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Abstract 

Waste sorting is a critical process in construction waste management system. Computer vision 
(CV) offers waste sorting automation potential by recognizing waste composition and 10 

instructing robots or other mechanical devices accordingly. However, how the plethora of CV 
models developed perform relative to each other remains underexplored, making model 
selection challenging for researchers and practitioners. This study aims to benchmark existing 
CV models towards automated construction waste segregation. Seventeen models were 
selected and trained with unified configuration, and then their performance was evaluated on 15 

the aspect of accuracy, efficiency, and robustness, respectively. In experimental results, BEiT 
attained top accuracy (58.31% MIoU) while FastFCN had the best efficiency (12.87ms). SAN 
displayed the least standard deviation (4.41%) for robustness evaluation. This research 
contributes a reliable reference for CV model selection, advancing automated construction 
waste sorting research and practices, and ultimately promoting efficient recycling while 20 

reducing the environmental impact of construction and demolition waste. 
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1. Introduction 

Construction waste, also known as construction and demolition (C&D) waste, is the solid 
waste stream arising from construction activities such as new building construction, 
renovation, demolition, foundation excavation, and site formation (Lu et al., 2021). Mainly 30 

comprising concrete, bricks, tiles, soil, rock, metals, timber, gypsum, asphalt, plastics, textiles, 
and vegetation, C&D waste accounts for a large share of total solid waste generated around 
the world (Yuan et al., 2024). For instance, it contributed 37.1% of solid waste across all 
sectors in the European Union in 2020 (European Commission, 2023), 67.3% of solid waste 
in the United States in 2018 (USEPA, 2023), 44.0% of solid waste in Australia in 2020 35 

(Gov.AU, 2021), and 40.0% of solid waste in China in 2017 (Zhao et al., 2023). Most 
components of C&D waste are chemically stable, making it less hazardous than other solid 
waste streams (e.g., municipal solid waste and household waste); however, the massive 
amount of C&D waste generated from construction activities amplifies impacts on 
environment and society, including landfill space occupation (Yuan et al., 2021), embodied 40 

carbon emission (Liu et al., 2023), illegal dumping (Lu, 2019), and so on. Therefore, 
construction waste management (CWM) is a growing environmental protection concern 
globally.  
 
Recycling is a prioritized CWM strategy as most C&D waste components are recyclable. 45 

Specific recycling methods vary depending on material composition, while construction waste 
is usually a mixture of materials when generated at source (Yuan et al., 2021). Waste sorting, 
which means separating mixed waste into different composition groups, is therefore a critical 
procedure in CWM (Hoornweg & Bhada-Tata, 2012). In practice, contractors either employ 
workers to manually sort construction waste on site, or they transport it to off-site sorting 50 

facilities where, on payment of a levy, the bulk waste is separated using specialized 
equipment and then the residual mixtures are sorted manually. Manual construction waste 
sorting, albeit common, has been widely criticized for its low efficiency and the serious health 
risks it poses to workers (Lu & Chen, 2022). 
 55 

In promoting a shift from manual sorting to automated separation, computer vision (CV) 
enables machinery (e.g., robots) to automatically recognize and separate different C&D waste 
materials (Lu & Chen, 2022). Scholars have developed diverse CV models for automated 
construction waste sorting. These have achieved promising performance by narrowing 
specific gaps, such as integrating advanced algorithms to improve recognition accuracy 60 

(Davis et al., 2021; Zhou et al., 2022), infer the overall waste content according to surface 
composition identification (Chen et al., 2021), precisely distinguish distinct waste materials’ 
mixing boundaries (Dong et al., 2022), recognize compositions in complex real-life scenarios 
(Lu, Chen, et al., 2022; Yong et al., 2023), reach acceptable performance on unbalanced and 
insufficient data (Na et al., 2022), and optimize feature selection to balance recognition 65 

accuracy and speed (Nežerka et al., 2024), making significant contributions to CV-enabled 
construction waste sorting. 
 
A large number of CV models have been proposed, yet how these models perform in 
comparison to one another remains underexplored. While some model development studies 70 

have conducted cross-comparisons to highlight the strengths of their proposed models, these 
are primarily with limited comparison targets (Lu, Chen, et al., 2022; Nežerka et al., 2024) on 
task-specific datasets (Demetriou et al., 2023; Dong et al., 2022). The lack of systematic and 
unified comparisons between existing models creates a significant research gap. 
Academically, this gap hinders researchers from identifying the advantages and drawbacks of 75 
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various CV methods for CWM, slowing progress in the development of more robust and 
accurate CV methods for automated construction waste sorting. Practically, this absence of 
systematic comparison complicates the selection process for system developers and 
practitioners, potentially leading to suboptimal performance in automated waste sorting 
systems, which in turn exacerbates waste management issues and increases environmental 80 

impact. 
 
