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Highlights 

⋅ Four Window View Indices (WVIs) were defined for measuring outside greenery, 
water-body, sky, and construction views. 

⋅ WVIs complemented existing view indices from the ground, aircraft, and satellites for 
urban computing. 

⋅ City Information Model (CIM)-based view images were trustworthy data sources for 
WVIs. 

⋅ Automatic WVI assessment based on deep transfer learning with an ML regression 
layer was performed. 

⋅ Highly satisfactory (R2 > 0.95) and fast (3.08 s/view) assessment results from 
experimental tests were obtained. 

 

Abstract 1 

Every windowed room has a view, which reflects the visibility of nature and landscape and 2 

has a strong influence on the health, living satisfaction, and housing value of inhabitants. 3 

Thus, automatic accurate window view assessment is vital in examining neighborhood 4 

landscape and optimizing the social and physical settings for sustainable urban development. 5 
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However, existing methods are labor-intensive, inaccurate, and non-scalable to assess 6 

window views in high-rise, high-density cities. This study aims to assess Window View 7 

Indices (WVIs) quantitatively and automatically by using a photo-realistic City Information 8 

Model (CIM). First, we define four WVIs to represent the outside (i) greenery, (ii) water-9 

body, (iii) sky, and (iv) construction views quantitatively. Then, we proposed a deep transfer 10 

learning method to estimate the WVIs for the window views captured in the CIM. 11 

Preliminary experimental tests in Wan Chai District, Hong Kong confirmed that our method 12 

was highly satisfactory (R² > 0.95) and fast (3.08 s per view), and the WVIs were accurate 13 

(RMSE < 0.042). The proposed approach can be used in computing city-scale window views 14 

for landscape management, sustainable urban planning and design, and real estate valuation. 15 

Keywords: Window view; View quality index; High-rise buildings; City information model; 16 

Deep learning; Urban computing. 17 

 18 

1 Introduction 19 

 High-quality views can promote the physical and mental health, satisfaction, 20 

restoration, and productivity of inhabitants as shown by studies on psychology, physiology, 21 

and urban health (Ulrich 1984; Lottrup et al. 2015; Waczynska et al. 2021). In general, high-22 

quality views often involve considerable proportions of natural features, such as greenery, 23 

sky, and water body, which are preferred by people (Hellinga 2013). Although the world 24 

population is migrating to cities (UNPD 2014), urban planners and citizens find it challenging 25 

to optimize the visibility of nature and landscape for windows in cities, especially in high-26 

rise, high-density areas. The Covid-19 pandemic recently has limited people’s physical access 27 

to nature in many places, further amplifying the benefits of high-quality window views. 28 

Consequently, high-quality window views, as a scarce resource, have been found to have 29 

considerable influence on real estate values and sustainable urban development in terms of 30 

neighborhood satisfaction, psychological and physical well-being, and urban planning and 31 

design (Benson et al. 1998; Bishop et al. 2004; Jim & Chen 2009; Baranzini & Schaerer 32 

2011). 33 

 34 

 Researchers have developed a plethora of urban indices and computational methods to 35 

assess various urban views from different dimensions and perspectives. For example, on the 36 

global scale, satellite images can produce overhead view indices (Tucker 1979; McFeeters 37 

1996), such as the Normalized Difference Vegetation Index (NDVI) for vegetation (Liu et al. 38 
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2016) and the Normalized Difference Water Index for blue space exposure (Helbich et al. 39 

2019). At the city and neighborhood scale, photographs and videos taken by vehicle-borne 40 

cameras can assess the street views (Li et al. 2015; Shen et al. 2017; Dong et al. 2018; Lu 41 

2018). These quantified view indices considerably contribute to human-built-environment 42 

studies, such as urban depression symptoms (Helbich et al. 2019). However, cities, especially 43 

high-rise, high-density ones, are not flat, so overhead and street-view assessment methods 44 

cannot correctly represent window views (Li et al. 2015). High-rise, high-density areas, like 45 

Hong Kong urban areas, have characteristics of high-rise buildings, narrow compacted street 46 

canyons, high-level plot ratios, and high building densities (Gong et al. 2018). Within this 47 

kind of context, the view from the window of a 30/F of an apartment may be completely 48 

different from that of a 3/F one. 49 

 50 

 Window view quality is receiving increased attention from researchers in the fields of 51 

architecture, urban health, and property valuation. For example, an ideal architectural design 52 

tends to assess the indoor design and the outdoor views holistically (Ko et al. 2021; Li & 53 

Samuelson 2020). Urban health researchers often use survey, interview, or questionnaire 54 

methods to classify the window view qualitatively (Lottrup et al. 2015; Masoudinejad & 55 

Hartig 2020). Qualitative descriptions of housing quality such as “with deluxe sea view” and 56 

“with hill view” have been popular in the housing and hostel market of urban areas such as 57 

Hong Kong (Jim & Chen 2009), and Mediterranean coastal cities (Fleischer 2012). However, 58 

the existing methods are challenging for the assessment of window views at the city level. 59 

First, too many window views exist in a city to be represented and preprocessed (Li et al. 60 

2015). Second, conventional methods are too laborious to assess millions of window views 61 

for a city, and manual assessments are prone to various errors, such as preconceived notions 62 

in questionnaires and subjective judgments in valuation (Helbich et al. 2019). Thus, an 63 

automatic accurate assessment of window views can contribute to large-scale landscape and 64 

urban studies, as well as related disciplines and industries, for billions of urban inhabitants. 65 

