 

 
Table 6. Experimental environment setting  

Software  Version Functionality 
Revit 2022 Loading Revit family documents (rfa.) file and supporting dynamo 
Dynamo 2.12 BIM semantics and 3D view image extraction; parametric design for hinge 

creation 



Orange 3.31 Deep feature extraction, machine learning model training, evaluation, and 
prediction  

 
Figure 5 shows the Dynamo scripts for extracting the door types’ 3D views and semantics, 
respectively. Figure 5(a) shows the script for exporting 3D views. The view angle was set as 320 

the top right corner of the exterior side of the door. The image resolution was set to be 1024 x 
1024 pixels at 600 DPI. For standardized qualities of the view images, the ‘detail level’ on 
the Revit view control bar was selected as ‘fine,’ the view scale was set as 1:10, and the 
visual style was set as ‘hidden line.’ Also, all the annotation categories and the walls model 
categories were disabled inside the visibility/graphic setting. The final output of the image is 325 

the 3D view of the exterior side in PNG format. As shown in Figure 5(b), the three standard 
NBS parameters, NominalHeight, NominalLength, and NominalWidth, were exported into an 
index file in the CSV format. Meanwhile, hinge-related BIM parameters (i.e., the quantity, 
depth, radius, and relative locations) were also extracted into the index file. 

 330 

 
Figure 5. Dynamo scripts in Step 1. (a) Exporting 3D views; (b) Parameter extraction 

 
Figure 6 shows the workflow diagrams of the software Orange for extracting the DFs of the 
3D view images and comparisons of ML settings. For classification tasks of the quantity, 335 

radius, and depth of the hinge, Figure 6(a) shows four ML algorithms were involved, while 
all five ML algorithms were tested for regression, as shown in Figure 6(b). The left dashed 
box in blue color represents the extraction of the DFs from 3D view images, while the right 
dashed box in orange represents the ML process.  
 340 

(a)

(b) Export to CSV
Load Revit Families

Retrieve parameter values

Export 3D Views



 
Figure 6. Orange program of deep features extraction and ML for predicting hinge details. (a) 

Classification; (b) Regression 
 
Once the ML model is trained, it can be used to predict the hinge-related information, as 345 

shown in Table 3. The predicted data can be stored in a CSV file and used for the parametric 
design task. Figure 7 illustrates a Dynamo script retrieving the predicted data stored in a CSV 
file to perform the parametric design task for auto-enhancing the BIM object.  
 

 350 

Figure 7. Dynamo script of adding and detailing new hinge instances to the door families 
 
4.3 Results  
4.3.1 Results of Step 1  
The results of Step 1, as shown in Figure 2, contained 86 view image files (.PNG format) and 355 

an index file (.CSV format). The naming system of the PNG files is ‘Document name_family 
type – 3D view – 3DExterior’, as shown in Figure 8. The resolution of each PNG file was 
1024 × 1024 pixels, and the average file size was around 10KB, while the disk size of the 
index file was about 20 KB. All the 3D views were shot from outside of the doors, as shown 
in Figure 8; therefore, the hinges – three or four instances – were invisible in the 3D view 360 

photos. Plus, the variety of the designs of the test door families, that is, all the three-hinge and 

(a) (b)

Deep features ML process Deep features ML process

Importing predicted data from CSV

Door parameter extraction

Create family type for hinge

Hinge generation



four-hinge doors with hinges at NBS had well covered the common door types in real 
projects.  
 

 365 

Figure 8. Screenshots of sample extracted 3D view images 
 
Table 7 lists an excerpt of the decision parameters and target values extracted by the Dynamo 
script automatically. In general, there were three main categories: NBS standard parameters, 
discrete hinge details to classify, and continuous hinge detail values to regress. An example 370 

of discrete hinge detail was the radius in millimeters, where the four possible values were 3.5, 
6, 7.5, and 8. For the continuous hinge details to regress, the values were normalized between 
0 and 1, for example, as the relative Z-position against the NominalHeight.  
 