Based on the research gap, the primary research question guiding this study is: How do 
existing CV models for construction waste sorting perform against each other in real-life 
CWM scenarios. Therefore, the research objective is to systematically benchmark existing CV 85 

models developed for automating construction waste sorting across various measurement 
dimensions under a unified standard. Such benchmarking benefiting from a large image 
dataset that presents the visual features of construction waste bulks in real-life scenarios, the 
result is compared across various measurement dimensions, including accuracy, efficiency, 
and robustness, to provide model selection suggestions. Furthermore, additional valuable 90 

opinions are revealed and discussed, such as challenges ahead and future improvement 
opportunities. The remainder of the paper is organized as follows. Section 2 reviews previous 
related studies, Section 3 introduces the research methodology and Section 4 describes the 
benchmarking experiment procedure and result. Section 5 discusses the research contributions 
and shortcomings, and conclusions are drawn in Section 6. 95 

 
2. Literature review 
2.1 Computer vision models proposed for construction waste sorting 
Waste sorting plays an essential role in CWM, separating the mixed waste by individual 
composition and allowing the implementation of appropriate recycling and reuse strategies 100 

(Hoornweg & Bhada-Tata, 2012). Still common today, manual sorting has been criticized for 
its low efficiency and the health hazards it presents to workers (Lu & Chen, 2022). To address 
these issues, scholars have proposed various strategies to automate the sorting of C&D waste. 
Of these technologies, one of the most promising is the implementation of CV models to help 
robotic arms detect and separate different construction and demolition waste materials (Lu & 105 

Chen, 2022). 
 
CV models exhibiting a wide range of techniques, architectures, and applications have been 
developed for automated construction waste sorting. Some studies focus on classification 
tasks using deep convolutional neural networks (Davis et al., 2021) or hybrid approaches 110 

combining visual and physical features (Chen et al., 2021). Others tackle object detection 
challenges with improved YOLOv5 models (Zhou et al., 2022) or real-time detection using 
single-stage and two-stage detectors (Demetriou et al., 2023). Semantic segmentation is 
another prominent approach, with models like the boundary-aware transformer (Dong et al., 
2022) and DeepLabv3 (Lu, Chen, et al., 2022; Yong et al., 2023) being applied to recognize 115 

waste compositions in complex real-world scenarios. Additionally, some studies address 
specific challenges, such as handling unbalanced and insufficient data (Na et al., 2022), 
comparing feature extraction methods (Nežerka et al., 2024), or calculating waste volume 
(Jiang et al., 2022). 
 120 

2.2 Performance comparison of CV models for waste sorting 
Given the broad landscape of CV models and their implementation in C&D waste sorting, it is 
crucial to evaluate and compare their performance so that researchers and practitioners in the 
construction industry can identify the most effective approaches as a guide for their future 
efforts. The studies we reviewed employ a variety of evaluation metrics, which can be 125 
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categorized into three main groups: accuracy metrics, efficiency metrics, and robustness 
metrics. Accuracy metrics, such as overall accuracy and intersection over union (IoU), 
measure the correctness of the model’s predictions compared to the ground truth. For instance, 
Davis et al. (2021) and Chen et al. (2021) both reported an accuracy of 94% for their 
respective models. Yong et al. (2023) achieved an accuracy of 96.3% and an IoU of 74.6%. 130 

Efficiency metrics, such as computing time and frames per second (FPS), evaluate the 
computational efficiency of the model, which is critical for real-time applications. Demetriou 
et al. (2023) reported an inference speed of less than 30ms for their model. Robustness 
metrics, including deviation and standard deviation, assess the model’s ability to correctly 
identify positive instances on data with diverse distributions (Dong et al., 2020).  135 

 
Although existing methods have generally employed multi-dimensional metrics to evaluate 
performance, the scope of such comparisons remains limited, and the standards are 
inconsistent. Zhou et al. (2022) proposed a novel computer vision method for construction 
waste object detection, comparing it with four baseline methods on a self-collected dataset. 140 

The results showed that their method achieved a mean Average Precision of 0.9480. 
Similarly, Dong et al. (2022) introduced a construction waste composition recognition method 
based on a vision transformer, comparing its performance with four baseline methods on a 
dataset collected from waste disposal facilities in Hong Kong, with an improvement of 5.48% 
over the baseline methods. Davis et al. (2021) developed a construction waste material 145 

classification method, evaluating its performance by comparing three different 
hyperparameter configurations on a self-collected dataset, which yielded 94% accuracy. In 
summary, the primary focus of current computer vision research in automated construction 
waste sorting is on model development, with evaluations aimed at emphasizing the strengths 
of the proposed models (Demetriou et al., 2023). Consequently, variations in datasets, 150 

experimental setups, and evaluation metrics persist (Nežerka et al., 2024), leading to a 
significant research gap due to the absence of systematic and unified comparisons among 
existing models. 
 
The innovation of this research lies in conducting a systematic and comprehensive 155 

benchmarking study to address the aforementioned limitations and enable meaningful 
comparisons. This study utilized both a consistent, representative dataset and standardized 
evaluation metrics for unified comparison. It tested a wide range of C&D waste sorting 
models to provide a fair and reliable assessment of their performance. By establishing a 
common ground for comparison, this benchmarking study offers valuable insights into the 160 

strengths and limitations of different approaches, identifies areas for improvement, and guides 
future research efforts in the field of CV-based construction waste sorting. 
 
3. Methodology 
In this section, the methodology of conducting the benchmark study will be illustrated. The 165 

overall technical roadmap includes four steps. 
1) Dataset preparation. A dataset includes totally 4,396 common local construction 

waste images is prepared for evaluation. 
2) Model selection. Seventeen models with different popular architecture or technique are 

selected. 170 

3) Model training. All models are trained to convergence with unified standard and same 
configuration. 

