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Abstract 

The rapidly expanding number of IoT-based camera devices makes smart work packaging (SWP) 
easier to access massive construction workers’ personal image information for occupational health 
and safety (OHS) status monitoring. SWP can then transmit these personal data to the cloud for 
training the machine learning models and offer safety alerts or health insights. However, there are 5 

two urgently important challenges. Firstly, the machine learning model needs to aggregate the 
SWPs’ image data from each construction worker, which may pose a risk to private data leakage 
without strict privacy and security agreement. In addition, the machine learning models trained on 
all SWPs’ image data may compromise the personalization of image-based OHS status monitoring 
for each construction worker. To address the above issues, this study proposes a FedSWP 10 
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framework, the federated transfer learning-enabled SWP for protecting the personal image 
information of construction workers in OHS management. FedSWP executes the gradient 
parameters aggregation through federated learning for the image data in each SWP and builds 
relatively personalized models by transfer learning. Crane operators’ facial fatigue monitoring 
experiments are conducted and have evaluated that FedSWP can achieve accurate and personalized 15 

safety alerts and healthcare. This study paves the way for the generalization and extension of 
FedSWP in many construction OHS applications. 

Keywords:  

Federated Learning, Smart Work Packaging, Occupational Health and Safety, Transfer Learning, 
Privacy and Security, Image Data, Facial Fatigue 20 

1. Introduction 

Globally, the records of occupational health and safety in the construction industry are among 
the poorest compared to other industries (Li et al., 2018). Construction tasks are known to be 
executed in hazardous environments and unhealthy working conditions (Hasanzadeh et al., 
2017). Despite following strict OHS regulations or transferring most site jobs to the 25 

prefabrication plant, there is no significant decline in the number of work-related injuries, 
illnesses, and diseases (Niu et al., 2019). Unsafe behavior, frequently located in the high-risk 
area, disordered biosignals (e.g., heartbeat) from construction workers are indicated as the 
common causes of OHS issues in the construction site (Guo et al. 2016; Fang et al. 2020). Thus, 
one of the most critical tasks is to track construction workers’ OHS data, such as unsafe behavior 30 

motions, locations, and other biosignals in the construction workplace. Also, there is a lack of a 
general model for each construction worker to link their own OHS status with task executions for 
satisfying overall project performance. Smart work packaging (SWP) is a potential approach to 
facilitate construction workers preparing well by monitoring and predicting their OHS status 
before executing tasks (Li et al. 2019a; Li et al. 2019b; Li et al., 2020b). Recently, the expanding 35 

deployment of IoT-based camera devices mounted in the construction worker’s personal 
protection equipment (PPE) or the workface of construction sites improve the capacity of SWP 
in sensing and tracking image information of each construction worker for ergonomic posture 
recognition, physical fatigue assessment, falls and unsafe behavior detection  (Yan et al. 2017; 
Yu et al. 2019; Fang et al. 2018). Meanwhile, the rapid development of machine learning 40 

techniques enhances the SWP to help construction workers to understand their OHS status by 
processing, networking, and reasoning their image information into each construction workflow. 
SWP with deep learning and optimization techniques has also been proved to offer early 
warnings or predictions to OHS issues such as facial fatigue (Li et al., 2019a) and unsafe 
behavior (Li et al., 2020b). 45 

Image data-processing models in construction task executions, such as machine learning models 
embed in SWP, are usually trained on sufficient image data to monitor and predict construction 
workers’ OHS status. The traditional image data-processing mechanism in SWP involves simple 
image data aggregation models, in which cameras capture video data to the cloud, and the cloud 
is responsible for cleaning, merging and transferring them into the image data. Finally, the cloud 50 

will use the aggregated image data and establish standard models for OHS applications. 
However, there are two critical challenges in the image data-processing mechanism of SWP in 



construction OHS. Firstly, image data for unsafe behavior or motions, facial fatigue, disease and 
medical reports are sensitive and private. Thus, image datasets for construction OHS are hard to 
be collected, and they keep in distributed construction workers or isolated construction sites. The 55 

insufficient image data sources can result in unsatisfied machine-learning models’ performance, 
which serves as the critical constraint of SWP for construction OHS management. Moreover, 
increasing numbers of countries enforce laws or regulations to protect data privacy and security, 
such as the General Data Protection Regulation (GDPR) published by the European Union 
(Voigt et al., 2017). Secondly, machine learning models in SWP lack personalization for each 60 

construction worker. Current methods rely on a standard cloud model for monitoring the OHS 
statuses of all construction workers. After aggregating adequate image data to get a satisfied 
machine learning model, then the model is distributed to all SWPs. However, different 
construction workers have various physical characteristics and daily work patterns. Thus, the 
standard model in SWP can not perform personalized OHS management (Chen et al., 2020). 65 

Thus there is a dilemma that construction image data is in the distributed SWP and isolated 
construction sites. Still, it is prohibited from collecting, aggregating, and using the image data for 
machine learning processing. How to legally and ethically solve image data usage and isolation 
in SWP is a significant challenge for both construction professionals and academicians. 
Federated transfer learning could be a potential solution for these challenges (Yang et al., 2019).  70 

This study aims to propose FedSWP, the federated transfer learning-enabled SWP framework for 
preserving personal image information of construction workers to achieve better OHS 
management, improving data isolation and personalization issues of SWP. To satisfy this aim, 
three concrete objectives are explained below: (1) To establish a federated learning model and 
define related SWP workflow for image data privacy persevering; (2) To utilize transfer learning 75 

for achieving personalized model learning for each SWP; (3) To validate the FedSWP in a 
scenario of crane operator facial fatigue monitoring. The contributions to the body of knowledge 
in this study can be summarized as threefolds. First, to the authors’ knowledge, this study is one 
of the first investigations on federated transfer learning in the construction OHS to improve the 
image data privacy-preserving for each construction worker at the work package level. To this 80 

end, a framework of FedSWP with five tasks is proposed. Second, the hybrid deep neural 
network in FedSWP is developed and customized to achieve better accuracy and personalization 
in the complex tasks of facial fatigue monitoring and prediction, which has very sensitive facial 
expressions and very dynamic spatial-temporal features. Third, FedSWP ensures the task of 
facial fatigue prediction by gathering encrypted model parameters instead of directly capturing 85 

the private facial image, keeping the training dataset locally, and ensuring privacy-preserving of 
the raw data. The rest of the paper is organized as follows. Subsequent to this introductory 
section is Section 2 to elaborate backgrounds on construction OHS, SWP, and federated transfer 
learning. Section 3 is to delineates a FedSWP framework, followed by the experiment elaborated 
in Section 4. Section 5 is a discussion to present the novelties and limitations of this study. 90 

Conclusions are drawn in Section 6. 