Table 7. Excerpt of the training data for door features and prediction results 375 

NBS standard parameters Classification results Regression 
Nominal
Height 

Nominal
Length 

Nominal
Width 

Quantity Radius 
in mm  

Depth 
in mm 

Top Bottom Extra1 Extra2 

2079 96 1125 3 3.5 100 0.0981 0.8389 0.4685 N/A  
2479 96 1125 3 3.5 100 0.0823 0.8649 0.5543 N/A  
2079 96 1925 4 3.5 100 0.0981 0.8389 0.4685 0.7186 
2479 96 1925 4 3.5 100 0.0823 0.8649 0.5543 0.7640 

… … … … … … … … … … 
2110 55 1004 4 8 100 0.1123 0.8517 0.3967 0.6242 

 



4.3.2 Results of Step 2 
Table 8 summarizes the results of utilizing DFs in the hinge prediction process. The uniform 
check marks for the three classification tasks show that DFs 100% improved the BIM details 
predictions in terms of F1 scores against every baseline without DF (w/o DF). In the four 380 

regression tasks, 17 out of 20 DF-ML combinations showed accuracy improvement 
(indicated as check marks) in terms of reduced RMSE values. Thus, it was confident to 
conclude that DFs can improve the prediction of the hidden BIM details.  
 
Table 8. Deep feature’s improvement matrix under different ML algorithm 385 

ML 
algorithm 

Classification prediction tasks Regression prediction tasks Sub 
total Quantity Depth Radius Top Bottom Extra1 Extra2 

KNN ✓ ✓ ✓ ✓ ✓ ✓ ✓ 7 

Tree ✓ ✓ ✓ ✕ ✓ ✓ ✕ 5 

XGBoost ✓ ✓ ✓ ✕ ✓ ✓ ✓ 6 

LR N/A N/A N/A ✓ ✓ ✓ ✓ 4 

SVM ✓ ✓ ✓ ✓ ✓ ✓ ✓ 7 

Sub total 4 4 4 3 5 5 4  
“✓” indicates the result is improved compared to w/o DF; “N/A” indicates not applicable 
 
The rightmost column in Table 8 shows that three ML algorithms (KNN, LR, and SVM) 
received consistent prediction improvements in all the possible tasks. In contrast, decision 
tree and XGBoost show encouraging – though not as consistent as others – results in 390 

receiving improvements in five and six out of the seven tasks. Based on our observation and 
experience during the experiments, the main reason would be the quantity (thousands of 
columns) of DFs sometimes exceeded the capacity of logical conditioning/branching 
combinations for rule/tree-based ML algorithm, leading to convergence at “local optima.”  
 395 

Table 9 shows the average and the best performances of classification tasks in terms of F1 

values, while the detailed result data is available in the data set in the appendix. In general, 
the adoption of DFs can increase the F1 values considerably, by 15.4~58.7% on average. For 
the classification tasks, ML models with DFs have considerably higher best and mean F1 

scores than those w/o DF. And when comparing the mean F1 score from all ML models using 400 

different CNNs to the mean score w/o DF, the error reduction can be calculated. In the 
classification tasks, all the values of error reduction are positive, especially for the depth of 
the hinge prediction task, for which the error reduction can reach 58.7%.  
 
  405 



Table 9. Deep feature performance matrix of the classification tasks 

Tasks 
w/o DF  Performance of four ML algorithms using three DFs  Best setting 

Best F1 Avg F1 Best F1 %Imp* Avg F1 %Imp* Stdev#  
Quantity 0.8252 0.7346 0.8951 40.0 0.8152 30.4 0.0581 InceptV3+SVM 
Depth 0.8963 0.8024 0.9656 66.9 0.9185 58.7 0.0356 VGG19+SVM 
Radius 0.8983 0.8168 0.9654 66.0 0.9139 15.4 0.0389 VGG19+SVM 
   Average 57.6  47.4   

* %Imp: Improvement in percentage calculated as error reduction in percentage, where Error = 1 − F1 
# Stdev: Standard deviation of the sixteen F1 scores from the combinations of all ML models and DFs 
 
Table 10 shows the average and the best performances of regression tasks in terms of F1 410 

values. For the regression tasks, the adoption of DFs reduced the RMSE values of most ML 
models. However, an exception was the “Top” hinge locational prediction task, where the 
best RMSE w/o DF (predicted by XGBoost) was better. The main reason should lie in the 
limited capability of XGBoost in processing thousands of columns. Other models still have a 
better performance, especially for the bottom hinge locational prediction task (see “Bottom” 415 

in Table 10); the error reduction can reach 33.6% on average.  
 
