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1.1 Background
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 Automatic Building Information Model (BIM) and City Information Model (CIM) reconstruction 

 can help free repetitive manual modelling work, (Wu et al. 2021)

 attracting attentions both from architecture, engineering, construction, and computer science.

3D point cloud 3D BIM

 Accurate geometric information and 

textured appearance

 But less semantic and instantiated

 More useful in building and facility 

management

 But requires high-cost manual modelling

?
Automatic 

reconstruction



1.2 Our recent interests 
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 Rich features from different sources may boost the performance of computer vision in the urban 

and built environment. (Li et al. 2022)

Land boundary map Road network map Digital Terrain model

(DTM)
Building footprint

Land: 0 or 1 Height to ground Probability of road Distance to roof

Feature Ground Terrain Building Vehicle Vegetation Water Facility mIoU

Color + xyz 0.51 0.18 0.88 0.16 0.77 0.84 0.24 0.51

Color + xyz + land + 

ground + roof + road

0.54 0.24 0.91 0.28 0.76 0.88 0.26 0.56

KPConv (Thomas et al. 2019)

Similarly, is feature enrichment of point cloud still helpful for automatic building model reconstruction in the 

built environment?  



1.3 Scan-to-BIM Challenge 
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 Fully understand the relationship mapping between point cloud and ground truth of training set, 

 To automatically reconstruct the walls, doors, and columns of the test set.

Training dataset: point cloud Ground truth: Walls, columns, and doors

Test dataset: point cloud

?
Automatic detected result

Mapping

Patterns of the 

relationship mapping

E
x
tra

c
t

What, where, and how?
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2.1 Experimental design
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Data preprocessing
3D semantic 

segmentation
Instance 

segmentation

3D building model 

reconstruction

Original point cloud 

Rotated point cloud 

with less noise 

Point cloud labelled 

by ground truth

Trained deep 

learning model

Segmented point 

cloud

Points of walls, doors, 

and columns

Instances 

represented by 

points

3D boxes of walls, 

doors, and columns

3D walls, doors, and 

columns in the 

format of IFC
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validation set
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2.1.1 Data pre-processing
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 Floor-layer based noise removal

Observation

Some floors have big holes due to tripods and occlusion, while 

ceilings are more complete and no obstruction.

A heuristic algorithm (Xue 2022)

Aim: 

 Control the class balance;

 Remove outdoor noise.

Result

Point cloud without outdoor noise and ceiling and ground parts. 

Head-level room layer x

Three floor layers (x, x+1 m, x-1 m)

E C C C

W E C C

W W E C

(Indoor 

space 

voxels)

(Voxels occupied by 

scan data)

1. Space voxels 

(closer to Edge, Ceiling, Walls)
2. Room clustering

Ceilings are 

not wanted.



2.1.2 3D semantic segmentation
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 KPConv: Point-level semantic segmentation

 Segment the input point cloud into four groups: Wall, door, column, and others.

Input Output

Deformable KPConv

(Thomas et al. 2019)
Wall Door Column Others



2.1.3 Instance segmentation
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 Wall

 DBSCAN based clustering

 Door  Column

DBSCAN clustering (Ester et al. 1996)

 Split walls according to normal



2.1.4 3D building model generation
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 Manhattan box + BIM generation

JSON file generation
IFC file generation for BIM

Manhattan box with 

repairments

Wall

Column Door



2.1.5 Alternative: 3D instance registration 
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 Model-driven instance registration (Xue et al. 2018; 2019)

JSON files

Example 

Columns

Registration process

(To replace 2.1.3 Instance segmentation +2.1.4 

Manhattan box generation)
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3.1 Results
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 Preprocessed data

 Segmented result and metrics

ID Wall Door Column Others mIoU

1 0.77 0.55 0.48 0.85 0.67

¾ as training set and ¼ as validation set

mIoU computed on validation set

Rotated point cloud 

with fewer clutters
Point cloud labelled 

by ground truth

Training and validation 

sets: Original point cloud

Test set:

Original point cloud

Predicted resultsRotated point cloud 

with fewer clutters

Observation: The IoUs in the point and component 

levels are significantly different.



3.1 Results
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 Instance segmentation  Building model generation 

BIM in the format of IFC

JSON files of walls, 

columns, and doors

 Example wall instances

Enclosed issue of room
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4 Conclusion
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 Room for improvement

 Conclusion

 The proposed pipeline utilizes

 floor layer-based noise removal

 3D semantic segmentation

 DBSCAN clustering, and 

 Manhattan box-based model generation

 There still exist amounts of information loss

 the overall accuracy stay at a low level.

 Adaptive thresholds for instance segmentation

 clutter removal and 

 Occlusion completion

 Modification and fine-tuning of deep learning

 Topology repairing

 Observation

 Significantly inconsistent accuracy 

 between point-wise and component levels

 Features from other resources 

 such as prior model library 

 may improve Scan-to-BIM considerably
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Thank you for your attention!
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