2. Background 

 2.1 Construction Occupational Health and Safety 

Construction on-site activities cover intensive workloads and are physically demanding in 
hazardous and unhealthy environments, which result in high rates of injuries, fatalities, 95 

musculoskeletal, and cardiovascular diseases (Lee et al., 2017). Previous studies have proved 
that most of these OHS issues do not occur at random when reaching high monitoring and 
predictive skills (Hallowell et al. 2013; Tixier et al. 2016; Park and Kim, 2013). Thus, numerous 
tracking and sensing technologies (See Fig.1) have been empirically and quantitatively used to 
monitor OHS status for construction workers rather than being approached by analyzing 100 

subjective data and expert opinion. As shown in Fig.1, numerous IoT sensors can be embedded 
in the personal protective equipment (PPE) for invasive-free OHS status monitoring. For 
example, smart helmets with GPS can help track workers whether frequently appeared in the 
hazardous workplace (e.g., crane operation area) (Edirisinghe, 2019). Smart glasses with cameras 
can facilitate monitoring of workers’ fatigue or unsafe behaviors through image process 105 

techniques (Chang et al., 2018). Smart vests with sensors of motion, temperature, humidity, and 
other biomedical pads can sense heat stress, muscle strain, or other cardiovascular signals (Ahn 
et al., 2019). However, previous studies were limited to exploring a general model for managing 
isolated OHS data and making the OHS insights (e.g., predictions, warnings) ready for each 
distributed construction worker before task executions at the work package level. The smark 110 

work packaging (SWP) is such an approach to helping model, optimize, and monitor each 
worker’s OHS status and facilitate their task executions. 



 
Figure 1. OHS sensory data for construction worker 

 2.2 Smart Work Packaging 115 

SWP is defined as an approach to decompose the construction workflows and integrate 
smartness capabilities, such as visualizing, processing, networking, and reasoning into the 
workflows so that they can be executed autonomously, adapt to changes in their physical context, 
and interact with the surroundings to enable the more resilient process (Li et al., 2019b). 
Numerous techniques have been used to model, optimize, and monitor the OHS data in SWP for 120 

each construction worker. For example, the hybrid system dynamics-discrete event simulation 
model in SWP can help assess the impacts of each workers’ OHS constraints on overall project 
schedule performance (Li et al., 2019c). In addition, the probabilistic roadmap model serves in 
SWP to facilitate task optimization by capturing dynamic OHS data (e.g., locations of walking 
workers) (Li et al., 2020). Furthermore, the hybrid deep neural networks (convolutional neural 125 

networks (CNN) and bidirectional long-short term memory (Bi-LSTM)) developed in SWP have 
been used efficiently to monitor and predict the crane operators’ fatigue (Li et al., 2019a; Li, 
2019).  Instead of introducing an entirely new workflow in monitoring the worker’s fatigue, 
SWP augments existing workflows with smart characteristics, including adaptivity, sociability, 
and autonomy (Li, 2019). The crane operator fatigue monitoring and alerting needed in the crane 130 



operations is the trial to activate the potential of proactive tracking, updating, and predicting in 
SWP’s autonomy. The SWP-enabled fatigue monitoring service has been investigated in the 
author’s previous study, and the architecture of this service is shown in Fig.2 (Li et al., 2019c).  

 

Figure 2. The architecture of SWP-enabled fatigue monitoring service 135 

This service is supported by IoT-based construction resources (smart construction objects 
(SCOs)) and the smart BIM platform. The SCOs are built by equipping the objects such as crane 
cabin, operator, helmet and wrist on the operator with the various sensing and tracking 
technologies (e.g., RFID, bio-sensors for monitoring fatigue, WiFi, camera) for achieving 
smartness in data generation and collection. This process can both enrich and exchange 140 

information with the smart BIM platform. Then, after the interactions between the crane 
operators and the human-machine interface, SWP can be activated to execute the tasks of fatigue 
monitoring. Models and techniques in SWP often need to share or aggregate data from each 
construction worker.  

However, the use of workers’ personal data may generate risks to privacy issues. The privacy 145 

concerns raised by construction workers can impede the dissemination of SWP and related 
wearable technologies in construction sites. For example, SWP for OHS management has a good 
intention to prevent workers’ access to a hazardous construction environment by using location-
based technologies. However, construction workers may be reluctant to reveal their location 
data, as they think the data can be used for surveilling their idling time (Choi et al., 2017) (Seo et 150 



al., 2015). IoT Camera-based image process techniques in SWP are also most widely used for 
construction OHS monitoring (Mostafa and Hegazy, 2021). For example, Tang et al. (2020) 
improved the breadth and depth of vision-based safety compliance checking by explicitly 
classifying worker-tool interactions. Wu et al. (2019) proposed a one-stage system based on a 
convolutional neural network (CNN) to automatically monitor whether construction workers are 155 

wearing hardhats or not. Luo et al. (2019) integrated the latest computer vision methods to detect 
and visualize the dynamic workspaces of construction workers on foot. Son et al. (2019) used the 
deep residual networks to detect construction workers under varying poses and against a 
dynamic environment. Ding et al. (2018) also developed a hybrid deep learning model to detect 
unsafe behavior with complex Spatio-temporal features. These studies have frequently involved 160 

private human-related images. Thus, technical solutions for privacy-preserving SWP to relieve 
workers’ privacy concerns are urgently needed, particularly image information. Federated 
learning holds the key. 