Table 10. Deep feature performance matrix of the regression tasks 

Tasks 

w/o DF  Performance of Five ML algorithms using three DFs Best setting 
Best 

RMSE 
Avg 

RMSE 
Best 

RMSE 
%Imp# 

Avg. 
RMSE 

%Imp# Stdev^ 
 

Top 0.0074 0.0213 0.0081 -10.2 0.0191 10.1 0.0191 InceptV3+XGBoost 
Bottom 0.0093 0.0168 0.0079 15.7 0.0112 33.6 0.0112 VGG19+LR 
Extra1 0.0623 0.0752 0.0388 37.7 0.0585 22.2   0.0585 InceptV3+LR 
Extra2 0.0374 0.0416 0.0280 25.2 0.0376 9.5    0.0376 SquNet+SVM 

   Average 17.1  18.8   
# %Imp: Improvement in percentage calculated as error reduction in percentage, where Error = RMSE 
^ Stdev: Standard deviation of the twenty RMSE scores from the combinations of all ML models and DFs 420 

 
In addition to the performance, the time cost of DFs adoption was also considered and 
evaluated. In this experiment, there are mainly two parts of the time cost, DFs preparation 
and ML training time. For the preparation of DFs, Dynamo was used to export the 3D views 
of the BIM doors. The development of the Dynamo script would take around one hour for 425 

experienced developers or two to three hours for those not familiar with Dynamo. After 
exporting the images, Orange will be used for the DFs generation and ML training. The time 
performances of each DF are listed in Table 11. When comparing the effectiveness of the ML 
performance enhancement and the time consumption of the training process, SqueezeNet 
would be the most cost-effective CNN.  430 

 
  



Table 11. Time performance in seconds for adopting different DFs on a laptop computer 
DF DF generation (s)  Avg. classification training (s)  Avg. regression training (s)  

InceptV3 2.88 9.92 24.36 
SqueezeNet 2.84 5.76 13.30 
VGG19 2.94 10.72 31.18 

 
4.3.3 Results of Step 3  435 

Figure 9 shows the results of Step 3 for two test BIM doors for illustration. In each subfigure, 
the left part is the door before automatic hinge detailing, while the right half shows the final 
results of the proposed method. It can be seen that the newly-added hinges in red color were 
successfully added to the original BIM door family through the presented DF-facilitated 
automatic BIM detailing process.  440 

 

 
Figure 9. The automatic BIM detailing results for hinges. (a) a single door; (b) a double door 
 
Figure 10 compares the detailing results between different methods, including ground truth 445 

data in black, predicting data from best ML settings with DFs (in red) and best ML settings 
without DFs (in blue). In Figure 10, the DFs here did not change the quantity of the hinges, 
while the differences were in the regression tasks of the Z-positions of the hinges. Since the 
figures were token in the elevation view, the correct parts of the hinges were overlapped by 
the ground truth. As a result, the red areas represent the errors from BIM detailing with DFs, 450 

while the blue areas represent the errors from BIM detailing without DF. In both cases, the 

(a)

(b)



considerably smaller red areas indicate that deep features led to more accurate BIM detailing 
of the hinges.  
 

 455 

Figure 10. Errors of hinges’ Z-positions by different ML methods. (a) a single door; (b) a 
double door 

 
4.4 A behavior simulation of the detailed doors as postprocessing  
Figure 11 illustrates how the newly-detailed hinges can create more realistic scenes for BIM 460 

simulations and visualizations. The BIM doors with newly-detailed hinges were exported 
from Revit (as FBX files) to Blender through an add-on. Physics engine-based interactions 
and simulations can then be created by assigning the hinges as the rigid body constraint. 
When external forces are applied to the door in a BIM, hinges can prevent doors from 
dropping out of the frame and can swing as expected, as shown in Figure 11. In comparison 465 

with Figure 1, with the newly detailed motion-bearing components inside BIM, the behavior 
simulations became more realistic, and the simulation results could provide the opportunity to 
open the door in the virtual environment (e.g., for digital twins).  

