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Highlights

Four Window View Indices (W VIs) were defined for measuring outside greenery,
water-body, sky, and construction views.

WVIs complemented existing view indices from the ground, aircraft, and satellites for
urban computing.

City Information Model (CIM)-based view images were trustworthy data sources for
WVIs.

Automatic WVI assessment based on deep transfer learning with an ML regression
layer was performed.

Highly satisfactory (R? > 0.95) and fast (3.08 s/view) assessment results from
experimental tests were obtained.

Abstract

Every windowed room has a view, which reflects the visibility of nature and landscape and
has a strong influence on the health, living satisfaction, and housing value of inhabitants.
Thus, automatic accurate window view assessment is vital in examining neighborhood

landscape and optimizing the social and physical settings for sustainable urban development.
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However, existing methods are labor-intensive, inaccurate, and non-scalable to assess
window views in high-rise, high-density cities. This study aims to assess Window View
Indices (WVIs) quantitatively and automatically by using a photo-realistic City Information
Model (CIM). First, we define four WVIs to represent the outside (i) greenery, (ii) water-
body, (ii1) sky, and (iv) construction views quantitatively. Then, we proposed a deep transfer
learning method to estimate the WVIs for the window views captured in the CIM.
Preliminary experimental tests in Wan Chai District, Hong Kong confirmed that our method
was highly satisfactory (R? > 0.95) and fast (3.08 s per view), and the WVIs were accurate
(RMSE < 0.042). The proposed approach can be used in computing city-scale window views

for landscape management, sustainable urban planning and design, and real estate valuation.

Keywords: Window view; View quality index; High-rise buildings; City information model;

Deep learning; Urban computing.

1 Introduction

High-quality views can promote the physical and mental health, satisfaction,
restoration, and productivity of inhabitants as shown by studies on psychology, physiology,
and urban health (Ulrich 1984; Lottrup et al. 2015; Waczynska et al. 2021). In general, high-
quality views often involve considerable proportions of natural features, such as greenery,
sky, and water body, which are preferred by people (Hellinga 2013). Although the world
population is migrating to cities (UNPD 2014), urban planners and citizens find it challenging
to optimize the visibility of nature and landscape for windows in cities, especially in high-
rise, high-density areas. The Covid-19 pandemic recently has limited people’s physical access
to nature in many places, further amplifying the benefits of high-quality window views.
Consequently, high-quality window views, as a scarce resource, have been found to have
considerable influence on real estate values and sustainable urban development in terms of
neighborhood satisfaction, psychological and physical well-being, and urban planning and
design (Benson et al. 1998; Bishop et al. 2004; Jim & Chen 2009; Baranzini & Schaerer
2011).

Researchers have developed a plethora of urban indices and computational methods to
assess various urban views from different dimensions and perspectives. For example, on the
global scale, satellite images can produce overhead view indices (Tucker 1979; McFeeters

1996), such as the Normalized Difference Vegetation Index (NDVI) for vegetation (Liu et al.



2016) and the Normalized Difference Water Index for blue space exposure (Helbich et al.
2019). At the city and neighborhood scale, photographs and videos taken by vehicle-borne
cameras can assess the street views (Li et al. 2015; Shen et al. 2017; Dong et al. 2018; Lu
2018). These quantified view indices considerably contribute to human-built-environment
studies, such as urban depression symptoms (Helbich et al. 2019). However, cities, especially
high-rise, high-density ones, are not flat, so overhead and street-view assessment methods
cannot correctly represent window views (Li et al. 2015). High-rise, high-density areas, like
Hong Kong urban areas, have characteristics of high-rise buildings, narrow compacted street
canyons, high-level plot ratios, and high building densities (Gong et al. 2018). Within this
kind of context, the view from the window of a 30/F of an apartment may be completely

different from that of a 3/F one.

Window view quality is receiving increased attention from researchers in the fields of
architecture, urban health, and property valuation. For example, an ideal architectural design
tends to assess the indoor design and the outdoor views holistically (Ko et al. 2021; Li &
Samuelson 2020). Urban health researchers often use survey, interview, or questionnaire
methods to classify the window view qualitatively (Lottrup et al. 2015; Masoudinejad &
Hartig 2020). Qualitative descriptions of housing quality such as “with deluxe sea view” and
“with hill view” have been popular in the housing and hostel market of urban areas such as
Hong Kong (Jim & Chen 2009), and Mediterranean coastal cities (Fleischer 2012). However,
the existing methods are challenging for the assessment of window views at the city level.
First, too many window views exist in a city to be represented and preprocessed (Li et al.
2015). Second, conventional methods are too laborious to assess millions of window views
for a city, and manual assessments are prone to various errors, such as preconceived notions
in questionnaires and subjective judgments in valuation (Helbich et al. 2019). Thus, an
automatic accurate assessment of window views can contribute to large-scale landscape and
urban studies, as well as related disciplines and industries, for billions of urban inhabitants.
The quantified views serving as a vertical view information hub can facilitate developers,
urban planners, and other decision-makers to make well-informed decisions in real estate
valuation, sustainable urban planning, e.g., green space planning for prioritized buildings, and
new town design for balanced natural view acquisition and high-quality landscape view

conservation, especially in high-rise, high-density cities.