 2.3 Federated Transfer Learning 

Federated learning is firstly proposed by Google to keep data trained locally on the distributed 165 

users’ mobile devices and updated parameters to a global machine learning model, which aims to 
protect user data privacy (Konečný et al.,2016). Since then, numerous studies push forward the 
evolution of federated learning, such as optimization improvement (e.g., reduce communication 
cost, heterogeneity) (Sattler et al., 2019), security analysis (e.g., blockchain-enabled privacy-
preserving technologies) (Lu et al., 2019), and expanding applications (e.g., mobile devices, 170 

industrial engineering, healthcare) (Li et al., 2020a). SWP assigned to each construction worker 
can be considered as the distributed multi-agent network. Thus, federated learning can resolve 
data islanding and privacy issues by training machine learning models in the SWP network. 
Yang et al. (2019) classified federated learning into three categories: (1) horizontal federated 
learning, where distributed parties share similar features but differ in samples; (2) vertical 175 

federated learning, where distributed parties share similar samples but vary in features; (3) 
federated transfer learning, where distributed parties not only differ in samples but also in 
features. As OHS data of construction workers in each SWP is from different samples and may 
share a few features, FedSWP can be the federated transfer learning (FTL). It would be the first 
customized FTL model for construction OHS. Like the human’s learning processes on cross-180 

domain knowledge,  transfer learning can employ existing knowledge from a familiar domain to 
improve the learning performance or minimize the training processes in a new domain (Zhuang 
et al., 2020). Based on the distribution variation between different domains, transferring learning 
is classified into homogeneous and heterogeneous (Weiss et al., 2016).  The former indicates the 
domains have the same features and accustom the domains by adjusting the sample selection bias 185 

(Bickel et al., 2009). The latter presents the domains with different features, requiring feature 
adaption (Long et al., 2013). As the availability of labeled OHS data is unrealistic, FedSWP 
mainly used deep transfer learning models in the federated learning paradigm.  

3. The Proposed FedSWP Framework  

3.1 Problem Definition 190 

In this study, the construction workers are the entities in facial fatigue status monitoring and 
prediction. SWPs are the computing nodes that each SWP corresponds to each worker and 



includes the sensory camera. In the context of facial fatigue status monitoring and prediction, 
construction workers can be considered as SWPs in the proposed FedSWP framework. All SWPs 
have image datasets 𝐷𝐷. FedSWP aims to help monitor and predict the facial fatigue status with 195 

historical image data from isolated SWPs without sharing any data and data privacy leakage. 
Given 𝑊𝑊 = {𝑊𝑊1,𝑊𝑊2,⋯𝑊𝑊𝑁𝑁} denotes the SWPs (N workers) set, and the datasets in SWPs can be 
denoted by 𝐷𝐷 = {𝐷𝐷1,𝐷𝐷2,⋯𝐷𝐷𝑁𝑁}. Let 𝑡𝑡 and 𝑂𝑂𝑡𝑡 denote the t-th timestamp for temporal data and 
fatigue status at the t-th timestamp. Let 𝑓𝑓(𝑡𝑡,𝐷𝐷) be the function of facial fatigue status prediction, 
the problem definitions of personalization and privacy can be summarized as follows: 200 

Privacy: this study defines privacy as avoiding access to private facial image data, which may be 
closely related to the construction worker’s personal information. For example, a camera 
mounted in the crane cabin monitors operator fatigue status and allows the project manager to 
access crane operators’ facial or other behaviors, violating the privacy definition. In this study, 
each SWP trains its local model on local datasets rather than sharing any data and only 205 

submitting the local model’s updated parameters to the cloud. 

Personalization: this study defines personalization as higher accuracy in predicting facial 
fatigue status for each SWP. Previous methods for facial fatigue status monitoring and prediction 
aggregate all the datasets 𝐷𝐷 = 𝐷𝐷1 ∪  𝐷𝐷2 ∪ ⋯∪ 𝐷𝐷𝑁𝑁 to train a machine learning model and 
calculate 𝑂𝑂𝑡𝑡+𝑠𝑠 = 𝑓𝑓(𝑡𝑡 + 𝑠𝑠,𝐷𝐷) with the accuracy of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, where 𝑠𝑠 is the prediction window after 𝑡𝑡. 210 

As all datasets’ distributions may vary and OHS datasets in SWPs require privacy-preserving. 
The federated transfer learning model for each SWP trained as 𝑂𝑂𝑡𝑡+𝑠𝑠 = 𝑓𝑓𝑖𝑖(𝑡𝑡 + 𝑠𝑠,𝐷𝐷𝑖𝑖)  and the 
accuracy can be denoted by 𝐴𝐴𝐹𝐹𝐹𝐹𝐹𝐹. The hypothesis of FedSWP is then to test whether the 
accuracy of federated transfer learning is better than traditional methods, which can be denoted 
by  215 

                                                                    𝐴𝐴𝐹𝐹𝐹𝐹𝐹𝐹 − 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 > 0                     (1) 

3.2 Framework Overview 

This section proposes the FedSWP framework, which enables SWP for privacy-preserving and 
personalized fatigue monitoring by employing federated transfer learning. Fig.3 presents the 
FedSWP framework and five tasks included for each SWP. Firstly, a machine learning model is 220 

selected and trained on the public datasets to get a global model. Secondly, this initial global 
model is shared with each SWP. Thirdly, the local model is trained on each worker’s image 
database. In addition, SWP updates the local models’ parameters to create a new global model. It 
should be noted that this task sends back the local model’s encrypted parameters rather than 
sharing any construction workers’ facial image data. Finally, each SWP can get the personalized 225 

model by performing transfer learning from the global model to the local model. 



 

Figure 3. FedSWP framework for federated transfer learning 

3.3 Federated Transfer Learning 

FedSWP takes the federated transfer learning paradigm (Chen et al. 2020; Liu et al. 2020) to 230 

achieve encrypted parameter sharing and personalized model training. According to the above 
framework, federated transfer learning mainly comprises two critical parts: federated learning 
and transfer learning. After receiving the global machine learning model, it is distributed to SWP 
for federated learning by training the local model and obtaining the updated global model. Then 
the updated global model is integrated with each local model for transfer learning. 235 

3.3.1 Federated Learning 

In FedSWP, deep neural networks are adopted to train the global and local models. It can assume 
for fatigue monitoring and prediction task in each SWP has one database, and the local training 
dataset can be defined as 𝐷𝐷 =  ∑ 𝐷𝐷𝑛𝑛𝑁𝑁

𝑛𝑛=1 . In the typical deep neural networks, given the sample 
set {𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖}𝑖𝑖=1