 



 470 

Figure 11. Door simulation with detailed motion-bearing components using Blender 
 
5 Discussion 
The method presented in this paper provides a novel workflow of the automatic BIM 
detailing process, including extracting existing BIM data, adopting DFs and ML models for 475 

predicting missing BIM components, and using parametric design to detail the missing 
components automatically. The proposed method has three advantages. First, compared with 
conventional manual BIM detailing, the method shortens the time of BIM detailing, 
especially for complex BIM projects and hidden details, through up-to-date DFs, ML 
algorithms, and parametric designs. DFs are proven successful for automatic BIM detailing 480 

(i.e., an average of 47.4% error reduction in classification tasks and 18.8% error reduction in 
regression tasks). The main reason should be the BIM design features, i.e., the door design 
features like glass panels, kick plates, and handles in Figure 8, that are represented as DFs 
(Han et al. 2019). These DFs can be recognized and analyzed by different ML algorithms, 
and eventually improving the automatic BIM detailing process. Secondly, the general 485 

methods are applicable to all BIM objects. Since DFs can capture the design features of the 
objects, which supplement more information than typical parameters, such as Width, Height, 
and Depth, to any ML algorithms, the significance of this study is not only applied to motion-
bearing components of the door but also other BIM components with design features in 3D 
views. Lastly, the predicted parametric component details are concise and compatible with 490 

BIM versioning such as on blockchains (Xue & Lu 2020; Zhao et al. 2023). The effects of 
deep features on BIM detailing also shed light on new directions of BIM semantic enrichment 
and digital twin building (Xue et al. 2021).  
 
However, there are two main limitations in this paper, i.e., the quantity of test BIM objects 495 

and the diversity of DFs. Although all the BIM doors annotated with nominal sizes were 
downloaded from NBS BIM Library for the tests (see Table 5), the diversity of test BIM 
objects was still limited. Future researchers are encouraged to test more BIM objects. 



Furthermore, all three DFs in this paper were CNN DFs. Therefore, another research 
direction is to examine the effectiveness of more DL/DFs, such as deep transfer learning or 500 

transformer, for automatic BIM detailing processes.  
 
6 Conclusion 
The insufficient LOD hinders BIM applications for dynamic and interactive digital twins. 
This paper presents an automatic BIM detailing method based on the adoption of DFs. 505 

Experiments on 86 BIM doors from the NBS BIM Library were conducted to test the 
proposed methodology. According to the experimental results, the proposed automatic BIM 
detailing can achieve a satisfactory performance for all classification regression tasks with the 
facilitation of DFs. The results showed that DFs contributed an average of 47.4% (up to 
58.7%) of error reduction in the classification tasks and an average of 18.8% (up to 33.6%) in 510 

the regression tasks. According to the performance and time cost in the experimental results, 
SqueezeNet was the most cost-effective deep feature extraction architecture for the proposed 
method. 
 
This paper contributes to the research in two ways. From the industrial practitioner’s 515 

perspective, the presented method demonstrates an automatic approach to BIM detailing. 
BIM modelers can thus focus on the general designs, while the detailed BIM components – 
even as invisible as hinges in the study case – can be created automatically. From BIM 
researchers’ perspectives, the DFs of BIM 3D views and ML algorithms open new avenues 
for BIM semantic enrichment and digital twin building. With a higher LOD of BIM, digital 520 

twin constructions become more realistic and applicable for a variety of analyses.  
 
Several research directions can extend this study. First, industrial specifications and standards 
and manufacturing semantics can be incorporated to reinforce the BIM detailing process. 
Furthermore, the non-geometry semantics in BIM can be further investigated if the semantic 525 

properties, such as the weight or material proprieties, are consistently available. Also, the 
applications of high LOD BIM objects and projects can be explored, such as interactive 
AECO educational games and digital twins. 
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