The quantified views serving as a vertical view information hub can facilitate developers, 66 

urban planners, and other decision-makers to make well-informed decisions in real estate 67 

valuation, sustainable urban planning, e.g., green space planning for prioritized buildings, and 68 

new town design for balanced natural view acquisition and high-quality landscape view 69 

conservation, especially in high-rise, high-density cities. 70 

 71 

This study aims to present a series of Window View Indices (WVIs) together with an 72 
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automatic assessment method based on City Information Models (CIMs) and deep transfer 73 

learning. A CIM is a digital representation of the physical and functional characteristics of a 74 

city, and it can serve as a shared-knowledge resource (Song et al. 2017; Xue et al. 2021). 75 

With advanced remote sensing technologies, photo-realistic 3D CIMs become increasingly 76 

accurate in geometry and affordable in price. Recently, researchers have applied virtual 77 

cameras to CIMs to generate realistic images of 3D window views as needed (Li & 78 

Samuelson 2020; Li et al. 2020). The proposed method in the presented study extends the 79 

existing work with deep transfer learning to quantify massive quantities of view images. 80 

 81 

The main contributions of this study are thus twofold: 82 

i. From a theoretical perspective, the WVIs and assessment methods in this study extend 83 

the knowledge on computing window views in cities, especially in high-rise, high-84 

density areas. The WVIs complement the existing studies on overhead and street-level 85 

urban views. 86 

ii. For urban planning and design, the assessment results of this study are automatic and 87 

accurate for any window (or 3D viewport), thanks to the up-to-date CIM and deep 88 

transfer learning model pre-trained on other urban datasets. The output WVIs can 89 

facilitate planners, architects, and other decision-makers in optimizing the 90 

neighborhood landscape, urban planning and design, and property valuation for 91 

sustainable urban development. 92 

 93 

The remainder of this study is organized as follows. The related work in literature is reviewed 94 

in Section 2. The WVI definitions and the automatic assessment method are presented in 95 

Section 3. Section 4 describes preliminary experiments and the results. The discussion and 96 

conclusion are presented in Sections 5 and 6, respectively. 97 

2 Literature review 98 

2.1 Urban views 99 

Numerous studies have been conducted to compute and analyze urban views, e.g., impacts on 100 

human response (Roe et al. 2013) and economic development (Bishop et al. 2004; Jim & 101 

Chen 2009). Examples are green, water, sky, and construction views. Such views are not only 102 

of the interest in landscape and urban planning, but also attracting researchers in other 103 

disciplines such as psychology, physiology, urban health, and real estate.  104 

 105 
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First, greenery is of great significance to urban dwellers’ psychological and physical health. 106 

Classical theories such as the stress reduction theory (Ulrich 1983) and attentional restorative 107 

theory (Kaplan S. 1995) have already shown this. For instance, green views can reportedly 108 

heighten positive effects such as performance and vitality (Van den Berg et al. 2016), reduce 109 

fears (Ulrich 1984), and block stressful thoughts (Roe et al. 2013). Other studies have shown 110 

that people’s accessibility to greenery can increase their restorative potential (Pazhouhanfar 111 

& Kamal 2014) and thus influence the recovery from surgery (Ulrich 1984), and promote 112 

productivity and job satisfaction (Kaplan R. 2001; Lottrup et al. 2015). The green view 113 

impacts have been more extensively related to topics such as mental fatigue, depression 114 

(Helbich et al. 2019), and potential for violence and crime (Kuo & Sullivan 2001). 115 

 116 

Water and sky views as blue elements enable housing to enhance human healthcare and 117 

property value. High-quality water bodies benefit people by having better aesthetic 118 

enjoyment and restorative potential (White et al. 2010), whereas viewing the sky offers 119 

occupants the sight and feeling of openness and spaciousness (Kaya & Erkip 2001). They 120 

found that exposures to water and sky, similar to green views, benefit health and well-being, 121 

such as stress reduction (Ulrich 1981), increased physical activity (Gascon et al. 2017), high 122 

restorative potential (Masoudinejad & Hartig 2020), and promotion of positive mood and 123 

satisfaction (Kaplan R. 2001; Gascon et al. 2017). Meanwhile, as precious attributes of the 124 

aesthetic landscape, water and sky views are of great value, especially in high-rise, high-125 

density areas. As a result, both are influential on the property price (Baranzini & Schaerer 126 

2011; Fleischer 2012).  127 

 128 

For construction views from buildings, streets, and roads, their aesthetics and scarcity affect 129 

the preferences of humans. For instance, features such as constructed landmarks are desirable 130 

in window views (Baranzini & Schaerer 2011; Damigos & Anyfantis 2011). By contrast, 131 

studies also demonstrated that urban views with natural features are preferred by occupants 132 

over plain and dull construction scenes (Ulrich 1981; Grinde & Patil 2009). In summary, the 133 

four types of view features are worthy of assessment for windows in high-rise, high-density 134 

areas. 135 

 136 

2.2 Assessments of window views 137 

Generally, window-view quality can be assessed by two methods, namely, subjective and 138 
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objective. First, numerous studies have utilized mostly a window view assessment according 139 

to the participants’ subjective judgments on views (Lottrup et al. 2015; Li & Samuelson 140 

2020; Masoudinejad & Hartig 2020). The window views are presented by physical forms, 141 

such as photographs and virtual forms (e.g., virtual reality). Researchers and practitioners 142 

first collect window views according to their research objects. Then, participants assess or 143 

rank the window views by using interview forms and questionnaire tables. The assessment 144 

results are not concrete owing to fuzzy scales and criteria. The assessment methods on the 145 

participants’ subjective answers are also time-consuming (Helbich et al. 2019; Labib et al. 146 

2021). Thus, subjective methods are limited to a small scale and cannot practically form 147 

common standards to coalesce the window view information objectively and automatically. 148 