𝐹𝐹𝑛𝑛 , where the input vector is 𝑥𝑥𝑖𝑖 ∈ ℝ𝑑𝑑 with d dimension of features, and the output 240 

value is 𝑦𝑦𝑖𝑖 ∈ ℝ. The model parameter vector 𝜔𝜔 ∈ ℝ𝑑𝑑 (e.g., weight and bias) can be obtained by 
fitting the output 𝑦𝑦𝑖𝑖 with loss function ℓ (∙,∙), e.g., mean square error (MSE) for the regression 
model. Let 𝑓𝑓𝐺𝐺  denote the global model to be learned, and the learning objective can be 
represented as follows: 

                              arg min
𝜔𝜔∈ℝ𝑑𝑑

ℒ(𝜔𝜔) =  ∑ ℓ𝐹𝐹𝑛𝑛
𝑖𝑖=1 (𝑓𝑓𝐺𝐺(𝑥𝑥𝑖𝑖),𝑦𝑦𝑖𝑖)                 (2) 245 



Once receiving the global model, it can be broadcast to all SWPs via additively homomorphic 
encryption for local training. When sending back the well-trained parameters, homomorphic 
encryption can also prevent parameter leakage in the parameter sharing processes (Aono et al., 
2017). Let 𝐸𝐸(∙) represent the homomorphic encryption function, for any two parameters 𝜔𝜔1 and 
𝜔𝜔2 in two different SWPs,  the additively homomorphic encryption can be achieved as follows: 250 

                             𝐸𝐸(𝜔𝜔1) + 𝐸𝐸(𝜔𝜔2) = 𝐸𝐸(𝜔𝜔1 + 𝜔𝜔2)                           (3) 

Similarly, let 𝑓𝑓𝑊𝑊 denote the local model to be learned in SWP, and the learning objective can be 
represented as follows: 

                               arg min
𝜔𝜔𝑊𝑊∈ℝ𝑑𝑑

ℒ(𝜔𝜔𝑊𝑊) =  ∑ ℓ𝐹𝐹𝑛𝑛𝑊𝑊
𝑖𝑖=1 (𝑓𝑓𝑤𝑤(𝑥𝑥𝑖𝑖),𝑦𝑦𝑖𝑖)                 (4) 

When all local models 𝑓𝑓𝑊𝑊 are trained, they should be uploaded for aggregation. However, the 255 

limited communication bandwidth can lead to high-latency and low-throughput for aggregating 
local model’s updates from SWPs. To mitigate the communication cost, each SWP can 
implement gradient descent optimization based on its local dataset. The cloud then conducts 
weighted average aggregation on their updates from the SWPs. See Algorithm 1, the federated 
averaging algorithm contains three steps: (1) randomly select subsets of SWPs and broadcast the 260 

global model to the selected SWPs; (2) Each SWP W trains data locally and updates 𝜔𝜔𝑡𝑡 for E 
epochs of stochastic gradient descent (SGD) (e.g., Adam) with mini-batch size to get 𝜔𝜔𝑡𝑡+1,𝑤𝑤 ; (3) 
The cloud aggregates each SWP’s 𝜔𝜔𝑡𝑡+1 through additively homomorphic encryption. 

Algorithm 1 Federated Averaging Algorithm 

Algorithm 1: Federated Averaging Algorithm 

Input: SWP 𝑊𝑊 = {𝑊𝑊1,𝑊𝑊2,⋯𝑊𝑊𝑁𝑁}, C is the selection proportion of SWPs in each          
            Round, B is the local minibatch size, E is the number of local epochs, and 𝜂𝜂    
            is the learning rate 
Output: Parameter 𝜔𝜔 
Cloud Execution: 

Initialize 𝜔𝜔0 (Pre-trained by a public dataset) 
for each round t = 1, 2, … do 
     𝑆𝑆𝑡𝑡 ←Random subset of max(𝐶𝐶 ∙ 𝑊𝑊, 1) SWPs in the current round 
     for each SWP  𝑤𝑤 ∈ 𝑆𝑆𝑡𝑡  in parallel do 
           𝜔𝜔𝑡𝑡+1,𝑤𝑤 ← SWPupdate (𝑤𝑤,𝜔𝜔𝑡𝑡) 
           𝜔𝜔𝑡𝑡+1,𝑤𝑤 ← ∑ 𝑛𝑛𝑤𝑤

𝑛𝑛
𝑁𝑁
𝑤𝑤=1 𝜔𝜔𝑡𝑡+1,𝑤𝑤 

SWPupdate (𝑤𝑤,𝜔𝜔𝑡𝑡): // Executed on SWP w 
     for each epoch 𝑒𝑒 ∈ [1,𝐸𝐸] do 
           Split local dataset in ℬ (𝐵𝐵

𝑛𝑛
 batches of size B) 

           for batch 𝑏𝑏 ∈ ℬ  do 
           𝜔𝜔 ← 𝜔𝜔 − 𝜂𝜂∇ℓ(𝜔𝜔;𝑏𝑏) 
     Return 𝜔𝜔 to Cloud 
 



3.3.2 Transfer Learning 265 

Federated learning can help achieve the privacy-preserving for using construction workers’ 
image data to train a global machine learning model. However, after federated learning, the 
global model can only impact when it can conduct facial fatigue monitoring and prediction for 
each worker in a personalized manner. As the dataset distribution may differ significantly 
between each SWP and the cloud, the performance could be poor for a specific SWP. The global 270 

model may only capture the coarse features from all SWPs’ large-volume image data, but some 
dynamic and fine-grained features can be ignored, which may be very important for facial 
fatigue monitoring and prediction. In this study, FedSWP adopts transfer learning to achieve 
personalization in facial fatigue monitoring and prediction for each SWP.  As the common 
features are always located in the shallow layers of deep neural networks, they can be transferred 275 

from the global model (Yosinski et al., 2014). Only the deep layer’s specific features are trained 
and integrated with the transferred model to learn each SWP’s personalized model.   

Figure 4 shows the transfer learning process for a specific hybrid deep neural network designed to 
monitor and predict crane operators’ fatigue where the input data is the private face image or video 
and the output is the fatigue level. This hybrid deep neural network includes a face detector 280 

(MTCNN, proposed by Zhang et al. 2016), a spatial feature extractor (MobileNet, offered by 
Howard et al. 2017), and the deep bidirectional long short-term memory (LSTM) for analyzing 
hidden sequential patterns in temporal features (Graves et al., 2013). MTCNN comprises three 
neural networks (P-Net, R-Net, and O-Net), and it is used to get face windows and landmarks. 
MobileNet includes thirteen convolutional layers (Conv 1-13), five max-pooling layers (Max Pool 285 

1-5), one average-pooling layer (Ave Pool), and one fully connected network layer (FC), which is 
adopted to extract the common features on the face. Thus, MTCNN and MobileNet are frozen in 
the transfer learning process, which means their parameters will not be updated in backpropagation. 
As LSTM can learn long-term dependencies to learn high-level dynamic temporal features for 
SWP, its parameters will be updated with the training process. The softmax works as the activation 290 

function to normalize the output to a probability distribution over predicted output results, which 
can be formulated as: 

                                  𝜎𝜎(𝑧𝑧)𝑖𝑖 = 𝑒𝑒𝑧𝑧𝑖𝑖
∑ 𝑒𝑒𝑧𝑧𝑗𝑗𝐶𝐶
𝑗𝑗=1

                        (5) 

Where 𝜎𝜎  is softmax to get final prediction results, z is the input vector, 𝑒𝑒𝑧𝑧𝑖𝑖  is the standard 
exponential function for input vector, C is the number of states, 𝑒𝑒𝑧𝑧𝑗𝑗 is the standard exponential 295 

function for the output vector. 



 

Figure 4. The transfer learning process of FedSWP 

The deep neural networks cannot always generalize well across different domains from the local 
dataset and global model. Thus, an alignment layer can be used in FedSWP to replace the fully 300 

connected layer, which is located after LSTM and before softmax. This alignment function is 
correlation alignment, named CORAL (Sun et al., 2016), which can help align the second-order 
statistics between the source (global) and target (local) inputs. The related loss function can be 
represented below:  

                                                         ℓ𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴 = 1
4𝑑𝑑2

‖𝐶𝐶𝑆𝑆 − 𝐶𝐶𝑇𝑇‖𝐹𝐹2                                  (6) 305 

Where ‖∙‖𝐹𝐹2  demonstrates the squared matrix Frobenius norm, and d denotes embedding features 
dimension. 𝐶𝐶𝑆𝑆 and 𝐶𝐶𝑇𝑇 represent the covariance matrices of the source (global) and target (local) 
weights. Combined training with both the regression loss and CORAL loss could learn features 
that perform well on the target domain (local dataset). Thus the loss for the local model can be 
computed by: 310 

                  arg min
𝜔𝜔𝑊𝑊∈ℝ𝑑𝑑

ℒ(𝜔𝜔𝑊𝑊) =  ∑ ℓ𝐹𝐹𝑛𝑛𝑊𝑊
𝑖𝑖=1 (𝑓𝑓𝑤𝑤(𝑥𝑥𝑖𝑖),𝑦𝑦𝑖𝑖) + 𝜆𝜆ℓ𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴          (7) 



Where 𝜆𝜆 denotes the trade-off parameter. 

In summary, the global model updates itself by aligning with local models and then broadcast its 
updated one to all SWPs for deploying transfer learning on each SWP to obtain the personalized 
local model using Eq.(6). 315 

4. Experiment 

In this section, experiments are conducted to evaluate the performance of FedSWP on facial fatigue 
monitoring and prediction, which is one of the most private OHS monitoring tasks in construction, 
particularly for crane operators.  

4.1 Dataset 320 

As it is believed that monitoring and alerting of the crane operator fatigue are almost identical to 
the situation for the vehicle driver, evaluating the performance of this proposed FedSWP method 
and comparing with previous methods can be conducted on a very popular public dataset named 
YawDD (Abtahi et al., 2014). YawDD comprises two datasets with various facial characteristics, 
and they are collected by natural and varying illumination conditions with the resolution of 325 

640×480 pixels 24-bit true color (RGB) videos. The first dataset is collected by a camera mounted 
in the cockpit’s front mirror. Each subject includes three or four videos, and each video comprises 
various facial states such as normal, talking/singing, and yawning. This dataset offers 270 videos 
for 90 subjects (47 male and 43 female). The second dataset is collected by a camera mounted on 
the cockpit’s dashboard. Each subject includes only one video, and this dataset comprises 29 330 

subjects (16 male and 13 female). Both datasets include 5 scenarios, such as Bareface, Glasses, 
Sunglasses, Mustache, Breard, in which they were collected at 30 frames per second (fps). Each 
subject may have a combinational representation of fatigue-related expressions (yawning, nodding, 
slow blink rate of eyes) and non-fatigued related signs (talking, singing, laughing, normal stillness). 
Table 1 summarizes the details on YawDD. To create a FedSWP scenario, the standard-setting is 335 

adjusted on this dataset. Ten subjects’ videos are randomly selected from these two datasets to 
train the initial global model, and three subjects’ videos are considered as the local dataset in each 
worker (subject)’s SWP, which can not share data. This setting aims to build the global model and 
use all three isolated SWP video data to evaluate the performance of fatigue monitoring and 
prediction on the three subjects without privacy leakage. 340 

Table 1. Descriptive information on YawDD 

Dataset Subjects Behavior Illumination Camera 
Type Scenarios Age Camera 

Position 

Yaw 
DD 119  

• Normal 
Stillness 

Day (from 
early 

morning till 
sunset) 

RGB 

• Glasses 

20-
59 

Under the 
front mirror 

of the 
cockpit;  
On the 
cockpit 

dashboard 

• Talking 
or 
Singing 

• Sunglasses 

• Yawning • Mustache 
• Sleepy 

Blinking • Beard 

• Nodding • Bare Face 



 

4.2 Implementation Details 

Environment Setting: The experiment, including the training and evaluation process, is 
conducted in two virtual machines that run CentOS 7.4 system. The specification and configuration 345 

of this computer are in the following: 

• CPU: Intel (R) Xeon (R) Gold 5120 × 2 
• GPU: NVIDIA GeForce GTX 1080 Ti × 4 
• RAM: 16GB DDR4 Memory  
• Hard Disk: 500 GB SSD and 4TB HDD  350 

• Run-on GPU: MTCNN, MobileNet, LSTM, and GRU 

The algorithms are built using Python 3.6.8 with TensorFlow version 2.3.1 and Keras version 2.4.3 
as the deep learning framework. OpenCV 4.4 is also adopted as a real-time image operation cross-
platform and open-source computer vision library.  

Data Pre-processing: For all videos, the MTCNN is used to detect the faces and locate the frames’ 355 

landmarks. The detected and aligned face with five landmark points is cropped and resized to a 
fixed size (64×64). The ground truth of fatigue status includes the facial expressions on the eyes, 
head, and mouth. It is easy to find that the ground truths in each video (each annotation file) are 
long-term dependencies, which indicates that the states of a frame may rely on the frames in the 
past or future several seconds. However, these facial expressions on a series of frames, within a 360 

few seconds, would still be considered as fatigue signs if they had just restored the expressions to 
alert after drowsy states (Lyu et al., 2018). Furthermore, the existing labels on this dataset cannot 
accurately identify the fatigue states in the temporal dimension. Those typical facial states or 
behaviors, such as closing eyes, yawning, and lowering head, are still considered as the evidence 
to judge whether a frame contributes to the awareness of fatigue. To accurately describe the 365 

transitional states between the alert and the fatigue, the datasets are relabeled into three fatigue 
levels: alert, low vigilant, and fatigue. (1) Normal (labeled as 0): normal means the subject is 
experiencing no signs of fatigue or drowsiness. (2) Mild (labeled as 1): mild indicates situations 
that some fatigue signs appear or present but do not last for a while. (3) Alert (labeled as 2): alert 
means the subject presents the biosignals of drowsiness. As shown in Table 2, the behaviors, such 370 

as stillness, looking aside, normal blinking and talking, laughing, and singing, are the least related 
to fatigue. Therefore, they can be relabeled to 0. To achieve early fatigue detection, behaviors like 
distraction and sleepy blinking are defined as the change states from normal to alert or fatigue 
signs. They can be relabeled to 1. As for obvious fatigue behaviors, like yawning and nodding, 
they can be relabeled to 2. Table 3 presents the statistical information of the two datasets in 375 

YawDD, randomly selected datasets for the global model (from YawDD), and randomly selected 
three individual datasets for the local model (from global model databases). 

  



Table 2. Detailed information on YawDD 

Behavior State Fatigue Level 
Talking, laughing, singing 

Normal 0 Looking aside 
Normal blinking 
Stillness 
Distraction Mild:  

Transitional 
States 

1 Sleepy-eyes  
Sleepy blinking 
Drowsy 

Alert 2 Yawning 
Nodding 

 380 

Table 3. Statistical information on Datasets 

Subject Status Instance Type Shape Source 
90 3 270 Videos (:, 640, 480, 3) Mirror 
29 3 29 Videos (:, 640, 480, 3) Dashboard 
10 3 38998 Array (30, 512) Trainable Global  
1 3 2233 Array (30, 512) Local-P1 
1 3 2374 Array (30, 512) Local-P2 
1 3 2578 Array (30, 512) Local-P3 

 

Training: On both the global and local end, the hybrid deep neural networks (MTCNN, MobileNet, 
LSTM) were adopted for training and prediction (See Table 4). In the federated learning process, 
the sequential features are computed from the eyes, mouths, head areas for each subject. From all 385 

available data obtained from video clips, 80% were randomly selected to train the model, then 
were evaluated using the other 20% from the remaining data. For the optimization, the Adam 
(Kingma and Ba, 2014), as the extension of stochastic gradient descent (SGD), is chosen with 
mini-batch size 64, learning rate 0.0001, clip value 5, and the trade-off parameter λ at 0.01. 
Additively homomorphic encryption is used in model distribution and parameter sharing during 390 

federated learning training and evaluation. In transfer learning, the MTCNN and MobilNet are 
frozen for transferring. Only the parameters of LSTM and its fully connected layer (Dense) are 
trained and updated with FedAvg. As a regularization technique, the dropout is adopted for 
reducing overfitting of LSTM by preventing complex co-adaptations on the training data (Gal and 
Ghahramani, 2016). The effectiveness of FedSWP can be evaluated from two aspects. Firstly, 395 

FedSWP with LSTM can be compared with NonFed LSTM, where performances of NonFed 
LSTM on each subject are recorded by using the global model (without federated learning). In 
addition, the performances of other machine learning models, such as gated recurrent unit (GRU) 
with FedSWP, can also be used for comparison. The hyperparameters, such as the window size, 
the number of hidden layers, are critical factors that affect the model performance. We tuned 400 



LSTM and GRU under federated learning (we named them FedLSTM and FedGRU) to explore 
the best performance. The optimal window size is 30, and the number of hidden layers can be in 
[1, 2] (we named them LSTM 1, LSTM 2, GRU 1, GRU 2). 

Table 4. The detailed information on hybrid deep neural networks in FedSWP 

Training process 
Type Trainability Model Layers 

Global model 

Non-trainable MTCNN (Face 
Detection) 

P-Net(12,12,3) 
R-Net(24,24,3) 
O-Net(48,48,3) 

Non-trainable MobileNet (Feature 
Extraction) 

Input_1(:,224,224,3) 
Conv_1(:,112,112,32) 

… 
Conv_13(:,7,7,1024) 

Global_average_pooling2d_1(:,1024) 
Reshape_1(:,1,1,1024) 
Dropout(:, 1, 1, 1024) 

Conv_preds(:, 1, 1, 1000) 
Softmax(:, 1, 1, 1000) 
Dense_1(:, 1, 1, 512) 

Flatten_1(:, 512) 

Trainable LSTM/GRU(Prediction) 

LSTM/GRU_1（:, 30, 512） 
LSTM/GRU_2（:, 256） 

Dense_1(:,128) 
Dropout_1(:,128) 

Local model Trainable LSTM/GRU(Prediction) Dense(1) 
 405 

Evaluation Metrics: The FedSWP’s performance was evaluated quantitatively via the metrics of 
accuracy and loss (See Eq.8 and Eq.9). Accuracy refers to the percentage of the personalized 
dataset for each subject (each SWP) that has been predicted correctly, and all experiments are 
conducted five times to record the average accuracy. The loss (Mean Squared Error, MSE) is the 
average squared difference between the estimated and the actual value: 410 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝑎𝑎𝐴𝐴𝑦𝑦 = (𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇)/(𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑇𝑇) (8) 

𝐿𝐿𝐿𝐿𝑠𝑠𝑠𝑠 = ∑ (𝑌𝑌𝑖𝑖 − 𝑌𝑌𝚤𝚤�)2𝑁𝑁
𝑖𝑖=1 /𝑇𝑇                (9) 

TP, TN, FP, and FN represent true positive, true negative, false positive, and false negative 
individually, based on the comparisons between the fatigue prediction results and ground truths. 𝑌𝑌𝑖𝑖 



denotes the fatigue level being predicted and 𝑌𝑌𝚤𝚤�  represents the actual label value. 𝑇𝑇 is the number 415 

of video frames being used for fatigue detection. 