This study aims to present a series of Window View Indices (W VIs) together with an



automatic assessment method based on City Information Models (CIMs) and deep transfer
learning. A CIM is a digital representation of the physical and functional characteristics of a
city, and it can serve as a shared-knowledge resource (Song et al. 2017; Xue et al. 2021).
With advanced remote sensing technologies, photo-realistic 3D CIMs become increasingly
accurate in geometry and affordable in price. Recently, researchers have applied virtual
cameras to CIMs to generate realistic images of 3D window views as needed (Li &
Samuelson 2020; Li et al. 2020). The proposed method in the presented study extends the

existing work with deep transfer learning to quantify massive quantities of view images.

The main contributions of this study are thus twofold:

1. From a theoretical perspective, the WVIs and assessment methods in this study extend
the knowledge on computing window views in cities, especially in high-rise, high-
density areas. The WVIs complement the existing studies on overhead and street-level
urban views.

ii.  For urban planning and design, the assessment results of this study are automatic and
accurate for any window (or 3D viewport), thanks to the up-to-date CIM and deep
transfer learning model pre-trained on other urban datasets. The output WVIs can
facilitate planners, architects, and other decision-makers in optimizing the
neighborhood landscape, urban planning and design, and property valuation for

sustainable urban development.

The remainder of this study is organized as follows. The related work in literature is reviewed
in Section 2. The WVI definitions and the automatic assessment method are presented in
Section 3. Section 4 describes preliminary experiments and the results. The discussion and

conclusion are presented in Sections 5 and 6, respectively.

2 Literature review

2.1 Urban views

Numerous studies have been conducted to compute and analyze urban views, e.g., impacts on
human response (Roe et al. 2013) and economic development (Bishop et al. 2004; Jim &
Chen 2009). Examples are green, water, sky, and construction views. Such views are not only
of the interest in landscape and urban planning, but also attracting researchers in other

disciplines such as psychology, physiology, urban health, and real estate.



First, greenery is of great significance to urban dwellers’ psychological and physical health.
Classical theories such as the stress reduction theory (Ulrich 1983) and attentional restorative
theory (Kaplan S. 1995) have already shown this. For instance, green views can reportedly
heighten positive effects such as performance and vitality (Van den Berg et al. 2016), reduce
fears (Ulrich 1984), and block stressful thoughts (Roe et al. 2013). Other studies have shown
that people’s accessibility to greenery can increase their restorative potential (Pazhouhanfar
& Kamal 2014) and thus influence the recovery from surgery (Ulrich 1984), and promote
productivity and job satisfaction (Kaplan R. 2001; Lottrup et al. 2015). The green view
impacts have been more extensively related to topics such as mental fatigue, depression

(Helbich et al. 2019), and potential for violence and crime (Kuo & Sullivan 2001).

Water and sky views as blue elements enable housing to enhance human healthcare and
property value. High-quality water bodies benefit people by having better aesthetic
enjoyment and restorative potential (White et al. 2010), whereas viewing the sky offers
occupants the sight and feeling of openness and spaciousness (Kaya & Erkip 2001). They
found that exposures to water and sky, similar to green views, benefit health and well-being,
such as stress reduction (Ulrich 1981), increased physical activity (Gascon et al. 2017), high
restorative potential (Masoudinejad & Hartig 2020), and promotion of positive mood and
satisfaction (Kaplan R. 2001; Gascon et al. 2017). Meanwhile, as precious attributes of the
aesthetic landscape, water and sky views are of great value, especially in high-rise, high-
density areas. As a result, both are influential on the property price (Baranzini & Schaerer

2011; Fleischer 2012).

For construction views from buildings, streets, and roads, their aesthetics and scarcity affect
the preferences of humans. For instance, features such as constructed landmarks are desirable
in window views (Baranzini & Schaerer 2011; Damigos & Anyfantis 2011). By contrast,
studies also demonstrated that urban views with natural features are preferred by occupants
over plain and dull construction scenes (Ulrich 1981; Grinde & Patil 2009). In summary, the
four types of view features are worthy of assessment for windows in high-rise, high-density

arcas.

2.2 Assessments of window views

Generally, window-view quality can be assessed by two methods, namely, subjective and



objective. First, numerous studies have utilized mostly a window view assessment according
to the participants’ subjective judgments on views (Lottrup et al. 2015; Li & Samuelson
2020; Masoudinejad & Hartig 2020). The window views are presented by physical forms,
such as photographs and virtual forms (e.g., virtual reality). Researchers and practitioners
first collect window views according to their research objects. Then, participants assess or
rank the window views by using interview forms and questionnaire tables. The assessment
results are not concrete owing to fuzzy scales and criteria. The assessment methods on the
participants’ subjective answers are also time-consuming (Helbich et al. 2019; Labib et al.
2021). Thus, subjective methods are limited to a small scale and cannot practically form

common standards to coalesce the window view information objectively and automatically.