 149 

Objective methods and indices have emerged in the last decade for quantifying vertical 150 

views. An example is a simulation-based view index harnessing the power of techniques in 151 

the Geographic Information System, Remote Sensing, and 3D modeling (Yu et al. 2016; 152 

Labib et al. 2021). A traditional method, namely 3D visibility analysis, has been used to 153 

examine neighborhood amenities at the site and ground levels (Turan et al. 2019; Labib et al. 154 

2021). Particularly, Yu et al.’s (2016) method measures floor-level greenery view based on 155 

the NDVI metric in a high-rise, high-density context, though the oversimplified 2.5D 156 

greenery can lead to errors. Alternatively, view photography method can effectively compute 157 

and analyze the real profile view of landscapes (Li et al. 2015; Shen et al. 2017; Dong et al. 158 

2018). Recently, the method has also been used in Li et al.’s (2020) two-class window view 159 

classification, i.e., “nature” and “construction,” based on Apriori rules and a transfer learning 160 

model. However, Li et al.’s (2020) method relies on rigid classification rules and has only 161 

two types of features. Thus, next-generation objective assessment methods should be able to 162 

adapt to more urban scenes, with up-to-date machine learning (ML) technologies. 163 

 164 

2.3 Deep learning and applications in urban studies 165 

Deep learning is a group of multi-layer artificial neural networks involving multiple levels of 166 

representation learning (LeCun et al. 2015). Deep learning models have shown strengths in 167 

general pattern recognition tasks (LeCun et al. 2015). For instance, SegNet as one of the best 168 

deep convolutional network models has been used in visible landscape segmentation and 169 

quantification tasks (Liang et al. 2017; Shen et al. 2017). To study the relationship of natural 170 

features including greenery and water with geriatric depression in Beijing, China, a fully 171 



7 
 

convolutional neural network (FCN-8s) was used to segment the street view images into 172 

green parts and blue parts (Helbich et al. 2019). 173 

 174 

Deep transfer learning adopts a pre-trained network, inductively or transductively, from a 175 

source domain to the target domain on the basis of a mapping mechanism (Pan & Yang 176 

2009). A small training dataset in the target domain can effectively map the variables’ 177 

relationships and transfer the pre-trained network. Deep transfer learning has become 178 

prevalent for saving the time and resource costs in labeling training data with negligible 179 

performance downgrades from the original model. Thus, it is widely used in the semantic 180 

understanding of urban research, such as environmental management (Chen et al., "Looking 181 

beneath the surface”: A visual-physical feature hybrid approach for unattended gauging of 182 

construction waste composition 2021; 2022), urban morphology (Middel et al. 2019), and 183 

perception (Yao et al. 2019; Li et al. 2020). For instance, fed by the street view images, FCN-184 

8s pre-trained on the ADE20K dataset was transferred in water and greenery extraction of 185 

streetscape (Helbich et al. 2019). All previous studies have confirmed that deep transfer 186 

learning can be a versatile and inexpensive instrument from one domain to a similar domain 187 

application. Thus, for large-scale window view quality assessment and applications, deep 188 

transfer learning can provide cost-effective support for the semantic segmentation of the 189 

view. 190 

 191 

In summary, large-scale window view assessment, especially the automatic method, has 192 

previously been a conundrum owing to the poor availability of window data and immature 193 

window view reconstruction and processing. Meanwhile, textured CIMs, deep transfer 194 

learning, and other learning technologies may open a window of opportunity to improve the 195 

automatic window view assessment for high-rise, high-density areas significantly. 196 

 197 

3 Research methods 198 

Figure 1 shows the proposed method as an Icam DEFinition for Function modeling (IDEF0) 199 

diagram, which is a public-domain flowchart-like methodology for modeling processes and 200 

functions (Colquhoun et al. 1993). The legend in Figure 1 explains the inputs, methods and 201 

tools, control parameters, and final outputs of each sub-process. The proposed automatic 202 

window view assessment method comprises three steps: (i) batch generation, (ii) semantic 203 

segmentation of pixels, and (iii) estimation of view indices. Each step employs a specific 204 
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method and control parameters. Overall, the main inputs are a 3D photo-realistic CIM and 205 

corresponding 2D building footprints in this study. The output is a set of quantified WVIs. 206 

Finally, post-processing enriches the input CIM with the WVIs for smart decision-making for 207 

landscape and urban planning and related disciplines. A practitioner can follow the same 208 

methods and tools in Figure 1 and adjust the control parameters for specific application 209 

scenarios. 210 
  211 

 212 

Figure 1. IDEF0 (Colquhoun et al. 1993) diagram of the proposed method for assessing 213 

window views. 214 

 215 

3.1 Definitions of WVIs 216 

3.1.1 Window view index 217 

This study defines the WVI as the ratio of pixels for each view type. Given a view image v = 218 

{ pij | 1 ≤ i ≤ M, 1 ≤ j ≤ N } of M × N pixels and a finite set L of views, as shown in Figure 2, 219 

the WVI in an input window view image is the ratio: 220 

WVIl = |{p | p ∈ v, λ(p) = l}|
M × N

 , l ∈ L, (1) 221 

where λ(p) = l is the semantic label of a pixel p, e.g., “green” or “waterbody”, and | · | is the 222 

cardinality operator indicating the total number of pixels. Thus, all WVIs are scalars bounded 223 

between 0 and 1: 224 

WVIl ∈ [0, 1] , l ∈ L. (2) 225 

 226 

We select the four major types of window views as summarized in Section 2.1. That is, L = 227 

{‘green’, ‘waterbody (water)’, ‘sky’, ‘construction (const.)’}, as shown in Figure 2. Table 1 228 

lists the common city objects’ mapping to L. For instance, the “green” view type covers all 229 

kinds of greenery, including trees, bushes, and grasses. Four symbols, namely, WVIgreen, 230 