4.3 Results Analysis 

4.3.1 Prediction Accuracy 

Figure 5 compares NonFed and FedSWP for three subjects’ facial fatigue prediction task, which 
shows the accuracies of facial fatigue prediction for each subject (P1, P2, P3). Compared with the 420 

authors’ previous study (Liu et al., 2020), the accuracy of NonFed (centralized LSTM with two 
hidden layers (LSTM 2)) (P1: 66.41%, P2: 68.48%, P3: 44.46%) is much lower than the previous 
results on YawDD (87.52%). The underlying reason could be that the previous study’s model is 
trained and tested on the YawDD, while NonFed as a complex model trained on the global dataset 
(only 10 subjects) must be overfitted and tested with poor performance on the local dataset. The 425 

proposed FedSWP with both LSTM and GRU achieves better prediction accuracy than NonFed 
on three subjects. Compared to NonFed, it evidently improves the average accuracy by 26.68% 
(FedLSTM 2) and 26.97% (FedGRU 2).  

 

Figure 5. Comparison of fatigue prediction accuracy between NonFed, FedLSTM 1 (one hidden 430 

layer), FedLSTM 2 (two hidden layers), FedGRU 1 (one hidden layer), and FedGRU 2 (two hidden 
layers) 

The traditional machine learning methods for general prediction applications (e.g., support vector 
machine (SVM)) have been proved to underperform with temporal data in fatigue prediction (Li 
et al., 2019a; Li et al., 2019d). However, GRU is more comparable to LSTM as they have similar 435 

recurrent cell designs for modeling temporal data (Cho et al., 2014). Thus, we compare the 
performance of LSTM in FedSWP (FedLSTM) with GRU in FedSWP (FedGRU). This study also 
evaluates the performance of FedLSTM and FedGRU through several metrics, such as Mean 
Absolute Error (MAE), Mean Square Error (MSE), Root Mean Square Error (RMSE), and Mean 
Absolute Percentage Error (MAPE). The optimal architecture of FedLSTM and FedRGU 440 

comprises two hidden layers, as shown in Table 5-7. For P1 and P2, FedGRU outperforms 
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FedLSTM both for the models with two different hidden layers. For P3, FedLSTM predicts better 
than FedGRU. However, the average differences between FedLSTM and FedGRU are no more 
than 3%. The above comparisons can also be proved in the visualized fatigue prediction process 
for P1 (See Fig.6). In Fig.6, FedLSTM 2 keeps more aligned with ground truth than NonFed, and 445 

FedLSTM2 is comparable to FedGRU 2. In general, the prediction accuracy results indicate the 
effectiveness of the personalization in the FedSWP when comparing FedLSTM/FedGRU with 
NonFed. It is interesting to find that the accuracy performance of FedLSTM is very close to that 
of FedGRU. The underlying reason could be that the basic structure of FedLSTM is similar to 
FedGRU. In summary, the accuracy performance of FedLSTM can be comparable to the FedGRU. 450 

Table 5. Prediction Results of P1 

Metrics Hidden Layer Accuracy MAE MSE RMSE MAPE 

FedLSTM 1, (256) 92.87 % 0.1020 0.1634 0.4043 0.1313 
2, (512, 256) 93.19 % 0.1006 0.1658 0.4072 0.0227 

FedGRU 1, (256) 93.15 % 0.1006 0.1648 0.4060 0.0449 
2, (512, 256) 93.61 % 0.0898 0.1420 0.3769 0.0686 

 

Table 6. Prediction Results of P2 

Metrics Hidden Layer Accuracy MAE MSE RMSE MAPE 

FedLSTM 1, (256) 82.56 % 0.3194 0.6097 0.7808 0.1411 
2, (512, 256) 82.25 % 0.3295 0.6337 0.7960 0.0441 

FedGRU 1, (256) 82.86 % 0.3046 0.5712 0.7558 0.2857 
2, (512, 256) 85.79 % 0.2486 0.4619 0.6796 0.1516 

 
Table 7. Prediction Results of P3 455 

Metrics Hidden Layer Accuracy MAE MSE RMSE MAPE 

FedLSTM 1, (256) 82.98 % 0.2532 0.4201 0.6481 0.4927 
2, (512, 256) 83.94 % 0.2427 0.4073 0.6382 0.4637 

FedGRU 1, (256) 82.82 % 0.2632 0.4462 0.6680 0.4979 
2, (512, 256) 80.85 % 0.3049 0.5321 0.7294 0.5372 

 



Figure 6. Fatigue prediction process for P1 by NonFed, FedLSTM 2, and FedGRU 2 

Figure 7 illustrates the loss curves of the baseline NonFed LSTM model and FedSWP models 
(FedLSTM and FedGRU) on the global datasets with 100 epochs. The loss weight is set as {0:1, 460 

1:2, 2:40} for different state (normal 0, wild 1, alert 2). From the results, the loss of NonFed is 
lower than both FedGRU and FedLSTM, this can be explained by the following reasons: (1) trade-
off between communication and accuracy. As the centralized model (NonFed) trained and tested 
on the global datasets, where it does not require any communication between global and local 
model. But the FedGRU and FedLSTM need sacrifice certain accuracy to guarantee the efficiency 465 

of communication; (2) trade-off between privacy and accuracy. NonFed training already requires 
tuning parameters like learning rate, momentum, batch size, and regularization. FedGRU and 
FedLSTM adds potentially more hyperparameters, such as separate tuning of the global model 
update rule and local SWP optimizer, number of SWP selected per round, number of local steps 
per round, configuration of update compression algorithms, and more. To preserve the privacy of 470 

such hyperparameters may sacrifice the accuracy. FedLSTM 2 actually is a optimal trade-off 
between accuracy, communication and privacy in this experiment. We may also find that the loss 
of FedLSTM 2 is lower than FedGRU 2. The reason could be that GRU has fewer parameters and 
may come at the cost of decreased expressibility. However, the FedLSTM displays much greater 
volatility throughout its gradient descent compared to the FedGRU model. It can be explained that 475 

there are more gates in LSTM for the gradients to flow through, causing steady progress to be 
more difficult to maintain after many epochs. FedLSTM 2 is not much different from the baseline 
NonFed LSTM, proving that the FedSWP with LSTM has reasonable convergence and stability. 



  

Figure 7. Loss curves for NonFed, FedLSTM, and FedGRU on global datasets 480 

4.3.2 Privacy Analysis 

Based on previously clarified privacy in the problem definition section, the privacy-preserving 
capacities of the proposed FedSWP can be illustrated as follows. 

• Data Access: a hybrid model (MTCNN-MobileNet-LSTM) is proposed under the FedSWP 
framework, demonstrating a distributed privacy-preserving solution for construction OHS 485 

management. Notably, this hybrid model achieves accurate facial fatigue prediction by 
gathering encrypted model parameters instead of directly capturing the original data 
(private facial image/video), keeping the training dataset locally, and ensuring privacy-
preserving of the raw data. 

• Model Performance: The evaluation results indicate that the hybrid model’s performance 490 

under FedSWP outperforms the baseline hybrid model. The baseline model is centralized, 
requiring aggregate substantial raw data for high-accuracy facial fatigue prediction. 
Usually, there is a trade-off between the accuracy of facial fatigue prediction and privacy. 
However, the FedSWP achieves better prediction performance than a centralized approach 
considering the personalization and privacy-preserving. In general, FedSWP has been 495 

proved to achieve accurate prediction of facial fatigue without compromising privacy. 

5. Discussion 

FedSWP is a general framework for preserving the personal image information of construction 
workers for OHS management. Compared with the previous works, there are three aspects to the 
proposed FedSWP’s novelty summarized as follows. 500 



• Firstly, FedSWP provides a federated learning-based privacy-preserving solution to incent 
each construction worker to use IoT devices for monitoring their OHS statuses. Since the 
OHS-related image data privacy has raised great concerns among construction workers 
with the expanding adoption of IoT and computer vision technologies in construction sites. 
Previous studies use the camera to capture unsafe behaviors or adopt the RFID/GPS 505 

sensors to capture each construction worker’s dangerous positions. These bring the ethics 
risks of data leakage and can not receive positive cooperations of construction workers to 
collect more data for a better machine learning model. 

• Secondly, FedSWP can offer a more personalized and accurate model by transfer learning 
to monitor and predict each construction worker’s facial fatigue status during their task 510 

execution processes. Current machine learning models for fatigue monitoring mainly train 
models on all the construction worker’s image data and may perform unsatisfied accuracy 
on a new worker. It may result from the distribution difference of features between the 
new worker’s data and aggregated data.  

• Thirdly, FedSWP has tested its accuracy on the task of crane operator fatigue monitoring 515 

by using a hybrid model (MTCNN-MobileNet-LSTM). It is one of the most privacy-
related and complex tasks as it involves very sensitive facial expressions and very complex 
spatial-temporal features. The results indicate that FedSWP can work on complex machine 
learning tasks. 

 520 

Despite these innovations, our study still has several limitations. 
• Firstly, only homomorphic encryption is used in FedSWP for securing the parameter 

sharing and model distribution. As limited by this hybrid deep neural networks’ complexity, 
in-depth security analysis and more advanced encryption algorithms have not been 
explored in this study.  525 

• Secondly, FedSWP is only tested in three subjects. In the real situation, hundreds of 
construction workers’ fatigue statuses should be monitored, which may increase the 
communication cost for FedSWP. Thus, the random sub-sampling mechanism should be 
designed to improve the efficiency of each round of training. 

• Thirdly, as limited by the available dataset for crane operator fatigue monitoring, the 530 

dataset used in this study is only collected from drivers. Although features of facial 
expressions in drivers are similar to crane operators, the real facial image datasets for 
construction workers are needed in future studies. 

6. Conclusion 

Smark work packaging (SWP) has been proven to be a general model for managing (e.g., model, 535 

optimize, and monitor) isolated OHS data and making the OHS insights (e.g., predictions, 
warnings) ready for each distributed construction worker before task executions at the work 
package level. However, current machine learning techniques used in SWP for modeling, 
optimizing, and monitoring need to share or aggregate data from each construction worker. It poses 
a risk to private data leakage and also can not provide personalized OHS status monitoring.  540 

Thus, this study presents a federated transfer learning framework for SWP, namely FedSWP, to 
aggregate the encrypted image data parameters from different SWPs of construction workers 
without compromising privacy and build a personalized model for each construction worker via 



knowledge transfer. A hybrid deep neural network (MTCNN, MobileNet, LSTM) in FedSWP is 
adopted to test whether the accuracy of federated transfer learning is better than traditional machine 545 

learning methods in facial fatigue monitoring and prediction. Thereinto, five tasks are involved. 
Firstly, this hybrid deep neural network is trained on public datasets to get a global model. 
Secondly, this initial global model is spread with homomorphic encryption to each of three selected 
SWPs. Thirdly, the local model is trained on each SWP’s image database. In addition, SWP 
updates the local models’ parameters with homomorphic encryption to create a new global model. 550 

Finally, each SWP can get the personalized model by performing transfer learning from the global 
model to the local model. The evaluation results indicate that the proposed FedSWP outperforms 
the NonFed hybrid deep neural network and is comparable to GRU with privacy well-preserved. 

 

Future research works as follows are also recommended to enrich the FedSWP.  555 

• To further improve the privacy, security, and trust of FedSWP from construction workers,  
blockchain technology including cryptography, consensus, and incentive mechanisms 
(Kim et al., 2019) can be integrated into FedSWP to enhance the security of distributed 
SWP database and shared parameters.  

• To further improve the efficiency and reduce the communication costs of FedSWP, 560 

incremental learning could be considered to speed up the model updates. Also, the random 
sub-sampling mechanism should be designed (Konečný et al., 2016). 

• To further validate FedSWP in facial fatigue monitoring for construction workers, the 
datasets from more construction workers are required to be tested. 

• To further generalize FedSWP to other applications of OHS monitoring and prediction. 565 

Location data, biosignals, motion data can be tested individually or together as multimodel 
machine learning to enhance FedSWP. 
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