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Abstract 

Urban dwellers enjoy nature exposure in the neighborhood built environment through visual 

and physical ways, such as window views and outdoor activities. However, existing studies 

and analytics examine these pathways separately, leading to underinformed urban planning 

practices such as difficult prioritizing urban areas with both low-level nature exposures. The 5 

underinformation problem is particularly severe for high-rise, high-density cities that 

embrace high-level vertical diversity. This study aims to propose bi-objective analytics of 3D 

visual-physical nature exposures, for holistic – rather than separated – assessments. First, a 

floor-level Nature Exposure Index (NEI) is defined with visual and physical components. The 

visual component NEIv is assessed by window view imagery and deep transfer learning, 10 

while the physical component NEIp reflects the mean time from the floor to the nearest 

natural sites (e.g., nature parks and seaside) through the 3D pedestrian network. Then, bi-

objective optimization-based analytics is designed for (i) identifying buildings and blocks 

with holistically low-level visual-physical nature exposures using NEI and (ii) examining 
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probabilistic outputs and robustness of linear weighting schemes. A case study of 519 15 

buildings showed that the NEI-enabled bi-objective analytics is automatic, effective, and 

inexpensive. Interviews with field experts confirmed that the analytics provides 

comprehensive evidence for a holistic identification of high-rise, high-density areas in need 

of nature exposure for landscape management and urban planning. 
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Nature exposure; Window view; Walkability; Pareto optimality; 3D GIS; High-rise, high-
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 Nature Exposure Index (NEI) defined on window views and walkability of natural 
sites 25 

 Holistically assessed physical-visual nature exposures for the built environment 
 Pareto optimality-based identification of areas with low-level nature exposures 
 NEI-enabled analytics for probabilistic outputs and robustness of linear weightings 
 A case study of a high-rise, high-density area with 519 buildings for validation 

 30 

1 Introduction 

 Exposure to nature, such as greenery, sky, and waterbody, is preferred by urban 

dwellers because of well-recognized benefits for human physical and mental health, 

satisfaction, restoration, and productivity (Ulrich 1984; Kaplan 2001; Jiang et al. 2021). In 

contrast, less nature access in the urban context may exacerbate stress, depression, and other 35 

mood disorders (Ulrich 1984; Coppel & Wüstemann 2017). Given that almost all urban 

dwellers spend considerable time indoors, such as at home or working places (Andersen 

2015), a convenient nature exposure from the neighborhood built environment is treasured. 

 

 Natural settings in the urban context are multi-faceted accessible resources for the 40 

built environment, particularly in high-rise, high-density cities with limited and fragmentally 

shared natural elements (Wolch et al. 2014). Visual and physical interactions are identified as 

two main ways of nature exposure (Keniger et al. 2013; Cox et al. 2017). Visually, natural 

elements from the urban landscape, e.g., greenery, water, and sky can be viewed through 

windows or balconies by urban dwellers. Physically accessible natural elements, embodied in 45 

green and blue spaces (e.g., parks and promenades), often scatter within the walkable range 
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for daily outdoor activities. Nature exposures through the visual and physical pathways 

indicate inconsistent mediators for urban dwellers’ embracement of nature. 

 

Identification of the urban areas with both poor visual and physical exposures to 50 

nature, which is a multi-criteria decision analysis (MCDA) problem, can effectively facilitate 

smarter landscape management and urban planning (Choguill 2008; Xia et al. 2022). 

Nevertheless, traditional planning and design from individual perspectives often hinder a 

holistic analysis and allocation of the multi-faceted natural resources. For example, built 

environment and architectural design fields emphasize more on visual exposure to nature for 55 

buildings (CIBSE 2014; CEN/TC 169 2018), whereas urban planners underline the equal 

physical nature accessibility (Wolch et al. 2014; Tang et al. 2021). Researchers have 

developed many methods and urban indices to assess visual and physical nature exposures 

separately (Park & Guldmann 2020; Yang et al. 2021; Chen et al. 2022), but multi-faceted 

combinations were seldom considered. As a result, urban planners are often underinformed to 60 

balance multi-faceted natural resources. For instance, the buildings and blocks without any 

pathway of nature exposure, which should be preferential in urban renewal and revitalization, 

used to be unnoticed in traditional practices. 