WVIwater, WVIsky, and WVIconst., represent the scalar values, respectively. Despite the presence 231 
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of other possible city objects such as pedestrians, pets, vehicles, and aircraft, the four major 232 

types are dominant in window views in our experiment, i.e., WVIgreen + WVIwater + WVIsky + 233 

WVIconst. ≈ 1, as shown in Figure 2. Furthermore, the ratio-based definition is consistent and 234 

robust for the comparison of views from different window sizes across districts and cities, 235 

which is helpful for the proof-of-concept purpose in this study, e.g., a window with WVIgreen = 236 

0.8 owns more proportions of greenery and can thus be regarded as a totally green-view 237 

window, compared with another having WVIgreen = 0.4. 238 

 239 

Figure 2. Examples of the four Window View Indices (WVIs). 240 

 241 

Table 1. List of types of views and associated common city objects. 242 

Type Symbol Example objects 
Green WVIgreen Trees, bushes, and grasses 
Waterbody WVIwater Sea, lakes, ponds, and rivers 
Sky WVIsky Sky, clouds, and fog 
Construction WVIconst. Building facades, roofs, walls, streets, houses, and roads 

 243 

3.1.2 Window view ranking 244 

Furthermore, the relative window view ranking (WVR) of a window’s WVI within a high-245 

rise, high-density area A can be defined as the percentile to the maximum WVI of the context: 246 

WVR lA =
WVIl

max �WVIl
𝐴𝐴�

=

⎩
⎪
⎨

⎪
⎧Very high, WVRl

A ∈ [0.8, 1.0]
High, WVRl

A ∈ [0.6, 0.8)
Average, WVRl

A ∈ [0.4, 0.6)
Low, WVRl

A ∈ [0.2, 0.4)
Very low, WVRl

A ∈ [0.0, 0.2)

 , l ∈ L. (3) 

 247 
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Therefore, the WVR classifies all the windows in an area into five isometric groups. WVR 248 

can resolve the issue of inconsistent upper bounds of different WVIs, which enables an inter-249 

view-type comparison. For instance, although max(WVIsky) is roughly 0.5 and max(WVIgreen) 250 

is 1.0 theoretically, max(WVRsky) and max(WVRgreen) can still reach 1.0. Thus, one window 251 

with absolute WVIsky = 0.5 and WVIgreen = 0.5 can be tagged as a “very high”-level sky view 252 

but an “average”-level green view within the context. People’s decision-making is expected 253 

to be associated more with WVRs than WVIs, e.g., in property valuation. 254 

3.2 Proposed assessment method 255 

3.2.1 Batch generation of window view images 256 

The first step aims to generate the window view images in an urban area in batch. The image 257 

extraction process, as shown in Figure 3, is automatic on 3D GIS platforms with camera 258 

functions, such as Cesium (Cesium GS 2022). Figure 3a shows a window’s 3D geolocation 259 

(lng, lat, height) and heading direction are computed on the facade of extruded footprints by 260 

building height information, where the heading direction is assumed perpendicular to the 261 

facade at (lng, lat). The field of view is set to 60° to represent the normal human field of 262 

vision (FoV) (Tara et al. 2021), while the pose of the virtual camera is set on the window with 263 

tilt = 0 and pitch = 0 to capture views. The image extraction extends Li et al. (2020) as the 264 

camera’s view of the photo-realistic CIM’s textured appearance. The difference from Li et al. 265 

(2020) is the full automation for massive windows using a JavaScript program as shown in 266 

Figure 3b. 267 

 268 

Figure 3. Batch generation of window view images. (a) Window location computation, 269 

camera settings, and (b) image generation process. 270 



11 
 

 271 

However, neighboring windows on the same facade often share similar views. Thus, 272 

sampling the facade with certain intervals, e.g., every 10 or 20 m, is a cost-effective method, 273 

as shown in Figure 3b, which can considerably save computational effort without losing 274 

notable WVI accuracy. Based on the efficient sampling and GIS-based view visualization, the 275 

batch generation can extract view images for the windows of a high-rise, high-density area. 276 

Learned from experiments and sensitivity analysis results in Section 4, we used 20 and 5 m to 277 

obtain a location matrix of view sites within the large and small facades, respectively. 278 

 279 

3.2.2 Deep transfer learning-based semantic segmentation 280 

This step classifies every pixel in an input image to a semantic view label through deep 281 

transfer learning. One of the most relevant deep learning datasets is the Cityscapes 282 

benchmarking dataset (Cordts et al. 2016), which comprises 25,000 urban views annotated as 283 

19 pixel-level labels from 50 cities in Germany. According to the study of Pan & Yang 284 

(2009), the models trained in Germany can potentially be transferred to other areas like Hong 285 

Kong. Table 2 lists the labels for Cityscapes in seven groups. Apparently, three types of 286 

views, i.e., green, sky, and construction, can be directly mapped from Cityscapes’ definitions. 287 

 288 

Table 2. List of labels for the Cityscapes dataset and for WVIs in this study. 289 

Group Labels for Cityscapes Labels for WVIs 
Nature Vegetation, Terrain a Green 
Sky Sky Sky 
Construction Building, Wall, Fence Const. 
Paved Road, Sidewalk Const. 
Object Pole, Traffic sign, Traffic light Const. 
Human Rider, Person – b 
Vehicle Car, Truck, Bus, Motorcycle, Bicycle, On rails – b 

a: Including all kinds of horizontal vegetation in Cityscapes; b: Negligible in this study. 290 