Objective methods and indices have emerged in the last decade for quantifying vertical
views. An example is a simulation-based view index harnessing the power of techniques in
the Geographic Information System, Remote Sensing, and 3D modeling (Yu et al. 2016;
Labib et al. 2021). A traditional method, namely 3D visibility analysis, has been used to
examine neighborhood amenities at the site and ground levels (Turan et al. 2019; Labib et al.
2021). Particularly, Yu et al.’s (2016) method measures floor-level greenery view based on
the NDVI metric in a high-rise, high-density context, though the oversimplified 2.5D
greenery can lead to errors. Alternatively, view photography method can effectively compute
and analyze the real profile view of landscapes (Li et al. 2015; Shen et al. 2017; Dong et al.
2018). Recently, the method has also been used in Li et al.’s (2020) two-class window view
classification, i.e., “nature” and “construction,” based on Apriori rules and a transfer learning
model. However, Li et al.’s (2020) method relies on rigid classification rules and has only
two types of features. Thus, next-generation objective assessment methods should be able to

adapt to more urban scenes, with up-to-date machine learning (ML) technologies.

2.3 Deep learning and applications in urban studies

Deep learning is a group of multi-layer artificial neural networks involving multiple levels of
representation learning (LeCun et al. 2015). Deep learning models have shown strengths in
general pattern recognition tasks (LeCun et al. 2015). For instance, SegNet as one of the best
deep convolutional network models has been used in visible landscape segmentation and
quantification tasks (Liang et al. 2017; Shen et al. 2017). To study the relationship of natural

features including greenery and water with geriatric depression in Beijing, China, a fully



convolutional neural network (FCN-8s) was used to segment the street view images into

green parts and blue parts (Helbich et al. 2019).

Deep transfer learning adopts a pre-trained network, inductively or transductively, from a
source domain to the target domain on the basis of a mapping mechanism (Pan & Yang
2009). A small training dataset in the target domain can effectively map the variables’
relationships and transfer the pre-trained network. Deep transfer learning has become
prevalent for saving the time and resource costs in labeling training data with negligible
performance downgrades from the original model. Thus, it is widely used in the semantic
understanding of urban research, such as environmental management (Chen et al., "Looking
beneath the surface”: A visual-physical feature hybrid approach for unattended gauging of
construction waste composition 2021; 2022), urban morphology (Middel et al. 2019), and
perception (Yao et al. 2019; Li et al. 2020). For instance, fed by the street view images, FCN-
8s pre-trained on the ADE20K dataset was transferred in water and greenery extraction of
streetscape (Helbich et al. 2019). All previous studies have confirmed that deep transfer
learning can be a versatile and inexpensive instrument from one domain to a similar domain
application. Thus, for large-scale window view quality assessment and applications, deep
transfer learning can provide cost-effective support for the semantic segmentation of the

Vview.

In summary, large-scale window view assessment, especially the automatic method, has
previously been a conundrum owing to the poor availability of window data and immature
window view reconstruction and processing. Meanwhile, textured CIMs, deep transfer
learning, and other learning technologies may open a window of opportunity to improve the

automatic window view assessment for high-rise, high-density areas significantly.

3 Research methods

Figure 1 shows the proposed method as an Icam DEFinition for Function modeling (IDEFO0)
diagram, which is a public-domain flowchart-like methodology for modeling processes and
functions (Colquhoun et al. 1993). The legend in Figure 1 explains the inputs, methods and
tools, control parameters, and final outputs of each sub-process. The proposed automatic
window view assessment method comprises three steps: (i) batch generation, (ii) semantic

segmentation of pixels, and (iii) estimation of view indices. Each step employs a specific



method and control parameters. Overall, the main inputs are a 3D photo-realistic CIM and
corresponding 2D building footprints in this study. The output is a set of quantified WVIs.
Finally, post-processing enriches the input CIM with the WVIs for smart decision-making for
landscape and urban planning and related disciplines. A practitioner can follow the same

methods and tools in Figure 1 and adjust the control parameters for specific application

scenarios.
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Figure 1. IDEFO (Colquhoun et al. 1993) diagram of the proposed method for assessing
window views.

3.1 Definitions of WVIs

3.1.1 Window view index
This study defines the WVI as the ratio of pixels for each view type. Given a view image v =
{pil1<i<M,1<j<N} of M x N pixels and a finite set L of views, as shown in Figure 2,

the WVI in an input window view image is the ratio:

vy = e €L (1)

where A(p) = [ is the semantic label of a pixel p, e.g., “green” or “waterbody”, and | - | is the
cardinality operator indicating the total number of pixels. Thus, all WVIs are scalars bounded
between 0 and 1:

W € [0, 1] €L 2)

We select the four major types of window views as summarized in Section 2.1. That is, L =
{‘green’, ‘waterbody (water)’, ‘sky’, ‘construction (const.)’}, as shown in Figure 2. Table 1
lists the common city objects’ mapping to L. For instance, the “green” view type covers all
kinds of greenery, including trees, bushes, and grasses. Four symbols, namely, WVgeen,

WV Iyater, WVIsky, and WV eonst., represent the scalar values, respectively. Despite the presence
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of other possible city objects such as pedestrians, pets, vehicles, and aircraft, the four major
types are dominant in window views in our experiment, i.€., WVIgeen + WVIyater + WVIsky +
WVlIconst. = 1, as shown in Figure 2. Furthermore, the ratio-based definition is consistent and
robust for the comparison of views from different window sizes across districts and cities,
which is helpful for the proof-of-concept purpose in this study, e.g., a window with WVlgeen =
0.8 owns more proportions of greenery and can thus be regarded as a totally green-view

window, compared with another having WVlgeen = 0.4.

View image v View type / View ratio

sfoxud gy

Figure 2. Examples of the four Window View Indices (WVIs).

Table 1. List of types of views and associated common city objects.

Type Symbol  Example objects

Green WVlIgeen  Trees, bushes, and grasses
Waterbody WVIwaer  Sea, lakes, ponds, and rivers
Sky WV sy Sky, clouds, and fog

Construction W/Vlonst.  Building facades, roofs, walls, streets, houses, and roads

3.1.2 Window view ranking

Furthermore, the relative window view ranking (WVR) of a window’s WVI within a high-

rise, high-density area 4 can be defined as the percentile to the maximum WVI of the context:

(Very high, WVR} € [0.8, 1.0]
High, WVR} € [0.6, 0.8)

WVRY = — ) verage, WVR! € [0.4, 0.6)

! max(WVIf) e, b I ) ,lEL. 3)

Low, WVR; € [0.2, 0.4)

\ Very low, WVR{ € [0.0, 0.2)




Therefore, the WVR classifies all the windows in an area into five isometric groups. WVR
can resolve the issue of inconsistent upper bounds of different WVIs, which enables an inter-
view-type comparison. For instance, although max(WVly) is roughly 0.5 and max(WVIgreen)
is 1.0 theoretically, max(WVRsky) and max(WVRgreen) can still reach 1.0. Thus, one window
with absolute WVlisy = 0.5 and WVIgeen = 0.5 can be tagged as a “very high”-level sky view
but an “average”-level green view within the context. People’s decision-making is expected

to be associated more with WVRs than WVIs, e.g., in property valuation.
3.2 Proposed assessment method

3.2.1 Batch generation of window view images

The first step aims to generate the window view images in an urban area in batch. The image
extraction process, as shown in Figure 3, is automatic on 3D GIS platforms with camera
functions, such as Cesium (Cesium GS 2022). Figure 3a shows a window’s 3D geolocation
(Ing, lat, height) and heading direction are computed on the facade of extruded footprints by
building height information, where the heading direction is assumed perpendicular to the
facade at (/ng, lat). The field of view is set to 60° to represent the normal human field of
vision (FoV) (Tara et al. 2021), while the pose of the virtual camera is set on the window with
tilt = 0 and pitch = 0 to capture views. The image extraction extends Li et al. (2020) as the
camera’s view of the photo-realistic CIM’s textured appearance. The difference from Li et al.

(2020) is the full automation for massive windows using a JavaScript program as shown in

Figure 3b.
Footprint . i
! :
| |
i FoV=60° !
::::::::_':::::::::::"I
! pitch=10 :
O
: tilt=10 !
i heading !
1 I
L ]
Window loecation and Camera settings on 3D
heading computation [* GIS platforms, such as [
(Ing, lat, height, heading) Cesium
(a) (b)

Figure 3. Batch generation of window view images. (a) Window location computation,
camera settings, and (b) image generation process.
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However, neighboring windows on the same facade often share similar views. Thus,
sampling the facade with certain intervals, e.g., every 10 or 20 m, is a cost-effective method,
as shown in Figure 3b, which can considerably save computational effort without losing
notable WVI accuracy. Based on the efficient sampling and GIS-based view visualization, the
batch generation can extract view images for the windows of a high-rise, high-density area.
Learned from experiments and sensitivity analysis results in Section 4, we used 20 and 5 m to

obtain a location matrix of view sites within the large and small facades, respectively.

3.2.2 Deep transfer learning-based semantic segmentation

This step classifies every pixel in an input image to a semantic view label through deep
transfer learning. One of the most relevant deep learning datasets is the Cityscapes
benchmarking dataset (Cordts et al. 2016), which comprises 25,000 urban views annotated as
19 pixel-level labels from 50 cities in Germany. According to the study of Pan & Yang
(2009), the models trained in Germany can potentially be transferred to other areas like Hong
Kong. Table 2 lists the labels for Cityscapes in seven groups. Apparently, three types of

views, i.e., green, sky, and construction, can be directly mapped from Cityscapes’ definitions.

Table 2. List of labels for the Cityscapes dataset and for WVIs in this study.

Group Labels for Cityscapes Labels for WVIs
Nature Vegetation, Terrain ¢ Green

Sky Sky Sky

Construction Building, Wall, Fence Const.

Paved Road, Sidewalk Const.

Object Pole, Traffic sign, Traffic light Const.

Human Rider, Person _b

Vehicle Car, Truck, Bus, Motorcycle, Bicycle, On rails  —?

a: Including all kinds of horizontal vegetation in Cityscapes; b: Negligible in this study.

A Deeplab (Ver. 3+ with the Xception 65 backbone) model pre-trained on Cityscapes (Chen
et al. 2018; Xia et al. 2021) is transductively transferred to the segmentation of captured
window view images to the labels in Table 2. The off-the-shelf Deeplab model is one of the
top open-source deep learning models for urban views, where the training parameters can be
referred to (Chollet 2017) and (Chen et al. 2018). Xue et al. (2021) showed that transductive
transferring Deeplab leads to an efficient and low-cost semantic segmentation of view

images, even though the training and target datasets are from different contexts. As shown in

11



Figure 4, the incorporated version of Deeplab has a network architecture consisting of two
parts, i.e., an encoder and a decoder (Chen et al. 2018). The encoder mainly includes an
Atrous Spatial Pyramid Pooling Module (ASPP) for concatenated features from a low-level
Atrous convolution (Chollet 2017), while the decoder concatenates the ASPP outputs and

low-level features with convolution and upsampling.

Deeplab (V3+ Xception_63) pre-trained on Cigscapes Results Labels
(Available at hitps:/github.com/tensorflow/models) (Errors in boxes) (in Cityscapes)

: ] : : “
i) Ml Cony 3 ' \"egcrannn

Building

Source of errors  Example view images

(a) Undefined label |HEu——
(*Water’ — ‘Road’) g =

Sidewalk

(b) Wrong o
Wall

segmentation :
(*Const.” — *Car”) [

Low-level
features

(c) Input noises in - =
CIm =
(‘Const.” — ‘Rider B
{ Void")

Figure 4. Three types of semantic segmentation errors in direct transductive transferring of
Deeplab. (a) Undefined labels, (b) segmentation errors, and (c) from input noises.

However, as shown in Figure 4, the segmentation results of a direct transductive transferring
were erroneous and unsatisfactory for WVIs in the study area. The primary source of errors
was from the inconsistent labels, e.g., the water body, between the training dataset Cityscapes
and our view images. Besides, minor errors resulted from the segmentation and input noises.
Therefore, deep transfer learning can deliver pixel-level semantic segmentation with relevant
labels for window view images, but the results must be corrected for the errors to improve the
accuracy in computing WVIs and WVRs using the ML-based WVI regression layer described

in Section 3.2.3 below.

3.2.3 ML-based regression for WVIs

This step applies an ML-based WVI regression, as shown in Figure 5, to correct the errors
from deep transfer learning for computing WVIs. The input features to the regression are
Cityscapes labels in terms of proportions of pixels segmented by Deeplab in Figure 4. The
outputs are the four WVIs, i.e., WVlgcen, WVIwater, WVIsky, and WVIconst. We annotate a small
set of window view images with five labels, i.e., green, waterbody, sky, construction, and
others (e.g., terrain and vehicles), which provide ground truth WVIs for the training process.
The candidate ML models include Decision Trees, Linear Regression, Support Vector

Machines (SVMs), kNN, Artificial Neural Network (ANN), Random Forest, and Adaboost. A

12



standard train-compare-finetune pipeline is applied to select appropriate ML models to
estimate the WVIs through cross-validations. For each type of WVI, the most accurate ML
model (together with its parameters) is selected for the regression layer. As a result, the first

two types of errors shown in Figure 4 can be considerably reduced.

A small training dataset of annotated window view images

WVlg,

Training, evaluation
and finetuning

Others

Vegetation ﬁt o

Adaboost  Linear Regression

3 % %
. LT b Y
gt 4 o 1* .'." Ho b
. % F, L1 S |
y /

Neural Network kNN Random Forest

Building

o \\ :-‘2

= J >/
SVM Tree
Input: Segmentation ML-based regression layer Output: WVIs
results in Figure 4 in this study

Figure 5. ML-based regression layer for estimating WVIs.

The results of ML training are compared with the actual values of the four view types from

view image annotation using root-mean-squared error (RMSE):

R_MSE — IZIEL(Preil_ WV]Z)Z, (4)

where WV, indicates the actual value for the view type [, Pred; is the estimated value, and n
denotes the number of window view images. The ML model trained with the minimum
RMSE is selected for WVI estimation. We utilize 10-fold cross-validation for unbiased
RMSEs.

3.3 Post-processing for semantic enrichment of CIM

The estimated WVIs are post-processed to enrich the semantics of 3D CIM, which can
conveniently support future applications in related domains as a common knowledge
platform. The detailed workflow is as follows. First, geocoded view sites with WVIs are
registered at the 3D globe. Then, regarding view sites within the same facade as a group of

vertices, we triangulate them to reconstruct the building facade through a classic Delaunay

13



method (Lee & Schachter 1980). Thereafter, a linear interpolation-based 3D rendering
(Akenine-Moller et al. 2019) of WVIs visualizes the whole building facades in a mesh
surface. The interpolation result also estimates the WVIs of all locations of the building
facades. Finally, the CIM is enriched with the WVI semantics for a spectrum of applications

in landscape management, sustainable urban planning and design, and real estate valuation.

4 Experimental tests

4.1 Experimental area and settings

The study area was Wan Chai in Hong Kong, as shown in Figure 6a. Wan Chai is one of the
highest residential density zones according to the Hong Kong Planning Standards and
Guidelines (HKPlanD 2018). The average of building heights is 35.5 m and the 75th
percentile is over 48 m. The study area owns a plot ratio at 8.0 and building density at 0.29
(the ratio of building site area to land area). Although the area enjoys considerable sky, sea,
and greenery view contents, the visibility of natural features is often blocked by other
buildings. The 2D footprint data with building height information were extracted from the
iB1000 digital topographic map of Hong Kong (HKLandsD 2014) as shown in Figure 6b, and
converted into the GeoJSON (Butler et al. 2016) format for batch attribute computations of
view sites’ locations and headings. The data source of 3D photorealistic CIM was produced
and freely shared by the Planning Department of Hong Kong (2019) as shown in Figure 6c.
We calibrated the CIM as 3D tiles to the correct geographical locations on the WGS-84 globe.
Then, 2D and 3D datasets were loaded and registered in an open-source 3D GIS platform
named “Cesium ion.” Ten buildings with typical different built environments from the seaside
to the mountain area were selected as case studies to examine the proposed approach, as

shown in Figure 6d.
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Figure 6. Study area of Wan Chai, Hong Kong. (a) Location of Wan Chai, (b) building
footprints, (¢) input CIM, and (d) location of 10 case study buildings.

The computational experiments were set up as follows. The workstation comprised an Intel
17-10700 CPU (2.90GHz, 16 cores), 128 GB memory, one Nvidia GeForce RTX 2070
graphic card, and Ubuntu 20.04 (64-bit) operating system. Sample window views were
collected on the Cesium platform (ver. 1.75). Deep transfer learning was in the environment
of Tensorflow (ver. 2.4) and Python (ver. 3.6). We adopted the seven ML models
implemented on Orange (ver. 3.26), a Python ML platform. From the case study buildings,
110 training examples were selected for unbiased representation of diversified window views
and manually annotated with the WVIs for training the ML models. The one-off annotation
work consumed about 10 person-hours. The size of training examples satisfied the
requirements of deep transfer learning. We set each view image with 900 % 900 pixels to

represent the view features seen from the window.

4.2 Results

Results showed that the proposed method is automatic and efficient, as shown in Table 3. The
first step of batch generation returned 1,416 window view images from the 10 selected
buildings for the case study. The average time for generating one view image was 2.00 s. The
deep transfer learning processed the view images at an average time of 1.08 s in the second

step. The ML-based regression estimated the WVIs in <0.001 s on average for each image.
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Table 3. Computational time of the proposed method for a window view image.

Step  Processing Software library Average time (s)
1 CIM-based batch generation Cesium (ver. 1.75) 2.00%
2 Deep transfer learning Deeplab (ver. 3+) 1.08
3 ML-based regression Orange (ver. 3.26) 0.00"
Total 3.08

#: A pre-set value that can be fine-tuned by workstation performance; *: Less than 0.001 s.

The WVIs’ assessments of the proposed method were also satisfactory. Table 4 shows that for
the best model of the four view indices’ estimation, the R? values were 0.952, 0.965, 0.978,
and 0.977 respectively, which represented more than 95% of the variance in the dependent
variables. The RMSEs of the four training models were 0.021, 0.022, 0.025, and 0.042,
respectively. The optimal parameter of each best model was as follows. For WVIgeen, the
Linear Regression model was trained with Lasso (L1) regularization and strength at 0.0001.
For WVIyater, the SVM model performed the best, with kernel = RBF, C = 0.9, gamma = 0.05.
For WVly, a Linear Regression model with an elastic net regularization (L1:L2=0.50:0.50)
was utilized with the best accuracy of estimation, whereas for WVIonst., the best estimation

was observed from a Linear Regression model with a Ridge (L2) regularization (Alpha =

0.003).

Table 4. Training errors and time of the best model for four WVIs.

WVI Best model Parameters RMSE R? Training time (s)

Green Linear L1=0.0001 0.021 0.952 0.077
Regression

Water SVM Kernel = RBF, C = 0.022 0.965 0.154

0.9, gamma = 0.05

Sky Linear L1:L2 =0.50:0.50 0.025 0.978 0.070
Regression

Const. Linear L2 =0.003 0.042 0.977 0.091
Regression

WVRs were computed from the WVIs by the best model. Table 5 shows three typical window
views and their WVIs and WVRs. In Table 5, a WVR is represented in an array of stars,
showing the level from “very low” to “very high” in Eq. 3. The highest WVRs correctly

reflected the given dominant features for all the samples.

16



Table 5. Sample WVIs and WVRs for typical sample window views.

View images

Dominant feature  Sky Green Construction
Feature  Max. WVI WVR WVI WVR WVI WVR
Green 0.5421 0.0165 * 0.4867 * %% xx 0.0130 *

Water 0.4375 0.3352 * * * ok 0.0024 * 0.0000 *

Sky 0.5505 0.4682 *x % x % (0.3236 * Kk k 0.0928 *

Const. 1.0000 0.1870 * 0.1704 * 0.9057 * K Kk Kk *

4.3 Post-processing for enriching CIMs

In the post-processing, the estimated WVIs and WVRs were registered for enriching the
semantics of input CIM. Figure 7 shows the 3D mesh model of the regional WVIs in the
study area. Generally, most rooms of the buildings owned a high WVIcons:. in this area as
shown in Figure 7d. Figure 7b shows that only windows facing the seaside in the high-rise
buildings near the harbor can have high-level WV lyaer values in Wan Chai. Great sky views
were scattered across the rooms with the high storeys as shown in Figure 7c. Figure 7a shows
the generally low and fluctuated WV Igeen, reflecting the varied amount of the surrounding
greenery at different locations. In summary, the disparity of possession of natural view
resources, i.e., greenery, water, and sky, is significant in the study area. The quantified
disparity can help the urban planners to make a more accurate and specific decision for future
landscape management and urban planning, e.g., prioritized greenery planning for buildings

without any nature views.
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Figure 8 shows a WVR-enriched comparison of two example north-facing facades, one
nearby and the other far away from the seafront, of which the locations are marked in Figure
8e. Holistically, water and sky views of the first facade were above the “average” levels in the
study area (> 40%), as shown in Figures 8b and 8c; in contrast, the levels of those views of
the second facade were consistently lower due to the inter-building obstruction. Figure 8a
shows the green views were both at a “very low” level (< 20%) due to the less visible
greenery. The construction view patterns of the two facades varied as shown in Figure 8d,
where construction views dominated the second facade. In comparison with WVI values, the
relativity in such WVR results is more convenient for certain applications such as real estate
valuation, since the levelization of the window view such as “very high” and “very low” can
intuitively inform developers and occupants of the room view quality within the local
context.
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Figure 8. WVR patterns of two example building facades. (a) WVRgreen, (b) WVRwater, (C)
WVRsky, (d) WVRconst., and (e) their general locations.

4.4 Sensitivity analysis

4.4.1 View sampling interval in Step 1

A trade-off existed between processing time cost and accuracy when applying the view
sampling interval in Step 1. A sensitivity analysis was conducted to identify a cost-effective
sampling plan. In the experiments, the case was a facade area (120 m x 60 m) of the China
Resources Building, as shown in Figure 9a. The benchmark was set to the result of a 5 m
sampling interval. We tested a range of sampling intervals from 10 m to 60 m in an
approximately exponential increment. Figure 9b shows the example of WVIy estimation
results resampled back to the 5 m scale through linear interpolation to compare the accuracies
in terms of RMSE. We found that with increased sampling interval, the time consumption of
the window view image processing from generation to estimation witnessed a sharp decline,
whereas the RMSEs of four WVIs increased accordingly, as shown in Figure 9c. From the
observation, the sample interval of 20 m can be a “sweet point,” in which an efficient and
accurate estimation of WVI (RMSE<0.015) was obtained without excessive processing time.
Thus, for the view image processing of case buildings, we used 20 m as the sampling interval
for large facades. For a building facade whose length or width was less than 20 m, 5 m was

used.
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Figure 9. Sensitivity analysis of sampling intervals. (a) A case facade, (b) estimated WVl at
different sampling intervals, and (c) trade-off between time cost and four WVIs’ accuracy.

4.4.2 Input CIM in Step 1

Figure 10 compares view segmentation results using two different CIMs. The appearances of

the two 3D models were close but clearly distinguishable. First, the color contrast of Google

Earth’s CIM was softer than the model adopted in this study, and the low contrast resulted in

the misclassification of constructions and greenery highlighted in Figure 10a. Second, the

model fidelity also affected the stimulation effects. Figure 10b shows that some parts of the
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vegetation view (as highlighted in the rectangles), which were wrongly segmented using our
CIM, can be corrected using Google Earth’s model. This finding was due to the higher
quality of Google Earth’s in expressing the vegetation features, especially in close range.
Lastly, the distortions in CIMs affected the segmentation accuracy. As shown in the red
rectangles in Figure 10c, the blurred facades in the left column resulted in inaccurate
segmentation, whereas the distortions in Google Earth’s model led to the wrong detection of

buildings to vegetation.

view images view images
Our 3D model Detection results Google earth model  Detection results Feature label

Vegetation

Building

Road

Figure 10. Comparison of window view image segmentation (Step 2) against different CIMs.
(a) View color, (b) view fidelity, and (c) view distortions.

4.4.3 ML models for regression in Step 3

Based on the R?, the performance of trained models is examined, and results are shown in
Figure 11. For the estimation of the four WVIs, all ML models had R? values greater than 0.7.
For three types of WVIs, i.e., WVligeen, WVIsky, and WVlIconst., the best models were produced
by Linear Regression. For the WV later estimation, the best model was SVM, whereas the
Linear Regression returned R? > 0.93. The satisfactory results from Linear Regression might
echo the assumption that four window view types could be mapped directly from the urban

street view features in high-rise, high-density areas.
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Figure 11. Comparison of R? performances of the seven ML models.

5 Discussion

5.1 Significance

Large-scale window view assessment has a great potential to support many smart city
applications. The window view quality is of great significance for residents in high-rise, high-
density areas. In the post-Covid-19 era, window view plays an important role in accessing
nature as people have to stay longer in their houses or offices. The quantitative window view
quality assessment at the city scale can provide an intuitive understanding of environmental
inequality. Planners can use the results to prioritize improvements of the poor living
environments, such as prioritized provision of more green space for neighborhoods with poor
window views. And government sectors and policymakers can make the regulations, e.g.,
minimum acquisition of nature views in the future sustainable urban development. The results
can also facilitate urban and architectural design by quantifying the window view quality at a
relatively low cost. Designers can integrate the quantified view results for more
comprehensive generative designs of building spaces (Laovisutthichai et al. 2021) and new
towns. In addition, the method can serve as a new indicator for the housing market and thus

has a great potential to the architecture, engineering, and construction development.