 

 Recent geo-informatics technologies opened new avenues, such as 3D City 65 

Information Model (CIM) view imagery and walkability analyses, for a multi-faceted nature 

exposure extraction (Xue et al. 2021b). Deep learning models, e.g., Deeplab V3+ pretrained 

on Cityscapes, can be transferred to compute the nature view proportion in window view 

photos captured on 3D photorealistic CIMs (Li et al. 2022). The recent 3D pedestrian 

network has yielded opportunities for accurately assessing the walkability of nearby natural 70 

sites from residential buildings (Zhao et al. 2020; Tang et al. 2021). Bi-objective optimization 

of visual-physical nature exposures thus becomes technologically enabled especially in a 

multi-level 3D urban environment. 

 

The research question of this study is thus:  75 

“How to assess and analyze the visual and physical facets of nature exposure 

holistically for identifying buildings and city blocks with both low values for a 

prioritized landscape management and urban planning?”  

To answer the question, we propose two objectives: i) to automatically assess floor-
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level visual and physical nature exposures for buildings, and city blocks in the 3D high-rise, 80 

high-density cities, and ii) to bridge the assessment results with decision-support analytics in 

landscape management and urban planning. This study first defines a two-dimension Nature 

Exposure Index (NEI) for multiple scales of the high-rise, high-density context by inclusively 

assessing both visual and physical exposures to nature. Thereafter, the NEI-based 

identification and prioritization of buildings and city blocks are formulated as a bi-objective 85 

optimization problem. An automatic Pareto optimality-based analytical method is adopted to 

identify buildings and blocks with low-level exposures to nature; and NEI-enabled analysis of 

linear weighting schemes can quantitatively examine the robustness of weightings and their 

probabilistic outputs for prioritization of the built environment improvement.  

 90 

The main contribution of this study is three-fold. 

i. From a theoretical perspective, this study defines a multi-dimensional NEI for 

representing urban dwellers’ multi-faceted nature exposure. The multi-dimensional 

NEI enables holistic urban planning and analytics regarding visual and physical nature 

exposures. The multi-dimensional definition of NEI complements the existing studies, 95 

in particular in the 3D high-rise, high-density areas. 

ii. From a methodological perspective, the automatic 3D assessment of NEI using the 

latest photorealistic window view imagery and 3D pedestrian network extends the 

conventional 2D modeling of nature exposure. NEI-based bi-objective analytics 

bridges the assessment results with decision-making in landscape management and 100 

urban planning. 

iii. For practitioners, the bi-objective analytics of NEI offers a comprehensive and 

effective method for identifying buildings and blocks with unsatisfactory nature 

exposure. For conventional practices using linear weightings, the analytics can 

support planners’ weight settings with outputs, probabilities, and robustness. 105 

 

 The remainder of this study is organized as follows. Section 2 reviews related work in 

the literature. Section 3 presents the definition of NEI, the automatic assessment of NEI using 

3D GIS, and a set of NEI enabled bi-objective analytics. Section 4 describes a case study and 

the results. Sections 5 and 6 present the discussion and conclusion, respectively. 110 
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2 Literature review 

2.1 Benefits and planning practices regarding exposure to nature 

 Numerous studies have been conducted to analyze the impact of exposure to nature on 

urban inhabitants, e.g., impacts on mental and physical well-being (Jiang et al. 2014; He et al. 