 291 

A Deeplab (Ver. 3+ with the Xception_65 backbone) model pre-trained on Cityscapes (Chen 292 

et al. 2018; Xia et al. 2021) is transductively transferred to the segmentation of captured 293 

window view images to the labels in Table 2. The off-the-shelf Deeplab model is one of the 294 

top open-source deep learning models for urban views, where the training parameters can be 295 

referred to (Chollet 2017) and (Chen et al. 2018). Xue et al. (2021) showed that transductive 296 

transferring Deeplab leads to an efficient and low-cost semantic segmentation of view 297 

images, even though the training and target datasets are from different contexts. As shown in 298 
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Figure 4, the incorporated version of Deeplab has a network architecture consisting of two 299 

parts, i.e., an encoder and a decoder (Chen et al. 2018). The encoder mainly includes an 300 

Atrous Spatial Pyramid Pooling Module (ASPP) for concatenated features from a low-level 301 

Atrous convolution (Chollet 2017), while the decoder concatenates the ASPP outputs and 302 

low-level features with convolution and upsampling. 303 

 304 

Figure 4. Three types of semantic segmentation errors in direct transductive transferring of 305 

Deeplab. (a) Undefined labels, (b) segmentation errors, and (c) from input noises. 306 

 307 

However, as shown in Figure 4, the segmentation results of a direct transductive transferring 308 

were erroneous and unsatisfactory for WVIs in the study area. The primary source of errors 309 

was from the inconsistent labels, e.g., the water body, between the training dataset Cityscapes 310 

and our view images. Besides, minor errors resulted from the segmentation and input noises. 311 

Therefore, deep transfer learning can deliver pixel-level semantic segmentation with relevant 312 

labels for window view images, but the results must be corrected for the errors to improve the 313 

accuracy in computing WVIs and WVRs using the ML-based WVI regression layer described 314 

in Section 3.2.3 below. 315 

3.2.3 ML-based regression for WVIs 316 

This step applies an ML-based WVI regression, as shown in Figure 5, to correct the errors 317 

from deep transfer learning for computing WVIs. The input features to the regression are 318 

Cityscapes labels in terms of proportions of pixels segmented by Deeplab in Figure 4. The 319 

outputs are the four WVIs, i.e., WVIgreen, WVIwater, WVIsky, and WVIconst. We annotate a small 320 

set of window view images with five labels, i.e., green, waterbody, sky, construction, and 321 

others (e.g., terrain and vehicles), which provide ground truth WVIs for the training process. 322 

The candidate ML models include Decision Trees, Linear Regression, Support Vector 323 

Machines (SVMs), kNN, Artificial Neural Network (ANN), Random Forest, and Adaboost. A 324 
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standard train-compare-finetune pipeline is applied to select appropriate ML models to 325 

estimate the WVIs through cross-validations. For each type of WVI, the most accurate ML 326 

model (together with its parameters) is selected for the regression layer. As a result, the first 327 

two types of errors shown in Figure 4 can be considerably reduced. 328 
 329 

 330 

Figure 5. ML-based regression layer for estimating WVIs. 331 

 332 

The results of ML training are compared with the actual values of the four view types from 333 

view image annotation using root-mean-squared error (RMSE): 334 

 RMSE = �∑ (Predl−WVIl)2l∈L
n

,   (4) 335 

where WVIl indicates the actual value for the view type l, Predl is the estimated value, and n 336 

denotes the number of window view images. The ML model trained with the minimum 337 

RMSE is selected for WVI estimation. We utilize 10-fold cross-validation for unbiased 338 

RMSEs. 339 

 340 

3.3 Post-processing for semantic enrichment of CIM 341 

The estimated WVIs are post-processed to enrich the semantics of 3D CIM, which can 342 

conveniently support future applications in related domains as a common knowledge 343 

platform. The detailed workflow is as follows. First, geocoded view sites with WVIs are 344 

registered at the 3D globe. Then, regarding view sites within the same facade as a group of 345 

vertices, we triangulate them to reconstruct the building facade through a classic Delaunay 346 
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method (Lee & Schachter 1980). Thereafter, a linear interpolation-based 3D rendering 347 

(Akenine-Möller et al. 2019) of WVIs visualizes the whole building facades in a mesh 348 

surface. The interpolation result also estimates the WVIs of all locations of the building 349 

facades. Finally, the CIM is enriched with the WVI semantics for a spectrum of applications 350 

in landscape management, sustainable urban planning and design, and real estate valuation. 351 

4 Experimental tests 352 

4.1 Experimental area and settings 353 

The study area was Wan Chai in Hong Kong, as shown in Figure 6a. Wan Chai is one of the 354 

highest residential density zones according to the Hong Kong Planning Standards and 355 

Guidelines (HKPlanD 2018). The average of building heights is 35.5 m and the 75th 356 

percentile is over 48 m. The study area owns a plot ratio at 8.0 and building density at 0.29 357 

(the ratio of building site area to land area). Although the area enjoys considerable sky, sea, 358 

and greenery view contents, the visibility of natural features is often blocked by other 359 

buildings. The 2D footprint data with building height information were extracted from the 360 

iB1000 digital topographic map of Hong Kong (HKLandsD 2014) as shown in Figure 6b, and 361 

converted into the GeoJSON (Butler et al. 2016) format for batch attribute computations of 362 

view sites’ locations and headings. The data source of 3D photorealistic CIM was produced 363 

and freely shared by the Planning Department of Hong Kong (2019) as shown in Figure 6c. 364 

We calibrated the CIM as 3D tiles to the correct geographical locations on the WGS-84 globe. 365 

Then, 2D and 3D datasets were loaded and registered in an open-source 3D GIS platform 366 

named “Cesium ion.” Ten buildings with typical different built environments from the seaside 367 

to the mountain area were selected as case studies to examine the proposed approach, as 368 

shown in Figure 6d. 369 
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 370 

Figure 6. Study area of Wan Chai, Hong Kong. (a) Location of Wan Chai, (b) building 371 

footprints, (c) input CIM, and (d) location of 10 case study buildings. 372 

 373 

The computational experiments were set up as follows. The workstation comprised an Intel 374 

i7-10700 CPU (2.90GHz, 16 cores), 128 GB memory, one Nvidia GeForce RTX 2070 375 

graphic card, and Ubuntu 20.04 (64-bit) operating system. Sample window views were 376 

collected on the Cesium platform (ver. 1.75). Deep transfer learning was in the environment 377 

of Tensorflow (ver. 2.4) and Python (ver. 3.6). We adopted the seven ML models 378 

implemented on Orange (ver. 3.26), a Python ML platform. From the case study buildings, 379 

110 training examples were selected for unbiased representation of diversified window views 380 

and manually annotated with the WVIs for training the ML models. The one-off annotation 381 

work consumed about 10 person-hours. The size of training examples satisfied the 382 

requirements of deep transfer learning. We set each view image with 900 × 900 pixels to 383 

represent the view features seen from the window. 384 

 385 

4.2 Results 386 

Results showed that the proposed method is automatic and efficient, as shown in Table 3. The 387 

first step of batch generation returned 1,416 window view images from the 10 selected 388 

buildings for the case study. The average time for generating one view image was 2.00 s. The 389 

deep transfer learning processed the view images at an average time of 1.08 s in the second 390 

step. The ML-based regression estimated the WVIs in <0.001 s on average for each image. 391 



16 
 

 392 

Table 3. Computational time of the proposed method for a window view image. 393 

Step Processing Software library Average time (s) 
1 CIM-based batch generation Cesium (ver. 1.75) 2 .00# 
2 Deep transfer learning Deeplab (ver. 3+) 1 .08 
3 ML-based regression Orange (ver. 3.26) 0 .00* 
  Total 3 .08 

#: A pre-set value that can be fine-tuned by workstation performance; *: Less than 0.001 s. 394 

 395 

The WVIs’ assessments of the proposed method were also satisfactory. Table 4 shows that for 396 

the best model of the four view indices’ estimation, the R² values were 0.952, 0.965, 0.978, 397 

and 0.977 respectively, which represented more than 95% of the variance in the dependent 398 

variables. The RMSEs of the four training models were 0.021, 0.022, 0.025, and 0.042, 399 

respectively. The optimal parameter of each best model was as follows. For WVIgreen, the 400 

Linear Regression model was trained with Lasso (L1) regularization and strength at 0.0001. 401 

For WVIwater, the SVM model performed the best, with kernel = RBF, C = 0.9, gamma = 0.05. 402 

For WVIsky, a Linear Regression model with an elastic net regularization (L1:L2=0.50:0.50) 403 

was utilized with the best accuracy of estimation, whereas for WVIconst., the best estimation 404 

was observed from a Linear Regression model with a Ridge (L2) regularization (Alpha = 405 

0.003). 406 

 407 

Table 4. Training errors and time of the best model for four WVIs. 408 

WVI Best model Parameters RMSE R² Training time (s) 
Green Linear 

Regression 
L1 = 0.0001 0.021 0.952 0.077 

Water SVM Kernel = RBF, C = 
0.9, gamma = 0.05 

0.022 0.965 0.154 

Sky Linear 
Regression 

L1:L2 = 0.50:0.50 0.025 0.978 0.070 

Const. Linear 
Regression 

L2 =0.003 0.042 0.977 0.091 

 409 

WVRs were computed from the WVIs by the best model. Table 5 shows three typical window 410 

views and their WVIs and WVRs. In Table 5, a WVR is represented in an array of stars, 411 

showing the level from “very low” to “very high” in Eq. 3. The highest WVRs correctly 412 

reflected the given dominant features for all the samples. 413 

 414 
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Table 5. Sample WVIs and WVRs for typical sample window views. 415 

View images    
Dominant feature Sky Green Construction 
Feature Max. WVI WVR WVI WVR WVI WVR 
Green 0.5421 0.0165 ⋆ 0.4867 ⋆ ⋆ ⋆ ⋆ ⋆ 0.0130 ⋆ 
Water 0.4375 0.3352 ⋆ ⋆ ⋆ ⋆ 0.0024 ⋆ 0.0000 ⋆ 
Sky 0.5505 0.4682 ⋆ ⋆ ⋆ ⋆ ⋆ 0.3236 ⋆ ⋆ ⋆ 0.0928 ⋆ 
Const. 1.0000 0.1870 ⋆ 0.1704 ⋆ 0.9057 ⋆ ⋆ ⋆ ⋆ ⋆ 

 416 

4.3 Post-processing for enriching CIMs 417 

In the post-processing, the estimated WVIs and WVRs were registered for enriching the 418 

semantics of input CIM. Figure 7 shows the 3D mesh model of the regional WVIs in the 419 

study area. Generally, most rooms of the buildings owned a high WVIconst. in this area as 420 

shown in Figure 7d. Figure 7b shows that only windows facing the seaside in the high-rise 421 

buildings near the harbor can have high-level WVIwater values in Wan Chai. Great sky views 422 

were scattered across the rooms with the high storeys as shown in Figure 7c. Figure 7a shows 423 

the generally low and fluctuated WVIgreen, reflecting the varied amount of the surrounding 424 

greenery at different locations. In summary, the disparity of possession of natural view 425 

resources, i.e., greenery, water, and sky, is significant in the study area. The quantified 426 

disparity can help the urban planners to make a more accurate and specific decision for future 427 

landscape management and urban planning, e.g., prioritized greenery planning for buildings 428 

without any nature views. 429 
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 430 

Figure 7. Regional patterns of WVIs. (a) WVIgreen, (b) WVIwater, (c) WVIsky, and (d) WVIconst.. 431 

 432 

Figure 8 shows a WVR-enriched comparison of two example north-facing facades, one 433 

nearby and the other far away from the seafront, of which the locations are marked in Figure 434 

8e. Holistically, water and sky views of the first facade were above the “average” levels in the 435 

study area (≥ 40%), as shown in Figures 8b and 8c; in contrast, the levels of those views of 436 

the second facade were consistently lower due to the inter-building obstruction. Figure 8a 437 

shows the green views were both at a “very low” level (< 20%) due to the less visible 438 

greenery. The construction view patterns of the two facades varied as shown in Figure 8d, 439 

where construction views dominated the second facade. In comparison with WVI values, the 440 

relativity in such WVR results is more convenient for certain applications such as real estate 441 

valuation, since the levelization of the window view such as “very high” and “very low” can 442 

intuitively inform developers and occupants of the room view quality within the local 443 

context. 444 

 445 
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Figure 8. WVR patterns of two example building facades. (a) WVRgreen, (b) WVRwater, (c) 446 

WVRsky, (d) WVRconst., and (e) their general locations. 447 

 448 

4.4 Sensitivity analysis 449 

4.4.1 View sampling interval in Step 1 450 

A trade-off existed between processing time cost and accuracy when applying the view 451 

sampling interval in Step 1. A sensitivity analysis was conducted to identify a cost-effective 452 

sampling plan. In the experiments, the case was a facade area (120 m × 60 m) of the China 453 

Resources Building, as shown in Figure 9a. The benchmark was set to the result of a 5 m 454 

sampling interval. We tested a range of sampling intervals from 10 m to 60 m in an 455 

approximately exponential increment. Figure 9b shows the example of WVIsky estimation 456 

results resampled back to the 5 m scale through linear interpolation to compare the accuracies 457 

in terms of RMSE. We found that with increased sampling interval, the time consumption of 458 

the window view image processing from generation to estimation witnessed a sharp decline, 459 

whereas the RMSEs of four WVIs increased accordingly, as shown in Figure 9c. From the 460 

observation, the sample interval of 20 m can be a “sweet point,” in which an efficient and 461 

accurate estimation of WVI (RMSE<0.015) was obtained without excessive processing time. 462 

Thus, for the view image processing of case buildings, we used 20 m as the sampling interval 463 

for large facades. For a building facade whose length or width was less than 20 m, 5 m was 464 

used. 465 
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 466 

 467 

Figure 9. Sensitivity analysis of sampling intervals. (a) A case facade, (b) estimated WVIsky at 468 

different sampling intervals, and (c) trade-off between time cost and four WVIs’ accuracy. 469 

 470 

4.4.2 Input CIM in Step 1 471 

Figure 10 compares view segmentation results using two different CIMs. The appearances of 472 

the two 3D models were close but clearly distinguishable. First, the color contrast of Google 473 

Earth’s CIM was softer than the model adopted in this study, and the low contrast resulted in 474 

the misclassification of constructions and greenery highlighted in Figure 10a. Second, the 475 

model fidelity also affected the stimulation effects. Figure 10b shows that some parts of the 476 
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vegetation view (as highlighted in the rectangles), which were wrongly segmented using our 477 

CIM, can be corrected using Google Earth’s model. This finding was due to the higher 478 

quality of Google Earth’s in expressing the vegetation features, especially in close range. 479 

Lastly, the distortions in CIMs affected the segmentation accuracy. As shown in the red 480 

rectangles in Figure 10c, the blurred facades in the left column resulted in inaccurate 481 

segmentation, whereas the distortions in Google Earth’s model led to the wrong detection of 482 

buildings to vegetation. 483 

 484 

Figure 10. Comparison of window view image segmentation (Step 2) against different CIMs. 485 

(a) View color, (b) view fidelity, and (c) view distortions. 486 

 487 

4.4.3 ML models for regression in Step 3 488 

Based on the R², the performance of trained models is examined, and results are shown in 489 

Figure 11. For the estimation of the four WVIs, all ML models had R² values greater than 0.7. 490 

For three types of WVIs, i.e., WVIgreen, WVIsky, and WVIconst., the best models were produced 491 

by Linear Regression. For the WVIwater estimation, the best model was SVM, whereas the 492 

Linear Regression returned R² > 0.93. The satisfactory results from Linear Regression might 493 

echo the assumption that four window view types could be mapped directly from the urban 494 

street view features in high-rise, high-density areas. 495 



22 
 

 496 

Figure 11. Comparison of R² performances of the seven ML models. 497 

 498 

5 Discussion 499 

5.1 Significance 500 

Large-scale window view assessment has a great potential to support many smart city 501 

applications. The window view quality is of great significance for residents in high-rise, high-502 

density areas. In the post-Covid-19 era, window view plays an important role in accessing 503 

nature as people have to stay longer in their houses or offices. The quantitative window view 504 

quality assessment at the city scale can provide an intuitive understanding of environmental 505 

inequality. Planners can use the results to prioritize improvements of the poor living 506 

environments, such as prioritized provision of more green space for neighborhoods with poor 507 

window views. And government sectors and policymakers can make the regulations, e.g., 508 

minimum acquisition of nature views in the future sustainable urban development. The results 509 

can also facilitate urban and architectural design by quantifying the window view quality at a 510 

relatively low cost. Designers can integrate the quantified view results for more 511 

comprehensive generative designs of building spaces (Laovisutthichai et al. 2021) and new 512 

towns. In addition, the method can serve as a new indicator for the housing market and thus 513 

has a great potential to the architecture, engineering, and construction development. 514 

 515 

In the past, surveyors had to enter real rooms of buildings to capture the window views. 516 

Owing to this time-consuming, labor-intensive task, the window view dataset is always 517 

limited (Labib et al. 2021). Furthermore, accessing all window views manually at a large 518 

scale becomes impossible in terms of cost, labor force, and privacy (Helbich et al. 2019). 519 

Nowadays, with the advancement of remote sensing, photogrammetry, and digital twin 520 

technology, mature 3D CIMs with high-quality textured appearances are becoming 521 



23 
 

increasingly available for detecting multiple groups of view features. CIM-based simulated 522 

window views for the real world have been validated effectively (Li & Samuelson 2020; Li et 523 

al. 2020). However, for an urban-scale window view quality evaluation, processing a large 524 

number of views manually remains laborious and expensive for surveyors. The proposed 525 

window view quality assessment method can free humans from repetitive and time-526 

consuming tasks, and provide a set of quantifiable indicators to support fundamental and 527 

derivative applications in window view quality evaluation. 528 

 529 

The proposed automatic assessment method can effectively generate four major view indices 530 

for quantifying and analyzing the urban-scale window views. First, this study makes full use 531 

of volumetric landscapes from 3D photo-realistic CIMs to further enrich the CIM with four 532 

WVIs, thereby enabling many window-view-based digital twin city applications, such as 3D 533 

city living environment assessment and housing scenic quality comparison. From a 534 

practitioners’ point of view, the method is easy-to-use, low-cost, and accurate. For example, 535 

the automation process can be implemented without considerable prior knowledge. The pre-536 

trained Deeplab model was shared freely. Based on the transfer learning theory, only a small 537 

dataset is required for a satisfactory WVI assessment. Moreover, the experimental results 538 

confirmed a high accuracy of assessing the window views (R² > 0.95). In summary, the 539 

proposed method contributes to window view assessment using CIM and AI, and also 540 

provides relatively low-cost and high-accuracy WVIs for applications in urban planning and 541 

design, and property valuation. 542 

 543 

5.2 Limitations and future work 544 

Nevertheless, a few limitations exist in the work presented in this study. First, the assessed 545 

window view quality in this study only involved limited contents, including greenery, sky, 546 

water body, and construction. Movable city objects e.g., pedestrian, car, and rare urban 547 

features e.g., bare soil surface were not involved. Other view elements exerting influence on 548 

indoor living satisfaction and outdoor environment perception such as aesthetic and 549 

environmental quality, view distance, and layer were not considered. Second, the horizontal 550 

view was set to compute the WVIs, which might miss visible features from other directions, 551 

e.g., the ground level. Next, another limitation was the high workload of 2D image 552 

segmentation involving repeated computation. For instance, similar view images from 553 

neighboring windows were independent without reusing the intermediate segmentations. The 554 

computation cost could be slightly higher for irregular buildings due to more view samples 555 
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and processing. Last, the window sampling and interpolation also led to possible accuracy 556 

losses. 557 

 558 

Future directions to improve the presented study are as follows. The first is extending the 2D 559 

image format of window views to incorporate high-dimensional factors (e.g., fine-scale 560 

classified view features, view distance that influences residents’ feeling of spaciousness, and 561 

aesthetics and environmental quality attributes that influence living satisfaction) for holistic 562 

quality and optimization. More FoVs, such as 360-views, can extend the WVIs assessed in 563 

the 60° horizontal views in this study. Well-labelled CIM for landscapes is proven effective 564 

for large-scale view quantification (Yu et al. 2016). Thus, a 3D segmented CIM may 565 

eliminate the repetitive and redundant 2D image segmentation and save considerable costs of 566 

training and applying deep transfer learning, especially for irregular buildings. Another 567 

direction is to identify the accurate 3D location and orientation for each physical window in 568 

the CIM so that the assessed WVIs and WVRs can be associated with windows and rooms. 569 

 570 

6 Conclusion 571 

A high-quality window view with enough features such as greenery, sky, and water not only 572 

has a good impact on residents’ health, well-being, and performance, but also can enrich the 573 

value of the house, especially in high-rise, high-density areas. Traditional window view 574 

assessment methods have common problems such as subjectivity, scalability, and efficiency. 575 

To address these limitations, this study uses an automatic method for the large-scale window 576 

view quality assessment through the use of CIM-based window view images of city 577 

buildings. 578 

 579 

This study defines an indicator named Window View Index (WVI) including four sub-indices 580 

i.e. Green view index, Water view index, Sky view index, and Construction view index, 581 

which are measured at one time efficiently. By implementing a fast-sampling method, outside 582 

views are captured at each view site of the 3D CIM at the initial stage. Then, a pre-trained 583 

deep transfer learning model is used to classify view images into multiple features efficiently. 584 

To construct the regression between detected features and the WVI, seven traditional machine 585 

learning models are tuned to achieve the best performance. Our method achieved highly 586 

satisfactory results in estimating the WVIs for the high-rise, high-density area, in Wan Chai, 587 

Hong Kong. The RMSEs of estimation did not exceed 0.042, whereas the average time of 588 
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processing each window was 3.08 s. 589 

 590 

The proposed method provides intuitive indicators of the window view quality for high-rise, 591 

high-density areas. The automatic, accurate method is scalable to the urban scale, thereby 592 

enabling many window view-based applications in landscape management, sustainable urban 593 

planning and design, and real estate valuation, which would benefit residents’ health, urban 594 

optimization, and the housing industry. Future work includes extending the view indices, 3D 595 

semantic segmentation of CIM, and mapping the WVIs to physical windows and rooms. 596 
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