4) Performance evaluation. The performance of each model is evaluated on the aspect of 
accuracy, efficiency, and robustness. 

 175 
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3.1 Dataset preparation 
With the assistance of staff from the Hong Kong Environmental Protection Department 
(HKEPD), this research gathered a comprehensive dataset of construction waste truckloads in 
Hong Kong (Chen et al., 2022). The raw data is sourced from sensing systems installed at 
multiple government disposal facilities, which record different information including 180 

overhead images taken by cameras (DS-2CD2025FWD-IHONG KONG 4 mm from 
Hikvision Digital Technology) positioned at the facility's entrance toll gates, along with 
detailed attributes of truck-loaded waste, such as gross vehicle weight, net waste weight, and 
waste loading height, recorded by additional sensors. All images captured in October 2019 
(5,366 images in total) were collected for this research. 185 

 
Within Hong Kong’s CWM system, materials are predominantly classified into one of two 
categories: inert or non-inert (HKEPD, 2011). Inert materials encompass construction debris, 
rubble, earth, bitumen, and concrete, while non-inert materials typically consist of bamboo, 
timber, vegetation, packaging waste, and other organic substances. To facilitate enhanced 190 

granularity, the dataset incorporates 10 categories derived from common local construction 
waste, with seven representing material types and three serving as auxiliary classifications, as 
summarized in Table 1. With the taxonomy, all images were annotated with pixel-level 
semantic labels through crowdsourcing services. Each annotation was then manually checked. 
Finally, by pre-filtering a few low-quality annotations, an annotated dataset of 4,396 images 195 

was constructed. The waste dataset comprises 4,017 images for the training subset, 200 
images for the validation subset, and 179 images for the evaluation subset. 
 
Table 1. The waste dataset information categories 

Name Category Description Palette 
Rock Inert material Rock/Stone/Rubble/Debris  

Gravel Inert material Gravel/Concrete/Bricks  
Earth Inert material Earth/Slurry/Mud  

Packaging Non-inert material Packaging/Fabric/Plastic  
Wood Non-inert material Wood/Cardboard  
Others Non-inert material Others (non-inert)  
Mixed Mixed material Mixed  

Background Auxiliary Background  
Grip Auxiliary Grip  

Truck Auxiliary Truck  
 200 

3.2 Model selection 
As waste objects depicted in images often possess no fixed shape or location, image 
classification and object detection methods struggle to obtain sufficiently accurate information 
(Dong et al., 2020) for downstream processing of C&D waste sorting. Consequently, semantic 
segmentation methods merit exploration for application to C&D waste sorting (Lu & Chen, 205 

2022). For semantic segmentation models, various architectures and techniques to enhance 
performance have been extensively explored. In this study, the segmentation method is 
broadly divided into three categories based on architecture: convolutional neural network 
(CNN)-based, attention-based, and transformer-based (Csurka et al., 2022). Within each 
architectural category, researchers have proposed diverse techniques to improve performance. 210 

For each technique in this study, we select one or two representative methods for 
benchmarking, enumerated in Table 2. 
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Table 2. Selected models for benchmarking 
Index Name Technique Architecture 

1 FCN (Long et al., 2015) Deconvolution CNN 
2 PSPNet (Zhao et al., 2017) Pyramid pooling CNN 
3 DeepLab V3 (Chen et al., 2017) Atrous spatial pyramid pooling CNN 
4 UPerNet (Xiao et al., 2018) Unified perceptual parsing CNN 
5 DeepLab V3+ (Chen et al., 2018) Atrous spatial pyramid pooling CNN 
6 FastFCN (Wu et al., 2019) Joint pyramid upsampling CNN 
7 OCRNet (Yuan et al., 2020) Object-contextual representation CNN 
8 PSANet (Zhao et al., 2018) Pointwise spatial attention Attention 
9 ENCNet (Zhang et al., 2018) Context encoding module Attention 

10 Non-Local Net (Wang et al., 2018) Non-local operation Attention 
11 APCNet (He et al., 2019) Adaptive context module Attention 
12 DANet (Fu et al., 2019) Dual attention module Attention 
13 ISANet (Huang et al., 2019) Interlaced sparse self-attention Attention 
14 ViT (Dosovitskiy et al., 2020) Transformer Transformer 
15 BEiT (Bao et al., 2021) Pretrained transformer Transformer 
16 SAN (Xu et al., 2023) Pretrained multimodal Transformer 
17 Grounded SAM (Ren et al., 2024) Vision foundational model Transformer 

 215 

3.3 Training 
We established a unified model training platform for model training. In terms of hardware 
configuration, all models were trained and evaluated on a workstation equipped with an i9-
13900KF central processing unit, an RTX 4090 graphics processing unit, and 128GB of 
memory. As for the software configuration, the operating system employed is Ubuntu 22.04, 220 

with the Python interpreter version being 3.8. The comprehensive benchmarking experiments 
were conducted using MMSegmentation 1.2.2 and PyTorch 2.0, with the entire platform 
constructed upon CUDA 11.8. 
 
