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Abstract: A large portion of cross-knowledge domain tasks have interdependent relationships 
with varied components in modular construction (MC). The MC components serve as the 
critical resources to support the task planning and execution for generating excellent MC 
products and services. Meanwhile, dynamic changes of tasks may adversely affect the design, 
procurement, and assembly of components. Furthermore, manually mapping components to 5 
tasks will be time-consuming and prevent forming effective work packages to achieve 
collaborative working. Thus, this study aims to develop an approach for automatically 
connecting components with tasks, which helps workers efficiently know the relationships 
between tasks and components. To this end, the latent Dirichlet allocation (LDA) approach is 
customized to this task-component mapping scenario. Moreover, compared with other leading 10 
unsupervised clustering techniques, e.g., K-means, the customized LDA demonstrated better 
performance on accuracy and efficiency for task-component mapping, and it can pave the way 

1 Xiao Li 
Department of Real Estate and Construction, The University of Hong Kong, Hong Kong, China 
E-mail: xl1991@hku.hk 

2* Chengke Wu 
Corresponding author, Department of Construction Management, Curtin University, Perth, Australia 

3 Weisheng Lu 
Department of Real Estate and Construction, The University of Hong Kong, Hong Kong, China 

4 Fan Xue 
Department of Real Estate and Construction, The University of Hong Kong, Hong Kong, China 

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://www.springer.com/gp/rights-permissions/obtaining-permissions/882


for effective work package formation in MC. 

Keywords: Modular Construction; Latent Dirichlet Allocation; Components; Tasks; Work 
Package. 15 

1 Introduction 

Modular construction (MC) is an innovative construction method to manufacture the facility 
(e.g., infrastructure, building) products in the factory and deliver them to the site for assembly, 
which has been widely used in military barracks, prison cells, school dormitories, hotels, 
healthcare, residences and even infrastructure [1-3]. MC has the potentials to reach Construction 20 
4.0 and has been recognized with compelling advantages over traditional cast-in-situ 
construction by using advanced manufacturing production systems, such as shortened 
construction times [4], ensured quality [5], reduced site labor [6], and better working environment 
[7]. However, as MC involves multi-specialty and cross-domain knowledge in producing a 
facility, it in prefabrication factories still requires assigning tasks to various subcontractors, 25 
specialized work teams, or even robotics and automatic machinery [8]. For example, a single 
housing module requires a doze of trades to work on various systems, such as structure, 
door/window, wall, wet, print, mechanical, electrical and plumbing equipment [9]. Moreover, 
these physically connected systems in a prefabricated module are normally manufactured by 
coordinating interdependent tasks, which need seamless interface planning [10]. 30 

WBS is an efficient tasks planning tool that was jointly developed by the U.S. Department 
of Defense (DoD), NASA and the U.S. aerospace industry in 1962 [11]. It has now been widely 
extended for construction project management and planning [12-15]. A WBS is a hierarchical 
decomposition of the total work scope in a project, and a work package is the smallest element 
in WBS for planning one or more executable tasks [16]. The responsibility for executing a work 35 
package is normally assigned to a single person or organizational unit. The benefits of using 
work packages for MC project planning have also been recognized [17-21]: (i) it offers the 
fragmented MC project team members with clear instructions of their roles and responsibilities; 
(ii) it allows concurrent tasks to be simultaneously executed on an MC project; (iii) it helps 
measure the performance of schedule and cost by using techniques, such as earned value 40 
methods; (iv) it also supports risks, constraints, and disturbances (RCD) management at a task 
level. However, the tasks in work packages are mainly decomposed by project managers 
manually according to their experience and knowledge. This kind of task generation method 
can not ensure the accuracy and integrity of work packages in WBS. 

Massive tasks in MC are to process and assemble the components for forming a final 45 
prefabricated module. Thus, mapping components with tasks can help generate more accurate 
work packages. For example, Ibrahim et al. [22] automatically generated the work packages 
using predefined attributes of BIM components. Isaac et al. [17] further considered the 
topological relations, sequences, and interfaces between specific BIM components to form 



work packages. However, despite previous studies bridging object-oriented BIM components 50 
with the tasks-oriented work packages, forming work packages in product-oriented MC, 
challenges still exist. For example, mapping and modeling relationships between MC 
components and tasks are difficult. Furthermore, dynamic changes in tasks will adversely affect 
the needs of MC components, vice versa. It happens because the tasks and components are 
closely interconnected. 55 

This study aims to develop a latent Dirichlet allocation (LDA)-based modeling approach 
for automatically mapping the components with tasks in MC. To this end, three concrete 
objectives are designed. (1) to analyze the corresponding relations between components and 
tasks; (2) to establish the LDA approach for component-task mapping; (3) to validate the 
proposed approach and compare it with the state-of-the-art method via an MC case study. 60 

2 Literature Review 

The first type of relevant study is to generate WBS in project management. WBS has been 
widely used to hierarchically decompose a project into manageable pieces (e.g., work package) 
for reducing project complexity. Golpayegani and Emamizadeh[24] used neural networks to 
recognize the components and relationships in the project WBS. Siami-irdemoosa et al.[12] then 65 
applied a similar method to generate WBS for the complex underground construction project. 
Torkanfar and Azar[25] further developed a similarity measurement to conduct a semantic 
comparison of WBSs for achieving knowledge reuse. To improve the dynamic WBS generation, 
Lee et al. [26] proposed a system to support bi-directional transformation between processes and 
WBS by using the design structure matrix. Park and Cai[27] also established an automated 70 
linking mechanism between tasks and BIM objects to help generate a dynamic BIM database. 
In modular construction, the incompatibility between product-oriented off-site manufacturing 
and activity-oriented on-site construction can reduce the seamless interface and integration, 
Sutrisna et al.[15] proposed a hybrid WBS-matrix to bridge the off-site PBS and on-site WBS, 
and each prefabricated module is defined as a work package. Many efforts have been made to 75 
generate efficient WBS in project management. However, previous works mainly focusing on 
forming the static structure of WBS rather than defining dynamic models for mapping 
components to tasks, which are useful connections to develop work packages. 

The second type of relevant study is to use the topic modeling approach for mapping two 
entities, such as business processes and software components. Aversano et al.[28] proposed an 80 
approach including modeling and measuring activities for evaluating the alignment level 
between a business process and the supporting software systems. Marcus and Maletic[29] used 

latent semantic indexing to automatically identify traceability links from system documentation 
to program source code. Pessiot et al.[30] then extended the Probabilistic Latent Semantic 
Analysis (PLSA) model for document clustering. Al-Anazi et al.[31] compared three clustering 85 
techniques: k-means, k-means fast, and k-medoids in document clustering using measures of 



cosine similarity, Jaccard similarity, and correlation coefficient. Baskara et al.[31]  used LDA to 
discover a traceability link between business processes and software components. However, 
the mapping rules between MC components and tasks are only manually described rather than 
automatically modeled. Particularly for product-oriented MC with massive components and 90 
related tasks, there is a lack of a mapping model to match the MC components with tasks. 

LDA is an unsupervised probabilistic model extensively applied to analyze discrete and 
unstructured data, such as texts. The LDA model first learns to identify main topics from a 
large archive of text documents (i.e., the training process). In this stage, the LDA model, in 
essence, clusters documents based on the topics. The number of topics can be pre-defined 95 
according to certain criteria, e.g., perplexity and similarity. The documents used for training 
the LDA model are also called a text corpus. After training, the LDA model can assign topics 
to a new document (i.e., the validation or testing process)[33]. LDA has been widely used in 
many areas[43], such as social networks, software engineering, crime science, geography, 
political science, medical, and linguistic science. In the construction sector, LDA has been 100 
adopted by many studies for topic modeling in various aspects, including identifying main 
onsite issues and their changes over time[34], understanding the perceptions of Chinese 
governments towards mitigating environmental impacts of highway construction projects[35], 
investigating main types of lawsuit cases[36], and categorizing main hazards from injury 
reports[37]. Although Dirichlet topic distribution cannot capture correlations among words, the 105 
components in MC do not require sequential correlations for component-task mapping. 
Meanwhile, the LDA model is highly modular and can therefore be easily extended and 
embedded in more complicated models to improve the accuracy of component-task mapping. 
For example, LDA has the potential to be enriched with topology ontology models to analyze 
spatial relations among semantically related components and then cluster them based on certain 110 
categories.  

3 Analysis of the Relations between Components and Tasks 

The bill of material (BoM) generated from BIM can serve as the product breakdown structure 
(PBS), and the tasks decomposed from the work breakdown structure (WBS) can be used for 
project planning. A PBS and WBS in modular construction can be represented by two eight-115 
tuples, respectively. Here we name all elements and materials to form the final prefabricated 
products as the components. 

Definition 1:  PBS = (CN, CID, CS, CM, CW, CO, CHR, CC)        (1) 

Definition 2:  WBS = (TN, TID, TP, TSE, TR, TP, THR, TD)          (2) 

Where PN is component name, CID is component ID, CS is component size, CM is 120 
component material, CW is component weight, CO is the component origin, CHR is 
hierarchical relation between components, CC is constraint relation between components; TN 



is task name, TID is task ID, TP is task period, TSE is the start and end time, TR is the resource, 
THR is hierarchical relation between tasks, TD is predecessor or successor dependency 
between tasks. 125 

The relations between PBS and WBS can be deduced based on the above definition. (1) 
components in PBS and tasks in WBS can be well mapped through name, ID, or other similar 
properties; (2) As PBS and WBS follow similar decomposition philosophy by using top-down, 
from coarse to fine, stepwise refinement, both components and tasks can form hierarchical 
relations; (3) geometric and non-geometric constraints between components may lead to 130 
dependencies between tasks. 

 

Fig.1 Components from BoM of BIM and Tasks from WBS 

4 Research Method 

The proposed method in this study comprises three processes, including data preprocessing, 135 
LDA generation and similarity matching. The output of these processes could be a traceability 
matrix between components and tasks. Fig.2 presents the flow of the proposed method. Firstly, 
MC tasks name and components names are extracted by text pre-processing and combined into 
a set of documents. Then, the document-topic and topic-word distributions are generated by 
training the LDA model. Finally, new components are mapped to the relevant MC tasks 140 
considering the similarity between tasks’ names and the components’ names in the training 
dataset. 



 

Fig.2  Component-task mapping process 

3.1 Data Preprocessing 145 

The conventional LDA model relies on text data, but the noise of texts, such as stopwords that 
do not carry important meanings (e.g., ‘the’ and ‘a’) and different forms of words (e.g., plural 
and singular forms), can affect model performance [38]. In this study, the LDA model aims to 
map MC components to tasks. The data inputs consist of two models, i.e., task model and MC 
component model. For the task model, the MC production workflow is used as an input. Each 150 
task name in the workflow is extracted as a unique task type. As for the MC component model, 
the BoM is used as an input. Each material inside the BoM represents a component. For training 
the LDA model, components in the component model are manually assigned to task types in 
the task model, forming task assignments (TAs) as model inputs. Each TA includes one task 
type and a set of components. However, the names of tasks and components are still texts. 155 
Hence, data preprocessing is required to reduce noise, including four steps: tokenization (i.e., 
separating a name into words), lowercasing, lemmatization (i.e., converting different forms of 
a word to its basic form), and stopwords removal. To realize the latter two steps, the dictionaries 
that record basic forms of words and common stopwords in the MC domain are developed and 
applied. Then, the LDA model can be trained to get topics (i.e., task types) over documents 160 
(i.e., TAs), probability distributions and words (i.e., components) over topics (i.e., Task types) 
probability distributions. 

3.2 Latent Dirichlet Allocation Development and Training 

The LDA model is a hierarchical Bayesian model, which assumes that documents comprise a 
random collection of words over potential topics, and each topic has a distribution over 165 
words[39]. The LDA model relies on two Dirichlet distributions, i.e., DD1 𝑃𝑃(𝜃𝜃;𝛼𝛼) and DD2 
(𝜙𝜙;𝛽𝛽), and two types of multinominal distributions, i.e., MD1 𝑃𝑃(𝑍𝑍|𝜃𝜃) and MD2 𝑃𝑃(𝑊𝑊|𝑍𝑍). The 
α and β are hyper-parameters, θ and ϕ are latent variables, and Z and W represent topics (i.e., 
task types) and words (i.e., components), respectively. The DD1 maps TAs to task types, 
determining the probabilities that a TA belongs to each type. The DD2 maps task type to 170 
components, determining the probabilities of assigning different components in a particular 



task. The LDA model is trained by simulating the processing of generating documents based 
on the topics of documents and words. Thus, MD1 and MD2 are derived from the Dirichlet 
distributions to generate TAs. Specifically, suppose there are N components in a TA to be 
generated, an MD1 is created to determine the task type of each component (i.e., {𝑐𝑐1, 𝑐𝑐2 … 𝑐𝑐𝑁𝑁}). 175 
Then, for each component (in this stage, a component only has an associated task type but does 
not have specific names), an MD2 is created to determine its name based on the task type. In 
other words, for generating N-specific components, K MD2 distributions covering all task 
types should be developed. The process of generating TAs using the LDA model is illustrated 
in Eq.(3) and Figure 3, where M, K, and N present the number of TA, task types, and 180 
components in a TA, respectively. 

∏ 𝑃𝑃(𝜃𝜃𝑗𝑗;𝛼𝛼)𝑀𝑀
𝑗𝑗=1 ∏ (𝜙𝜙𝑖𝑖;𝛽𝛽)𝐾𝐾

𝑖𝑖=1 ∏ 𝑃𝑃�𝑍𝑍𝑗𝑗,𝑛𝑛|𝜃𝜃𝑗𝑗�𝑃𝑃(𝑊𝑊𝑗𝑗,𝑛𝑛|𝑍𝑍𝑗𝑗,𝑛𝑛)𝑁𝑁
𝑛𝑛=1   (3) 

Training the LDA model requires estimating the parameters α and β so that the model can 
maximize the probability of generating similar TAs in the training corpus. This can be achieved 
by Gibbs sampling. The sampling works as follows: 1) randomly assigns a task type to each 185 
component in the training corpus, 2) summarizes the number of components belonging to each 
task type in each TA as well as the number of components belonging to each task type in the 
entire corpus, 3) for each component, recalculate the MD2 based on the statistics obtained in 
the previous step, 4) reassigns a new task type to the current component using the newly 
obtained MD2, 5) repeats above process until parameters in MD1 and MD2 converge. In 190 
practice, the maximum number of iterations is commonly defined to save computation power 
and time[40]. After training, each task type can be represented by a set of top key components 
ranked by the task-component (MD2) distributions. 

 

Figure 3 Mechanism of mapping components to MC tasks 195 

3.3 Similarity Matching 

During model testing, the trained LDA model takes in new MC components and tasks for 
component-task mapping. After the pre-processing process introduced before, the names of 
most MC components can be converted into standard forms. However, as the same task can be 
expressed by different names (e.g., rebar fixing and rebar binding), it is very difficult to convert 200 
the names of MC tasks in this way. Thus, the LDA model can encounter tasks with names that 



do not exist in the training corpus. To minimize the impact of such ambiguity, a similarity 
matching method is applied to task names. Specifically, all the names of task types in the 
training corpus serve as references, when a new task comes in, it 1) enumerates each existing 
task type, 2) computes similarity values s between their names following Eq. (4), 3) finds the 205 
task type with the maximum similarity as the standard form to which components can be 
assigned. To facilitate similarity computation (i.e., step 2), word embeddings are employed. 
This is because task names can be represented by words consisting of different characters but 
expressing similar meanings. Word embeddings are low-dimension (e.g., 50-300) real-valued 
vectors that can effectively capture the meanings of words. As such, the 𝒆𝒆𝒄𝒄 and 𝒆𝒆𝒆𝒆 in Eq. (4) 210 
are obtained by 1) tokenizing the new and existing task names into words and 2) averaging 
embeddings of these words. Word embeddings should be learned through ML models, e.g., the 
famous word2vec model [41]. However, training such models is very data demanding and time-
consuming. Hence, word embeddings trained in previous work can be utilized, which is also a 
common practice [42]. 215 

𝒔𝒔 = ∑ 𝑒𝑒𝑖𝑖
𝑐𝑐×𝑒𝑒𝑖𝑖

𝑒𝑒𝑛𝑛
𝑖𝑖=1

�∑ �𝑒𝑒𝑖𝑖
𝑐𝑐�2𝑛𝑛

𝑖𝑖=1 ×�∑ �𝑒𝑒𝑖𝑖
𝑒𝑒�2𝑛𝑛

𝑖𝑖=1

  (n=the dimension of the word embedding vector)        (4) 

3.4 Improved Latent Dirichlet Allocation for Component-task mapping 

Following the conventional approach to develop LDA models, a TA only consists of associated 
products. However, such simple data cannot suit situations in practical MC projects. One 
common problem is that when producing a room module, a product is required in multiple tasks 220 
thus should be included in multiple TAs. For instance, a gypsum board simultaneously belongs 
to the tasks ‘board pre-treatment and punching’ and ‘installation of the board at wall surface’. 
Therefore, the conventional LDA model cannot distinguish such differences and can only make 
a random guess when mapping a new ‘gypsum board’ product. 

To address this issue, spatial relations of module products are identified by referring to the 225 
BIM model and MTO to enrich TA data. The process has three steps: 1) as the BoM is derived 
from the BIM model, associated spatial instances (i.e., instances of MTO classes) of each 
product can be extracted from the BIM model (e.g., a gypsum board is related to a ‘wall’ 
instance in BIM); 2) a ‘contains’ spatial relation is set up between the spatial instance and 
product; and 3) the triple taking the form (i.e., ‘spatial instance contains product’) is added to 230 
the TA data. If no spatial relation is found, for instance, the product is used in pre-installation 
tasks (e.g., board punching), a triple ‘non contains product’ is added. As such, the same 
products can be distinguished by different spatial relations with a spatial instance.  

Moreover, after investigating the workflow charts and schedules of MC projects in Hong 
Kong, it is found that 1) the unit for managing MC projects is individual rooms (e.g., house 235 
modules); 2) distinct spatial instances are considered as one system, and tasks performed on 
these instances are managed as one package (e.g., installing studs in all walls of a room is 



treated as a single package). Therefore, it is unlikely that the same triple (e.g., ‘wall contains 
studs’) appears multiple times in the TA data and confuses the model. 

4 Experiment and Result  240 

The proposed approach is demonstrated in a case study, which is a student residence modular 
project located in Hong Kong Island. This modular student residence includes two 17-storey 
student residence tower buildings on top of a three-storey podium structure. A total of 1224 
student places will be offered, and supporting facilities such as canteen, common room, laundry 
rooms and car park will be fitted into the podium. The typical floor layout comprises 28 245 
prefabricated modules. This project has five types of modules with different dimensions. The 
production of modules is considered as the scenario to demonstrate the component-task 
mapping. The MC tasks are extracted from prefabricated module production workflow and MC 
components from BoMs. As such, 220 TAs were manually labeled to train the LDA model, and 
several examples are shown in Table 1. 250 

Table 1 Example List of MC tasks and components 

Task type Components 

Door and window 
ironmongery installation 

door ironmonger, aluminum window, FRP timber door, glass 
panel, non-FRP timber door 

Cabinets installation  wall cabinet, toilet-sink cabinet, TV cabinet 

Door and window frame 
installation   

aluminum cladding, rockwool acoustic insulation door 
threshold 

Installation of sprinkler 
pipes  

galvanized steel pipes, galvanized steel pipe fittings, grooved 
pipe fittings and couplings, sprinkler heads, smoke detectors, 
fire alarm bells 

Packaging and protection 
of furniture 

chair, mattress, hand sliding window curtain, hand sliding 
shower curtain, table, bed, mirror 

Rebar fixing spacer and bar chair, tie wire, steel reinforcement bar  

First, text processing is performed to standardize data and remove noise. Then, topics over 
documents probabilities are generated using LDA. The hyperparameters used in this 



experiment are  𝛼𝛼 = 2.38,  𝛽𝛽 = 0.01 and K = 23. We used this setting because it allows the 
model to converge quickly while can provide the best result from our observation. Fig. 4 shows 255 
the top words probability distributions over the topics that have been generated by the model. 
From the words probability distributions, we can interpret that Topic 0 (Figure 4(a)) is about 
installing cabinets, Topic 1 (Figure 4(b)) is about installing sprinkler pipes, Topic 2 (Figure 
4(c)) is about installing door and window frames, and Topic 3 (Figure 4(d)) is about installing 
door and window ironmongery. The LDA model was created using Python libraries, i.e., 260 
Natural Language Toolkit (NLTK), Gensim, and pyLDAvis for preprocessing, model training, 
and result visualization.  

In addition, word embeddings trained in the works [42] were adopted. The embeddings 
(n=300) were trained on large databases (e.g., Wikipedia) and have covered more than 400000 
English words, which should be comprehensive for the study. From this similarity matching 265 
process, a set of components related to the task are obtained. 

For evaluating the capacity of the LDA model, 50 MC components were randomly selected, 
then 1) MC tasks of the components were labeled manually as ground truth, 2) the components 
were fed into the trained LDA model, which returned their corresponding predicted MC tasks, 
3) the manually labeled and predicted tasks were compared, and the mapping accuracy was 270 
computed. 

The outputs of training the LDA model are MD1 (i.e., mapping components to task types) 
and MD2 (i.e., assigning names to components based on their task types). As the research aims 
to automatically map MC components to tasks, MD2 is more important in the experiments. 
Specifically, MD2 consists of lists, where each list records the most representative components 275 
of the current task. Figure 4(a) illustrates the MD2 list of the MC task-cabinet installation as 
an example. The blue and red bars represent the frequency of the component appearing in the 
entire dataset (i.e., all TAs) and TAs of the current task type. In the example, it is obvious that 
different types of cabinets can largely represent the MC task. 



 280 

Figure 4 The frequencies of representative components of four tasks 

Figure 5 (a) shows the confusion matrix of mapping results. There are several wrongly assigned 
components out of the 50 components used for testing, reaching an overall accuracy of 88.0%. 
In addition, the time to manually assign these components was 638 seconds, nearly 2000 times 
that of using the LDA model, which only consumed 0.32 seconds. The experiment results have 285 
proved that the LDA model is a practical tool in MC projects to effectively map components 
to tasks and facilitate work package-based management approaches. 

 

Figure 5 Confusion matrix of product-task mapping (both x and y-axis are task ID, the tasks 



are not arranged in sequence in the product-task mapping stage) 290 

Additionally, it is found that the errors are caused by the fact that some MC components can 
belong to multiple tasks, which misleads the LDA model. For instance, the component Knauf 
FRP board is required in both board pre-treatment and wall stud installation. Thus, the LDA 
model can only make a random guess when assigning such a component. To address this issue, 
the relations (especially spatial and topological relations) among the components can be 295 
considered when preparing the training data (The results are presented in Fig.5(b)). For instance, 
each BoM includes not only individual components but also triples which are formed by two 
components and one spatial relation (e.g., under and above). The relations can be directly 
extracted from BIM models of the MC modules. In this way, when the model encounters 
ambiguous components, it can take the triple data to make the final assignment. However, 300 
errors still occur for a few products which cannot be distinguished even spatial relations are 
utilized. For instance, the product ‘ceiling panel’ should be used in task 9, ‘installing studs at 
the ceiling’, as stated in the workflow. However, the LDA model wrongly assigns it to task 
15‘layer and coat painting ceiling’ because the product has the same spatial relations in both 
tasks. Nevertheless, the accuracy is still increased by more than 7%. 305 

5 Conclusion 

This study has proposed an approach using Latent Dirichlet Allocation (LDA) to discover 
traceability links between components and tasks in modular construction (MC). LDA is applied 
to get the topic probability distributions of components and tasks. When the topic probability 
distributions are determined, the similarity of topic probability can be computed. A threshold 310 
is set for the similarity matching to gather the most relevant components for a given task. 
However, the LDA model sometimes may only make a random guess when assigning the 
component, which leads to mapping errors. To address this issue, the relations (especially 
spatial and topological relations) among the components are considered when preparing the 
training data to improve the conventional LDA model. 315 

 

The experiment results show that LDA can mine topics on components and tasks and can be 
used to discover traceability links between them. And it is a practical tool in MC projects to 
effectively map components to tasks and facilitate work package-based management 
approaches. Future studies will focus on transforming the semantic-enrich tasks into work 320 
packages for further collaborative project planning.
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