In the past, surveyors had to enter real rooms of buildings to capture the window views.
Owing to this time-consuming, labor-intensive task, the window view dataset is always
limited (Labib et al. 2021). Furthermore, accessing all window views manually at a large
scale becomes impossible in terms of cost, labor force, and privacy (Helbich et al. 2019).
Nowadays, with the advancement of remote sensing, photogrammetry, and digital twin

technology, mature 3D CIMs with high-quality textured appearances are becoming
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increasingly available for detecting multiple groups of view features. CIM-based simulated
window views for the real world have been validated effectively (Li & Samuelson 2020; Li et
al. 2020). However, for an urban-scale window view quality evaluation, processing a large
number of views manually remains laborious and expensive for surveyors. The proposed
window view quality assessment method can free humans from repetitive and time-
consuming tasks, and provide a set of quantifiable indicators to support fundamental and

derivative applications in window view quality evaluation.

The proposed automatic assessment method can effectively generate four major view indices
for quantifying and analyzing the urban-scale window views. First, this study makes full use
of volumetric landscapes from 3D photo-realistic CIMs to further enrich the CIM with four
WVIs, thereby enabling many window-view-based digital twin city applications, such as 3D
city living environment assessment and housing scenic quality comparison. From a
practitioners’ point of view, the method is easy-to-use, low-cost, and accurate. For example,
the automation process can be implemented without considerable prior knowledge. The pre-
trained Deeplab model was shared freely. Based on the transfer learning theory, only a small
dataset is required for a satisfactory WVI assessment. Moreover, the experimental results
confirmed a high accuracy of assessing the window views (R?> 0.95). In summary, the
proposed method contributes to window view assessment using CIM and Al, and also
provides relatively low-cost and high-accuracy WVIs for applications in urban planning and

design, and property valuation.

5.2 Limitations and future work

Nevertheless, a few limitations exist in the work presented in this study. First, the assessed
window view quality in this study only involved limited contents, including greenery, sky,
water body, and construction. Movable city objects e.g., pedestrian, car, and rare urban
features e.g., bare soil surface were not involved. Other view elements exerting influence on
indoor living satisfaction and outdoor environment perception such as aesthetic and
environmental quality, view distance, and layer were not considered. Second, the horizontal
view was set to compute the WVIs, which might miss visible features from other directions,
e.g., the ground level. Next, another limitation was the high workload of 2D image
segmentation involving repeated computation. For instance, similar view images from
neighboring windows were independent without reusing the intermediate segmentations. The

computation cost could be slightly higher for irregular buildings due to more view samples
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and processing. Last, the window sampling and interpolation also led to possible accuracy

losses.

Future directions to improve the presented study are as follows. The first is extending the 2D
image format of window views to incorporate high-dimensional factors (e.g., fine-scale
classified view features, view distance that influences residents’ feeling of spaciousness, and
aesthetics and environmental quality attributes that influence living satisfaction) for holistic
quality and optimization. More FoVs, such as 360-views, can extend the WVIs assessed in
the 60° horizontal views in this study. Well-labelled CIM for landscapes is proven effective
for large-scale view quantification (Yu et al. 2016). Thus, a 3D segmented CIM may
eliminate the repetitive and redundant 2D image segmentation and save considerable costs of
training and applying deep transfer learning, especially for irregular buildings. Another
direction is to identify the accurate 3D location and orientation for each physical window in

the CIM so that the assessed WVIs and WVRs can be associated with windows and rooms.

6 Conclusion

A high-quality window view with enough features such as greenery, sky, and water not only
has a good impact on residents’ health, well-being, and performance, but also can enrich the
value of the house, especially in high-rise, high-density areas. Traditional window view
assessment methods have common problems such as subjectivity, scalability, and efficiency.
To address these limitations, this study uses an automatic method for the large-scale window
view quality assessment through the use of CIM-based window view images of city

buildings.

This study defines an indicator named Window View Index (WVI) including four sub-indices
i.e. Green view index, Water view index, Sky view index, and Construction view index,
which are measured at one time efficiently. By implementing a fast-sampling method, outside
views are captured at each view site of the 3D CIM at the initial stage. Then, a pre-trained
deep transfer learning model is used to classify view images into multiple features efficiently.
To construct the regression between detected features and the WVI, seven traditional machine
learning models are tuned to achieve the best performance. Our method achieved highly
satisfactory results in estimating the WVIs for the high-rise, high-density area, in Wan Chai,
Hong Kong. The RMSEs of estimation did not exceed 0.042, whereas the average time of
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processing each window was 3.08 s.

The proposed method provides intuitive indicators of the window view quality for high-rise,
high-density areas. The automatic, accurate method is scalable to the urban scale, thereby
enabling many window view-based applications in landscape management, sustainable urban
planning and design, and real estate valuation, which would benefit residents’ health, urban
optimization, and the housing industry. Future work includes extending the view indices, 3D

semantic segmentation of CIM, and mapping the WVIs to physical windows and rooms.
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