The training hyperparameters are set to the default configuration of the MMSegmentation 225 

framework, which emphasizes usability, consistency, and standardization, with proven 
performance comparable to other codebases (OpenMMLab, 2020). To ensure a fair 
comparison, hyperparameters remain consistent across all models. Specifically, we utilize the 
stochastic gradient descent optimizer (Amari, 1993) to optimize model parameters. The 
PolyLR (Mishra & Sarawadekar, 2019) serves as the learning rate adjustment policy, with 230 

𝑙𝑙𝑙𝑙 = 𝑚𝑚𝑚𝑚𝑚𝑚{𝑙𝑙𝑙𝑙0 × (1− 𝑖𝑖 𝑇𝑇𝑖𝑖⁄ )𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝑙𝑙𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚}, where the initial learning rate 𝑙𝑙𝑙𝑙0 is set to 10−2, the 
polynomial power is set to 0.9, the total number of iterations 𝑇𝑇𝑖𝑖 is set to 8 × 104, and the 
minimum learning rate at the end of scheduling is set to 10−4. Batch size is determined based 
on the highest allowable size under the memory constraint. This study consistently uses a 
batch size of 4, guided by the memory demands of the BEiT model, to ensure experimental 235 

fairness. 
 
The input image size for segmentation models is set to 512×512, adhering to the default 
configuration for model training. Consequently, a transformation is necessary to convert 
images from 1920×1080 to 512×512. This process involves randomly resizing the image, then 240 

flipping and cropping it to 512×512 dimensions. Additionally, some preprocessing techniques 
are adopted to enhance the model’s generalization ability, including random adjustments to 
brightness, contrast, saturation, and color system (OpenMMLab, 2020).  
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3.4 Evaluation 245 

3.4.1 Accuracy evaluation 
To evaluate performance in terms of accuracy, we use the MIoU metric. Widely adopted in 
the research community, this comprehensive metric provides an overall measure of the 
segmentation accuracy of a model across all classes, making it easier for us to compare and 
benchmark different models. MIoU can be computed using Formula (1), where 𝑝𝑝𝑖𝑖𝑖𝑖 denotes 250 

the number of pixels belonging to the 𝑖𝑖𝑡𝑡ℎ category but predicted as the 𝑗𝑗𝑡𝑡ℎ category. 𝑘𝑘 
represents the total number of categories. 
 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑘𝑘
∑ �𝑝𝑝𝑖𝑖𝑖𝑖 �∑ 𝑝𝑝𝑖𝑖𝑖𝑖𝑘𝑘

𝑗𝑗=1 + ∑ 𝑝𝑝𝑗𝑗𝑗𝑗𝑘𝑘
𝑗𝑗=1 − 𝑝𝑝𝑖𝑖𝑖𝑖�⁄ �𝑘𝑘

𝑖𝑖=1                            (1) 
 255 

3.4.2 Efficiency evaluation 
Computation time is employed to assess efficiency performance. The efficiency of CV 
algorithms is a crucial factor to consider in practical applications. Although efficiency may be 
less critical in certain situations, such as smartphone-assisted household waste classification, 
stringent time performance is necessary in scenarios like automated waste sorting with 260 

robotics. This is particularly relevant when considering that a waste recycling facility can 
process thousands of tons of municipal solid waste per day, and sorting speed directly impacts 
overall throughput (Lu & Chen, 2022). 
 
3.4.3 Robustness evaluation 265 

The robustness evaluation aims to assess the stability of semantic segmentation methods’ 
performance on various waste distributions. Lu, Yuan, et al. (2022) found that gross vehicle 
weight and vehicle type significantly affect waste distributions. Heavy inert construction 
waste is typically transported by dump trucks, while light construction waste is often hauled 
by skip container trucks due to their large-sized truck buckets. Skip container trucks can 270 

transport any type of construction waste. Regarding the influence of gross vehicle weight on 
waste distribution, heavier trucks are commonly used for transporting heavy construction 
waste. Lighter trucks, usually vans, are employed by small renovation companies for 
refurbishment or minor works. 
 275 

This loading pattern can be utilized to divide the evaluation subset into distinct groups. 
Vehicle types can be categorized into grab mount, dump, and skip container, while gross 
vehicle weight can be split into six types ranging from 9 to 30 tons. Table 3 illustrates the data 
split results. There are a total of nine groups; the 16-ton skip container group contains 19 
images, and all other groups have 20 images. Consequently, the evaluation subset comprises 280 

179 images. The pie chart in each group displays the data category distribution, revealing 
significant differences among categories. During the robustness evaluation, the MIoU of each 
group is initially calculated, and the standard deviation across all groups represents the 
robustness. 
 285 
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Table 3. Data category distribution of the evaluation subset 

Group 
Index 

Vehicle 
Type 

Gross 
Vehicle 
Weight 
(ton) 

Proportion of each category (%) 

Rock Gravel Earth Packaging Wood Others Mixed 

1 Skip 
container 

16 4.9 19.1 7.8 13.9 42.3 5.9 6.0 
2 24 33.8 20.8 3.8 27.5 10.9 0.3 3.0 
3 Grab 

mount 

16 11.9 10.0 0.2 7.3 47.1 19.2 4.3 
4 24 5.2 13.5 5.4 20.5 21.9 13.2 20.3 
5 30 8.5 3.6 8.8 8.7 33.4 3.0 34.0 
6 