2022). Visual exposure to nature is beneficial for physical and mental health. Window view 115 

as the main way to visually accessing nature is treasured by urban dwellers owing to their 

long-term indoor occupations (Cox et al. 2017). The benefits of the window views of nature 

include stress relief, attention restoration, and productivity promotion for urban dwellers 

(Ulrich 1984; Lottrup et al. 2015), which have been validated in multiple scenarios, such as 

residence, office, and hospital (Ulrich 1984; Kaplan 2001; Lottrup et al. 2015). By contrast, 120 

lacking views of nature may engender mental fatigue, stress, and more potential for violence 

(Kuo & Sullivan 2001). 

 

 Physical exposure through travels to nearby natural sites, such as natural parks, 

similarly, brings benefits to human health in terms of stress reduction (Hartig et al. 2014). 125 

High walkability of natural sites becomes increasingly important for residential buildings 

because it effectively encourages occupants to actively access nature, e.g., daily outdoor 

activities (Fan et al. 2017; Tang et al. 2021). More extensively, easy physical exposure to 

nature can also facilitate social cohesion, decrease crime rate, and revitalize the community 

(Lwin & Murayama 2011). By contrast, inconvenient physical nature exposure has shown a 130 

negative impact on urban dwellers’ physical and mental health (Coppel & Wüstemann 2017; 

He et al. 2022). 

 

 Landscape management and urban planning have recently embraced narratives on the 

links between urban health and the benefits of exposure to nature (Wolch et al. 2014). 135 

Balancing the visual and physical nature exposures for buildings and city blocks becomes the 

main way for urban planners and designers to optimize natural resource allocation (Fisher-

Gewirtzman 2018; Tang et al. 2021). For example, high-quality views of natural landscapes 

are considered in space planning of buildings and flats (USGBC 2019, p. 134; 

Laovisutthichai et al. 2021) and strategically shared in high-density urban environments 140 

(Fisher-Gewirtzman 2018), such as Hong Kong (HKTPB 2010). In addition, physical access 

to nature becomes important in urban regeneration and new town planning (Wolch et al. 

2014). There is increasing policy interest in planning more neighborhood natural sites, such 
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as parks, gardens, and ponds, to sustain urban health and livability (Raymond et al. 2016). 

Nevertheless, existing land constraints and relentless development pressures can hinder 145 

planners from simultaneously providing natural elements (e.g., greenery, water, and sky) for 

all buildings and blocks in need (Tang et al. 2021). Thus, identifying buildings and city 

blocks with both low-level visual and physical exposures to nature is a prerequisite of 

comprehensive orderly planning of natural resource settings for healthy high-rise, high-

density urban development. 150 

 

2.2 Quantified nature exposure measurement 

 Domain-isolated assessments of exposure to nature were studied from various 

perspectives for landscape management and urban planning. The quantification of visual 

exposure to nature utilizes visibility analysis (Fisher-Gewirtzman 2018) and view imagery 155 

(Helbich et al. 2019; Chen et al. 2022; Xue et al. 2021a) on the ground, floor, and overhead 

levels (Li et al. 2022). View collection has recently been transferred to the window level 

(Laovisutthichai et al. 2021; Li et al. 2021). Natural elements (e.g., greenery, water, and sky) 

of window view photos collected from 3D photorealistic CIMs can be automatically 

identified using a deep transfer learning model, e.g., Deeplab V3+ pre-trained on the 160 

Cityscapes, thereby providing opportunities to represent visual nature exposure of buildings 

and blocks in a multi-level urban environment (Li et al. 2022). 

 

 Physical accessibility has been measured using buffer zone, model-based, and 

distance-based assessment methods (Oh & Jeong 2007; Park & Guldmann 2020). For 165 

neighborhood services to function properly, walkability is often used to examine the 

connectivity between living and working places and nearby services, such as natural parks 

(Lwin & Murayama 2011; Tang et al. 2021). The recent reconstruction of a 3D pedestrian 

network with regard to topography and travel speed has enabled high accuracy of walkability 

measurement for physical nature exposure of buildings, particularly in high-rise, high-density 170 

cities (Sun et al. 2021; Tang et al. 2021). 

 

 Some emerging studies combined different forms of greenery exposure to understand 

the exposure disparity of urban areas comprehensively. For example, availability, physical 

accessibility, and eye-level visibility have been harmonized for greenspace exposure 175 

examination (Ye et al. 2019; Labib et al. 2021). However, existing nature exposure 
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assessment methods encounter challenges in high-rise high-density urban environments. 

First, accessible nature by urban dwellers in high-rise, high-density cities cannot be 

represented by ground-level visibility (Li et al. 2022) and 2D accessibility (Zhao et al. 2020; 

Sun et al. 2021) of greenery. Furthermore, current integrated visual and physical assessments 180 

fail to bridge the multi-criteria decision-making process for prioritized improvement of the 

built environment. Thus, next-generation decision-support analytics for landscape 

management and urban planning should be able to examine multi-dimensional exposures to 

nature and identify buildings and city blocks with low-level visual-physical nature exposures 

for 3D high-rise, high-density cities, with up-to-date multi-criteria decision methods. 185 

 

2.3 Multi-criteria decision analysis for urban planning 

 MCDA attempts to solve complex geospatial problems with multiple constraints, 

particularly for decision support applications (Malczewski 2006). In general, MCDA 

comprises two categories: multi-attribute decision analysis and multi-objective optimization. 190 

Compared to the multi-attribute decision analysis returning a single result, multi-objective 

optimization outputs multiple results for a set of specific objectives (Malczewski & Rinner 

2015), enabling a comparison for planners’ final decisions. Pareto optimality is one of the 

cornerstone concepts of multi-objective optimization that attempts to identify all non-

dominated results as Pareto-optimal solutions (Huang et al. 2008; Malczewski & Rinner 195 

2015). This concept has been used in typical multiple objective scenarios, such as land use 

allocation and urban infrastructure site planning (Huang et al. 2008; Rahman & Szabó 2021). 

Thus, Pareto optimality-based optimization can be used to identify a set of solutions for bi-

objective analytics of 3D visual-physical exposures to nature in high-rise, high-density cities. 

 200 

 In summary, the targeted bi-objective optimization analytics of 3D visual-physical 

nature exposures in this paper is a research gap to close in landscape management and urban 

planning studies. Among the reasons are the previous immature 3D visual-physical 

representations (e.g., window views and walkability) of nature exposures in high-rise, high-

density cities, and the minimal consideration in their integrated assessment and analytics for 205 

comprehensive decision-making in landscape management and urban planning. Meanwhile, 

automatic deep transfer learning-based window view assessment, 3D pedestrian network 

analysis, and Pareto optimality-based optimization may provide opportunities to advance the 

automatic multi-dimensional nature exposure analytics for significantly improving the visual-
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physical nature exposures of the built environment in high-rise, high-density cities. 210 

3 Research methods 

 Figure 1 shows the conceptual framework of the proposed NEI and related analytics. 

In general, 3D data inputs comprise photorealistic CIM and building footprints for window 

view measurement, as well as pedestrian network, floor sites, and natural site entries for the 

physical accessibility. The proposed automatic integrated nature exposure assessment and 215 

analytical methods for prioritized built environment improvement consists of two parts: (i) 

NEI definition together with the automatic floor-level visual-physical nature exposure 

assessment and (ii) Bi-objective optimization-based analytics of NEI. The final output 

includes three parts: buildings or blocks with both low-level nature exposures, probabilistic 

outputs of linear weightings, and robustness of target weighting for an invariant output. 220 

 

 
Figure 1. Conceptual framework of the proposed NEI and bi-objective analytics. 

 

3.1 Automatic assessment of NEI 225 

3.1.1 General definition of NEI 

 Given a floor of a building in the built environment, NEI is a two-dimension vector: 

NEI = (NEIv, NEIp), (1) 

NEIv = (FNVI − FNVImin) ⁄ (FNVImax − FNVImin) ∈ [0, 1],  (2) 

NEIp = (tmax – t) ⁄ (tmax – tmin) ∈ [0, 1], (3) 

where NEIv denotes a relative floor-level visible nature proportion in an area, FNVI represents 

an absolute nature view proportion of a floor, and FNVImin and FNVImax are the maximum and 
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minimum values of FNVI in the context area. In addition, NEIp is the physical component 230 

representing the relative walkability from the floor to the nearest natural site (e.g., nature 

parks and seaside) in the area. Considering the set of walking time t for all floors in the 

context area, NEIp is denoted as a normalized value computed by t, tmax, and tmin. Thus, both 

NEIv and NEIp are scalars bounded between 0 and 1, and the closer to 1 they are, the higher 

levels of visual and physical nature exposures the floor owns. 235 

 

Given a two-dimension vector of weighting w = (wv, wp), where wv + wp = 1, the 

weighted sum of an NEI is a scalar: 

 wNEI = NEI × wT ∈ [0, 1], (4) 

where wv and wp represent the weighting values for NEIv and NEIp, respectively. Moreover, w 

used to be set by experts or statistics from surveys. For example, an equal weighting pair w = 240 

(0.5, 0.5) indicates the equal significance of visual and physical exposures to nature. A small 

wNEI value indicates the inconvenience of daily access to nature, thereby deserving a high 

priority for the renewal and revitalization in the context area. 

 

3.1.2 The visual component of NEI 245 

 This study defines NEIv using the average visible nature proportions of window view 

photos captured at the floor level. Given a virtual view photo captured on a window of the 3D 

photorealistic CIM, WVIα defined in (Li et al. 2022) presents the ratio of visible greenery, 

waterbody, and sky: 

 
WVIα = Number of pixels in α  ⁄ Total pixels of the view photo, α ∈ 

{greenery, waterbody, sky}. 
(5) 

Regarding greenery, water, and sky as visible natural elements, we first summarize the FNVI 250 

from WVIα of floor-level window view photos. More specifically, assuming m view photos 

captured on the different facades of a floor, FNVI is calculated from WVIαi (i = 1, 2, 3, …, m) 

with the sampling interval Ii as weights as shown in Eq. 6. Last, NEIv
 is computed as an 

output using FNVI, FNVImin, and FNVImax. 

 FNVI = ∑i = 1, …, m (WVIαi × Ii) ⁄ ∑i = 1, …, m Ii. (6) 

 255 

 Figure 2 shows the workflow consisting of view site sampling, view generation, and 

deep transfer learning-based computing of WVIα. We compute the modeled NEIv on 3D 

photorealistic CIMs instead of physical sites, as shown in Figure 2a. Li’s (2022) method is 
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utilized to automate the photorealistic window view quantification as shown in Figure 2b. We 

first apply an even sampling method to ensure at least two view sites for individual facades of 260 

a floor (max Ii = 20 m). Then, a virtual camera with a 60-degree field of view (Tara et al. 

2021; Li et al. 2022) is set on the designated sites of CIMs to capture the window view 

outside. A deep transfer learning model, DeepLab V3+ trained on the Cityscapes with a 

machine-learning classifier helps segment the window view photo for nature view 

quantification. In the end, sample window view photos on the same floor of the building are 265 

aggregated to summarize WVIαi for NEIv, as shown in Figure 2c. 3D locations and their floor 

and building IDs are geo-tagged to the NEIv datasets. 

 
Figure 2. Deep transfer learning-based estimation workflow for NEIv. 

 270 

3.1.3 The physical component of NEI 

 NEIp is modeled using walking time from the occupant’s building floor to the entry of 

the nearby natural site through the shortest path S. Natural sites in this study include parks, 

gardens, and promenades, which are dominantly covered or surrounded by natural elements, 

such as vegetation and waterbody to serve outdoor activities and recreation. Within the high-275 

rise, high-density context, we connect the staircase and lift of buildings with exterior 

pedestrian urban fabrics, thereby updating a more comprehensive and computable 3D urban 

system. Meanwhile, pedestrian walking speed is different on walkway types, such as the path 

of different slopes, transport systems, and interference like crossing and traffic islands. Thus, 

S is divided into n segments s1, s2, …, sn, where the corresponding walking speeds are v1, 280 

v2, …, vn. The walking time t is computed as the sum of the n quotients as follows: 

 t = ∑i = 1, …, n d (si) ⁄ vi, (7) 

where d is a function to calculate the distance of si. Last, NEIp is computed by t, tmin, and tmax. 
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 We compute the NEIp from the simulated walking through a 3D pedestrian network, 

consisting of interconnected path segments, such as lifts, staircases, sidewalks, and footpaths. 285 

We measure the closest natural site to compute NEIp. 3D building floor sites and natural site 

entries are set as origins and destinations, respectively, as shown in Figure 3. Within the 

interior buildings, lifts and staircases are used to simulate the walking situation. Travel 

distance by lift is considered the vertical distance between the floor and ground levels, while 

staircase length is assumed as the vertical distance divided by sin 35° (HKLWB 2006). 290 

 

Walking speed vi of different walkway types is added to the 3D pedestrian network 

following the field tests of normal adults, previous studies, and regulations (Oh & Jeong 

2007; Tang et al. 2021; HKBA 2011). Urban planners and researchers can finetune the control 

parameters for specific application scenarios. 295 

 vi =

⎩
⎪⎪
⎨

⎪⎪
⎧100e-3.5|tanθ+0.05|, type(si) ∈ Footpath

120,                    type(si) = Travellator
105,                    type(si) = Lift
48,                      type(si) = Escalator 
39,                      type(si) = Staircase
6,                        type(si) ∈ Interference

, (8) 

where vi is measured in meters per minute, Footpath = {Footway, footbridge, service lane, 

ramp, generalized walkway, underpass} is the set of paths with different slopes, and 

Interference = {Crossing, traffic island} is the set of places where pedestrians need to wait to 

cross the street. Tobler’s hiking function (Tobler 1993) is used to simulate slope impact on 

walking speed. The slope θ is positive for walking uphill and negative for walking downhill. 300 

Last, the value of t is computed by combining all the time consumed on the segments of the 

shortest path and NEIp is computed using t, tmax, and tmin (see Figure 3). Values of NEIp are 

saved with the corresponding 3D locations and floor and building IDs. 

 
Figure 3. NEIp computing based on the pedestrian network analysis 305 
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3.1.4 Scaling up for buildings and city blocks  

 Modern landscape management and urban planning aim to improve nature exposure 

to the built environment through active intervention, such as planning more parks, roof 

gardens, and vertical greenery. Moreover, buildings and blocks are the main analytical units 310 

in measuring nature exposure to help priority identification. For fulfilling urban planners’ 

needs, floor-level datasets can be adaptively aggregated into corresponding buildings and 

blocks based on building IDs and topological relationships. For example, at the building 

level, NEIv sets with the same building IDs are considered as a group and the NEIv_bldg is 

computed as a floor-area-based linear weighted sum. 315 

 

3.2 Bi-objective optimization-based analytics of NEI 

3.2.1 Pareto optimality for identifying least-nature-exposure areas 

 An NEI-based MCDA is a bi-objective optimization problem. Pareto optimality is 

used to identify all potential areas with both low-level exposures to nature. For example, the 320 

search of buildings with low-level visual-physical nature exposures can be formulated as: 

 P = arg minx ∈ X NEIbldg (x), (9) 

where X is the set of buildings x in the planning area, as shown in Figure 4a. Figure 4b shows 

that Pareto optimal building set P ∈ X is the set of non-dominated buildings x* in terms of 

least NEIbldg. Any rest building, i.e., in X \ P, have both NEIv_bldg and NEIp_bldg greater than at 

least one Pareto optimal building x* in P: 325 

 P = {x* | ¬ ