

2nd Workshop and Challenge on Computer Vision in the Built Environment for the Design, Construction, and Operation of Buildings

Floor layer-based kernels and pillars of points (FLKPP): 3D building model reconstruction

Yijie Wu, <u>Maosu Li</u> and Fan Xue Faculty of Architecture, The University of Hong Kong 2nd Workshop on Computer Vision in the Built Environment, CVPR 2022 19 June 2022, New Orleans, Louisiana, USA.

1.1 Background

- □ Automatic Building Information Model (BIM) and City Information Model (CIM) reconstruction
 - □ can help free repetitive manual modelling work, (Wu et al. 2021)
 - □ attracting attentions both from architecture, engineering, construction, and computer science.

3D point cloud

Accurate geometric information and

But less semantic and instantiated

textured appearance

- More useful in building and facility management
 - But requires high-cost manual modelling

3D BIM

1.2 Our recent interests

Rich features from different sources may boost the performance of computer vision in the urban and built environment. (Li et al. 2022) Land: 0 ór 1

Distance to roof

Land boundary map Digital Terrain model (DTM)

Road network map

Building footprint

KPConv (Thomas et al. 2019)

Feature	Ground	Terrain	Building	Vehicle	Vegetation	Water	Facility	mloU
Color + xyz	0.51	0.18	0.88	0.16	0.77	0.84	0.24	0.51
Color + xyz + land + ground + roof + road	0.54	0.24	0.91	0.28	0.76	0.88	0.26	0.56

Similarly, is feature enrichment of point cloud still helpful for automatic building model reconstruction in the built environment?

1.3 Scan-to-BIM Challenge

Fully understand the relationship mapping between point cloud and ground truth of training set,
To automatically reconstruct the walls, doors, and columns of the test set.

Test dataset: point cloud

Automatic detected result

Conclusion

2.1 Experimental design

2.1.1 Data pre-processing

□ Floor-layer based noise removal

Observation

Some floors have big holes due to tripods and occlusion, while ceilings are more complete and no obstruction.

A heuristic algorithm (Xue 2022) Aim:

- ✓ Control the class balance;
- ✓ Remove outdoor noise.

Result

Point cloud without outdoor noise and ceiling and ground parts.

Ceilings are not wanted. Head-level room layer x Three floor layers (x, x+1 m, x-1 m)

2.1.2 3D semantic segmentation

D KPConv: Point-level semantic segmentation

□ Segment the input point cloud into four groups: Wall, door, column, and others.

(Thomas et al. 2019)

Output

2.1.3 Instance segmentation

DBSCAN based clustering

✓ Wall

✓ Door

✓ Column

• Split walls according to normal

2.1.4 3D building model generation

□ Manhattan box + BIM generation

Manhattan box with repairments

Wall

JSON file generation

"" Columns.

Have only one location point and 3D measures: Width - X, Depth - Y, Height - Z. Rotation parameter is used to rotation the structure around Z-axis.""

""" Doors.

The same schema as the one above."""

Height measure for both points is assumed to be the same.

IFC file generation for BIM

ISO-10303-21; HEADER; FILE DESCRIPTION(('ViewDefinition [CoordinationView]'),'2;1'); FILE NAME('', '2022-06-18T10:38:15', (), (), 'IfcOpenShell 0.6.0b0', 'IfcOp FILE SCHEMA(('IFC4')); ENDSEC; DATA; #1=IFCSIUNIT(*,.LENGTHUNIT.,.MILLI.,.METRE.); #2=IFCSIUNIT(*,.PLANEANGLEUNIT.,\$,.RADIAN.); #3=ifcdimensionalexponents(0,0,0,0,0,0,0); #4=IFCMEASUREWITHUNIT(IFCAREAMEASURE(0.017453293),#2); #5=IFCCONVERSIONBASEDUNIT(#3,.PLANEANGLEUNIT., 'degree', #4); #6=IFCUNITASSIGNMENT((#1,#5)); #7=IFCCARTESIANPOINT((0.,0.,0.)); #8=IFCAXIS2PLACEMENT3D(#7,\$,\$); #9=IFCGEOMETRICREPRESENTATIONCONTEXT(\$, 'Model',3,1.E-05,#8,\$); #10=IFCPROJECT(\$,\$,\$,\$,\$,\$,\$,\$,(#9),#6); #11=IFCGEOMETRICREPRESENTATIONSUBCONTEXT('Body','Model',*,*,*,*9,\$, #12=IFCSHAPEREPRESENTATION(#11, 'Body', 'Brep', (#15)); #13=IFCPRODUCTDEFINITIONSHAPE(\$,\$,(#12)); #14=IFCCLOSEDSHELL((#22,#29,#36,#43,#50,#57)); #15=IFCFACETEDBREP(#14); #16=IFCPOLYLOOP((#17,#18,#19,#20)); #17=IFCCARTESIANPOINT((-1.21559416021844,1.20324344652382,0.149706574 #18=IFCCARTESIANPOINT((-1.62665337952797,1.20396717049907,0.149706574 #19=IFCCARTESIANPOINT((-1.62592709403133,1.61648127732798,0.1497065740 #20=IFCCARTESIANPOINT((-1.2148678747218,1.61575755335272,0.14970657462 #21=IFCFACEOUTERBOUND(#16,.T.); #22=IFCFACE((#21)); #23=IFCPOLYLOOP((#24,#25,#26,#27)); #24=IFCCARTESIANPOINT((-1.2148678747218,1.61575755335272,2.7506979950 #25=IFCCARTESIANPOINT((-1.62592709403133,1.61648127732798,2.750697995) #26=IFCCARTESIANPOINT((-1.62665337952797,1.20396717049907,2.7506979956 #27=IFCCARTESIANPOINT((-1.21559416021844,1.20324344652382,2.7506979950 #28=IFCFACEOUTERBOUND(#23,.T.); #29=IFCFACE((#28)); #30=IFCPOLYLOOP((#31,#32,#33,#34)); #31=IFCCARTESIANPOINT((-1.62592709403133,1.61648127732798,0.149706574 #32=IFCCARTESIANPOINT((-1.62665337952797,1.20396717049907,0.1497065740 #33=IFCCARTESIANPOINT((-1.62665337952797,1.20396717049907,2.7506979956 #34=IFCCARTESIANPOINT((-1.62592709403133,1.61648127732798,2.750697995)