Dump 

9 0 1.9 0.4 14.4 61.6 21.6 0.1 
7 13 0.5 8.8 0.3 10.0 56.5 16.0 7.9 
8 14 4.7 7.2 1.1 3.6 56.8 22.6 3.9 
9 16 2.2 9.8 0 7.6 57.4 21.6 1.4 

 
Specifically, each model is firstly evaluated by MIoU on each group, and the average of all 
those MIoUs is recorded as 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, while the standard deviation is recorded as 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆. 290 

The 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆 serves as an indicator of the method’s robustness. The calculation formula is 
shown in Formula (2) and (3), where n is the number of loading patterns, n=9 in this case, 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 refers to the evaluation result on i-th group.  
 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =
1
𝑛𝑛
∑ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑛𝑛
𝑖𝑖=1                                                (2) 295 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆 = �∑ (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 − 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)2𝑛𝑛
𝑖𝑖=1 𝑛𝑛⁄                                (3) 

 
4. Benchmarking experiments 
In this Section, we analyze the benchmarking results of the 17 methods selected for 
comparison. It is worth noting that Grounded SAM is used in a zero-shot learning manner, 300 

meaning it is not trained on the training subset and is evaluated with the evaluation subset 
directly. All other methods are fully trained on the training subset and then evaluated using 
the evaluation subset. The accuracy, efficiency, and robustness performance aspects of all 
methods are discussed from Section 4.1 to Section 4.3. 
 305 

4.1 Accuracy analysis 
The overall accuracy evaluation results are presented in Table 4. The header of table contains 
the category name and corresponding color palette. The table content displays the evaluation 
results. Each row lists the detailed IoU value for each category of a specific method. Among 
all 17 methods, BEiT achieved the best performance with an MIoU value of 58.31%. BEiT 310 

performed well in most categories, including background, gravel, packaging, wood, others, 
grip, and truck. The vast number of parameters enables BEiT to learn rich, contextual 
representations from both local and global image features, therefore contributed to BEiT’s 
overall superior results compared to other methods. 
 315 
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Table 4. Overall accuracy evaluation result. 
Name ID Back- 

ground Rock Gravel Earth Pack- 
aging Wood Others Mixed Grip Truck MIoU 

Palette             
FCN 1 93.27 32.04 41.56 35.57 55.57 69.72 39.58 31.89 90.39 77.32 56.691 

PSPNet 2 93.09 27.03 39.58 34.29 56.76 69.76 39.18 33.31 90.25 77.5 56.075 
DeepLabv3 3 93.28 34.53 41.61 32.81 56.37 70.51 39.28 33.86 90.4 77.35 57 

UPerNet 4 93.33 36.13 39.58 36.32 57.11 69.93 38.58 34.21 90.36 76.87 57.242 
DeepLabv3+ 5 93.34 32.07 44.45 34.57 55.94 69.94 38.61 33.26 90.31 77.48 56.997 

FastFCN 6 93.25 33.93 39.25 35.65 56.01 68.34 38.31 33.12 90.12 76.82 56.48 
OCRNet 7 93.19 36.27 42.73 38.19 56.12 69.4 39.11 33.28 90.24 76.74 57.527 
PSANet 8 93.3 37.85 42.64 36.4 56.47 70.28 40.5 36.34 90.16 77.23 58.117 
ENCNet 9 93.27 35.43 41.72 33.58 55.98 69.68 38.03 35.11 90.24 77.23 57.027 

Non-local 
Net  

10 93.28 33.26 42.33 35.91 56 69.82 38.73 35.03 90.32 77.38 57.206 

APCNet 11 93.32 36.36 41.63 33.75 55.35 70 38.57 32.55 90.29 77.24 56.906 
DANet 12 93.25 41.2 37.59 39.31 56.41 69.82 37.28 35.49 89.87 76.62 57.684 
ISANet 13 93.36 34.23 39.27 31.32 55.85 69.5 40.65 33.57 90.17 77.17 56.509 

ViT 14 93.24 34.8 36.26 38.7 55.25 67.69 37.07 33.96 88.33 75.89 56.119 
BEiT 15 93.54 34.02 42.96 38.4 58.26 71.56 41.48 35.05 90.22 77.61 58.31 
SAN 16 92.9 32.9 42.1 36.5 53.2 67.8 36.2 35.2 87.3 72.7 55.68 

Grounded 
SAM 

17 51.58 5.36 21.07 0.73 2.58 3.85 0.89 0 1.54 14.48 10.208 

 
For the other results, OCRNet achieved the best performance with an MIoU value of 57.53% 
when comparing with other models with CNN architecture, such results mainly contributed by 320 

the good performance in the rock and earth categories. PSANet achieved the best performance 
across all attention-based methods, with an overall MIoU result of 58.12%. The strong 
performances con categories packaging, wood, and mixed contribute positively to PSANet's 
overall good performance. 
 325 

The MIoU of Grounded SAM is 10.21%, a significant performance gap compared with other 
fully supervised methods. Despite the overall accuracy performance being subpar, there are 
noteworthy aspects that showcase the considerable promise of zero-shot learning methods, 
such as Grounded SAM, where the model needs no training phase and can be directly utilized 
for C&D waste sorting. For the output of Grounded SAM, some good samples prove it can 330 

pinpoint basic objects and discern their contours. However, failure examples also reveal the 
instability of Grounded SAM’s performance, as it struggles with scenarios involving multiple 
waste types or catastrophic errors in object category identification. 
 
In real-time waste sorting applications, accuracy is the most crucial factor for successful 335 

operations. Highly accurate models ensure that materials are properly categorized, preventing 
contamination and costly errors in waste management. While efficiency and robustness are 
important, accuracy remains the cornerstone of effective real-world waste sorting systems. 
Engineering managers should prioritize accuracy, even if it requires sacrificing some 
efficiency. When trade-offs are necessary between accuracy, efficiency, and robustness, they 340 

must be carefully weighed. 
 
4.2 Efficiency analysis 
Computing time is utilized to assess efficiency performance. For the overall evaluation subset, 
the average computing time of all images is recorded and employed for evaluation. The 345 
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evaluation result is depicted in Fig. 1. Fig. 1 is a combination chart includes a bin chart and a 
line chart. The MIoU value can be obtained from the primary axis on the left, and it is 
displayed in blue bar chart as a percentage. The calculation time value is obtained from the 
secondary axis on the right, and it is displayed in orange line chart as milliseconds. 
 350 

 
Fig. 1. Efficiency evaluation result. The blue bin chart represents the MIoU performance of 
each model, while the orange points on the line chart indicate the corresponding computing 

time. 
 355 

Fig. 1 illustrates that both the CNN-based and attention-based methods consistently achieved 
a computing time below 20ms for an input image size of 1920×1080. The FastFCN method 
demonstrated the fastest computation time, requiring only 12.87ms to calculate the 
segmentation result for a single image. Such fast inference primarily due to its Joint Pyramid 
Upsampling module to minimizes the computational complexity and memory usage. Among 360 

all the CNN-based and attention-based methods, OCRNet exhibited the longest computation 
time, which amounted to 24.56ms to allow its Object-Contextual Representation module to 
capture detailed relationships between pixels and their surrounding context. However, it also 
achieved the highest accuracy performance among all the CNN-based and attention-based 
methods. In terms of efficiency performance, Grounded SAM’s computing time was 365 

342.88ms, ten times that of CNN-based and attention-based methods due to the computational 
complexity of integrating visual segmentation with language grounding. However, such 
latency remains acceptable for practical C&D waste sorting tasks (Lu & Chen, 2022). 
 
Efficiency performance holds significant practical importance. Depending on the speed of 370 

sorting hardware, such as conveyors and robotic arms, real-world applications exhibit varying 
sensitivities to latency. In high-speed sorting lines where waste moves rapidly, models with 
low latency should be prioritized. Lower latency typically allows a CV model to process more 
frames per second, accelerating the waste sorting process and enhancing the efficiency and 
throughput of the entire system. Conversely, if the system is less sensitive to latency, models 375 

with higher accuracy can be considered to reduce errors in automated waste sorting and 
improve overall performance. 
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4.3 Robustness analysis 
A robust model ensures that the system can reliably handle real-world waste management 380 

tasks, especially C&D waste with the characteristic of bulky and heterogeneous. Therefore, as 
detailed in Section 3.4.3, the deviation on different data distribution patterns 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆 is used 
to evaluate the robustness. There are totally nine group of loading pattern, which is the 
combination of different vehicle types and gross vehicle weight, are used to calculate the 
deviation.  385 

 

 
Fig. 2. Robustness evaluation result. For sub-figure (a), blue bar refers to the MIoU 

performance of each model, while the error bar refers to the robustness metric 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆 
calculated by formula (3). For sub-figure (b), horizonal axis is the accuracy evaluation result 390 

represented by MIoU, vertical axis refers to the robustness evaluation result represented by 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆. The blue dotted line is the trendline of the relationship between MIoU and 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆. 
 
The robustness results are presented in Fig. 2. In Fig. 2 (a), the bars represent the MIoU values 
on the total evaluation dataset, while the error bars indicate the corresponding 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆 values. 395 

A smaller 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆 value indicates better robustness performance. SAN exhibits the smallest 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆 of 4.58%, making it the most robust method. ISANet demonstrates the largest 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆 value of 10.11%, indicating the lowest level of robustness. Despite BEiT’s 
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outstanding accuracy performance, its 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆 value stands at 8.83%. Concerning robustness 
performance, Grounded SAM’s 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆 is 1.49%, the smallest among all methods. However, 400 

such a low 𝑀𝑀𝑀𝑀𝑜𝑜𝑜𝑜𝑆𝑆𝑆𝑆 does not guarantee robustness as its MIoU is also low, indicating that 
Grounded SAM’s fluctuation range must remain minimal, resulting in a low 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆 value. 
 