#35=IFCFACEOUTERBOUND(#30,.T.);

Column

2.1.5 Alternative: 3D instance registration

□ Model-driven instance registration (Xue et al. 2018; 2019)

3.1 Results

Preprocessed data

Training and validation sets: Original point cloud

Rotated point cloud Point cloud labelled by ground truth

Segmented result and metrics

Test set: Original point cloud

Rotated point cloud with fewer clutters

Predicted results

³⁄₄ as training set and ¹⁄₄ as validation set mIoU computed on validation set

ID	Wall	Vall Door		Column			Others			mloU		
1	0.77	0.55		0.48			0.85			0.67		
		3D C	HALL	ENGE	RES	ULT	S					
Aethod Na	ame Team Members	Affiliation	Avera IoU	ge Columns IoU	Doors IoU	Walls IoU	5cm Average F1	10cm Average F1	20cm Average F1	10cm Columns F1	10cm Doors F1	10cm Walls F1
FLKPP	Yijie Wu, Maosu Li, and Fan Xue	The University of Hong Kong	0.231	0.372	0.230	0.152	0.316	0.454	0.584	0.608	0.367	0.452

Observation: The IoUs in the point and component levels are significantly different.

3.1 Results

- ♦ Instance segmentation
 - ✓ Example wall instances

Building model generation

JSON files of walls, columns, and doors

Enclosed issue of room

4 Conclusion

Conclusion

✓ The proposed pipeline utilizes

- ✓ floor layer-based noise removal
- ✓ 3D semantic segmentation
- $\checkmark~$ DBSCAN clustering, and
- ✓ Manhattan box-based model generation
- $\checkmark~$ There still exist amounts of information loss
 - \checkmark the overall accuracy stay at a low level.

Room for improvement

- ✓ Adaptive thresholds for instance segmentation
 - \checkmark clutter removal and
 - \checkmark Occlusion completion
- ✓ Modification and **fine-tuning** of deep learning
- ✓ Topology repairing

Observation

- ✓ Significantly inconsistent accuracy
 - ✓ between point-wise and component levels
- ✓ Features from other resources
 - \checkmark such as prior model library
 - ✓ may improve Scan-to-BIM considerably

References

- Ester, M., Kriegel, H. P., Sander, J., & Xu, X. (1996, August). A density-based algorithm for discovering clusters in large spatial databases with noise. In *kdd* (Vol. 96, No. 34, pp. 226-231).
- Li, M., Wu, Y., Xue, F., & Yeh, A. (2022). Semantic segmentation of 3D city mesh model: a multi-source City Information Modeling benchmarking dataset. (working paper)
- Thomas, H., Qi, C. R., Deschaud, J. E., Marcotegui, B., Goulette, F., & Guibas, L. J. (2019). KPConv: Flexible and deformable convolution for point clouds. *In Proceedings of the IEEE/CVF international conference on computer vision* (pp. 6411-6420).
- Wu, Y., Shang, J., & Xue, F. (2021). Regard: Symmetry-based coarse registration of smartphone's colorful point clouds with cad drawings for low-cost digital twin buildings. *Remote Sensing*, *13*(10), 1882.
- Xue, F., Lu, W., & Chen, K. (2018). Automatic generation of semantically rich as-built building information models using 2D images: A derivative-free optimization approach. *Computer-Aided Civil and Infrastructure Engineering*, 33(11), 926-942.
- Xue, F., Lu, W., Chen, K., & Zetkulic, A. (2019). From semantic segmentation to semantic registration: Derivative-Free Optimization–based approach for automatic generation of semantically rich as-built Building Information Models from 3D point clouds. *Journal of Computing in Civil Engineering*, 33(4), 04019024.
- Xue, F. (2022). Interpretable segmentation and clustering of rooms in unstructured 3D point cloud using indoor space voxels. (working paper)

Thank you for your attention!

Li Maosu, PhD. Candidate Dept. of Urban Planning and Design, HKU maosulee@connect.hku.hk