Fig. 2(b) illustrates a correlation between robustness and accuracy. Grounded SAM is 
excluded from this analysis due to its significantly different accuracy performance. A linear 405 

trendline is applied to fit the correlation, which is calculated using the least squares method. 
The results show that MIoU and 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆 are positively correlated, indicating that higher 
accuracy generally corresponds to lower robustness. This is likely because models highly 
optimized for accuracy on a specific dataset tend to overfit to details or noise within that data 
(Tsipras et al., 2018). The reliability of this trend is measured by the R-squared value of 410 

0.0774, suggesting the correlation is not absolute, and that the complexity of the model 
architecture significantly impacts performance evaluation. There are several noteworthy 
deviations from the linear relationship between accuracy and robustness. For example, 
OCRNet exhibits the second-best robustness after SAN, with an 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆 of 6.7%, yet its 
MIoU is 1.85% higher than SAN. PSANet, with the second-highest accuracy at 58.12%, 415 

demonstrates more stable performance in robustness evaluation, with an 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆 of 7.9%. 
 
This robustness analysis highlights an important consideration when evaluating accuracy: a 
model must not only perform well under optimal conditions but also consistently handle 
diverse real-world scenarios. In real-world waste sorting, when waste distribution is relatively 420 

simple and stable over time and space, users can prioritize model accuracy. However, when 
waste is highly heterogeneous or bulky, both accuracy and robustness must be considered, and 
a balance between the two should be struck. This ensures that the CV model can function 
effectively in ideal conditions while providing reliable information for the automatic sorting 
of construction waste. 425 

 
5. Discussion 
This research presents a benchmark study that compares the performance of various CV 
models in the task of automated construction waste sorting. Compared with model 
development studies, this work offers a broader and more objective comparison by evaluating 430 

CV models with different architectures under a unified standard. The key advantage of this 
approach is its ability to ensure consistent evaluation across models, enabling more informed 
decisions when selecting models for specific applications, thereby enhancing practical 
deployment. Compared with general benchmark studies on public datasets, this research 
focuses on the specialized task of construction waste sorting, which presents unique 435 

challenges due to domain gaps. Waste objects are highly cluttered and heterogeneous, making 
this task significantly different from general vision tasks. The strength of this study lies in 
providing benchmark results on a construction waste sorting dataset, offering domain-specific 
insights crucial for advancing waste management automation. Based on the comparison 
results, valuable insights regarding model selection, upcoming challenges, and future research 440 

recommendations are detailed in Sections 5.1 to 5.3. 
 
5.1 Suggestions for model selection 
The evaluation results of all fully supervised methods from this research indicate that in terms 
of accuracy, the MIoU varies from 55.68% to 58.31%, with BEiT achieving the best 445 

performance. In terms of efficiency, the computation time ranges from 12.87ms to 203.72ms, 
and FastFCN exhibits the best performance. Regarding robustness, the standard deviation of 
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MIoU across different data distribution patterns varies between 4.48% and 10.11%, with SAN 
demonstrating the best performance.  
 450 

While the assessment outcome is clear-cut, potential users and researchers should weigh the 
tradeoffs among these three aspects for successful implementation. For instance, even though 
BEiT boasts the best performance, it requires 204ms to process a single image, over 10 times 
longer than that required by CNN-based and attention-based methods, rendering it potentially 
unsuitable for time-sensitive C&D waste sorting situations. Consequently, we can offer 455 

recommendations for model selection based on these evaluation findings. 
 

1) General performance: The balanced mode necessitates a compromise between 
accuracy, efficiency, and robustness. This widely preferred mode can be considered 
the default choice. PSANet is the most fitting model for this mode, as its MIoU is 460 

58.12%, only 0.19% lower than the best performance. It requires 15.28ms for 
computation, which is a mere 2.41ms longer than the best performance. The standard 
deviation is 7.91%, which is 3.43% higher than the best performance. 

2) Accuracy-prioritized: For users who need extremely accurate performance and can 
tolerate longer computing times, BEiT is the most suitable model. It has the highest 465 

MIoU of 58.31% and performs well in both overall categories and waste category 
evaluations. 

3) Efficiency-prioritized: For users who require a CV method for real-time C&D waste 
sorting tasks or have limited hardware capabilities, FastFCN meets their needs. It 
requires only 12.87ms for computation and achieves a MIoU of 57.53% with a 7.38% 470 

standard deviation. 
4) Robustness-prioritized: For users who prioritize prediction stability in C&D waste 

sorting tasks with a wide variety of waste types, mixture patterns, or distributions, 
SAN is the most suitable option due to its low standard deviation of 4.59%. 

5) Annotation-free: For users who lack the resources to annotate custom C&D waste 475 

sorting data or only require basic semantic understanding without any workload, 
Grounded SAM is the ideal choice. Based on general visual understanding capabilities, 
Grounded SAM can provide semantic segmentation results for C&D waste sorting in a 
zero-shot manner. 

 480 

5.2 Challenges ahead 
The CV-based automated waste sorting system can foster a transition from manual sorting to 
automated separation. Nonetheless, this benchmarking study identifies certain drawbacks that 
could present obstacles in translating current academic endeavors into practical applications. 
 485 

Firstly, the low quality of C&D waste sorting data hinders the accuracy of CV methods. C&D 
waste sorting datasets are often captured under complex real-life conditions where waste 
objects lack clear boundaries and fixed shapes. These objects are stacked together, resulting in 
construction waste that is bulky, heterogeneous, cluttered, and heavily overlapping (Lu & 
Chen, 2022). Even manual identification of construction waste features from images can be 490 

challenging due to these factors (Dong et al., 2022). This presents a challenge for the accuracy 
performance of CV methods applied to C&D waste sorting. 
 
The second challenge arises from the inherent data imbalance present in construction waste 
data. Due to the varying demands for different types of materials during construction 495 

processes, there are significant disparities in the waste quantity distribution. In cases of 
imbalanced data, the model tends to be biased towards the majority class, which has more 
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samples to learn from (Dong et al., 2020). This imprecision in C&D waste sorting can result 
in inaccurate component estimation. More critically, the majority class often consists of 
auxiliary categories such as background, whereas the minority class typically includes waste 500 

types that researchers are more interested in (Lu & Chen, 2022). Although accurately 
identifying auxiliary categories can assist the model in locating and recognizing waste, the 
data imbalance negatively affects the recognition results in a way that cannot be overlooked. 
 
The final challenge is the time consumption of transformer-based models. These models, 505 

containing billions of parameters, offer benefits such as improved performance and reduced 
annotation workload. However, they also present challenges in computational requirements 
and memory usage. Evaluation results indicate that CNN and attention-based models typically 
take about 15ms for a single image, whereas transformer-based models require around 200ms 
for individual tasks. Notably, while experimental results are conducted on an RTX 4090 GPU, 510 

actual computing speeds may vary depending on the hardware, as only a few platforms 
possess such powerful GPUs. This discrepancy may result in significant latency for real-world 
C&D waste sorting computing tasks. 
 
5.3 Future research recommendations 515 

Considering the current challenges and limitations, future research may explore the following 
avenues. First, researchers can address low-quality data through data augmentation, cleaning, 
or implementing more robust architectures (Lu & Chen, 2022). Second, data imbalance can be 
tackled using resampling techniques, such as over-sampling for minority categories or under-
sampling for majority categories (Khushi et al., 2021). Researchers are also exploring 520 

modified loss functions to address imbalance, including weighted cross-entropy loss or focal 
loss (Dong et al., 2020). Lastly, the time consumption issue of transformer-based vision 
foundation models can be managed by deploying more powerful computing platforms or 
utilizing cloud services to offload local computing power (Ni et al., 2024). Although 
transformer-based methods demonstrate high performance and potential in C&D waste 525 

sorting, users must consider all factors and select the most suitable methods for their specific 
tasks. These efforts ultimately contribute to the practical significance of construction waste 
management in engineering projects, by reducing environmental impacts, promoting 
recycling, curbing illegal dumping, and fostering sustainable economic growth. 
 530 

6. Conclusions 
CV offers significant potential for facilitating the transition from manual sorting to automated 
separation. This study aimed to benchmark existing CV models that have been developed for 
automating C&D waste sorting, categorizing them into three groups: CNN-based, attention-
based, and transformer-based. We evaluated all models using a unified standard and compare 535 

them in terms of accuracy, efficiency, and robustness. The contributions of this research are: 
1) A benchmarking pipeline designed for performance evaluation. The research 

methodology for deriving benchmarks consists of dataset preparation, model selection, 
training, and evaluation. Each step was carefully designed to establish a universal and 
standard pipeline for automated CV-based C&D waste sorting. All hyperparameters 540 

are well controlled for fair comparison. Based on the benchmarking pipeline, 
seventeen existing common CV models were evaluated and compared across three 
different measurement dimensions, i.e., accuracy, efficiency, and robustness. 

2) Upon analysing the evaluation results, this research offers practical suggestions based 
on different real-world usage requirements and outlines the challenges faced by 545 

current CV methods for C&D waste sorting, proposing future directions to address 
each challenge. The study holds both theoretical significance and practical value. 
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Theoretically, it allows researchers to identify the strengths and weaknesses of various 
CV approaches, laying the groundwork for refining existing models and developing 
more innovative, robust solutions for waste sorting. From an engineering perspective, 550 

it assists practitioners and system developers in selecting the most suitable CV models 
for real-world applications, improving automated sorting performance and enhancing 
waste management outcomes. Ultimately, this research fosters more efficient recycling 
and reduces the environmental impact of construction and demolition waste. 

 555 

This pipeline not only ensures that benchmarks are derived in a systematic and rigorous 
manner, but also facilitates a fair comparison and understanding of the performance of various 
models and techniques within the C&D waste sorting domain. 
The benchmarking results reveal that BEiT achieved the highest accuracy performance, with a 
MIoU of 58.31%. FastFCN exhibited the shortest computing time, clocking in at 12.87ms 560 

during efficiency evaluation. SAN demonstrated the smallest standard deviation of 4.41% in 
terms of robustness evaluation. PSANet emerges as the recommended model due to its 
excellent balance across the three aspects, while Grounded SAM offers a straightforward 
“load and go” approach to alleviate the annotation workload.  
 565 

By benchmarking these models against a unified standard, this study identified three key 
challenges: low data quality, data imbalance, and the time consumption of transformer-based 
models. For each challenge, it proposed future directions to address low-quality data, mitigate 
data imbalance, and manage the computational demands of transformer-based models. This 
study facilitates informed decision-making by researchers and practitioners in the selection 570 

and development of CV models. Furthermore, it instills confidence in the adoption of CV-
based automated C&D waste sorting for normal waste management workflows in the 
construction industry. 
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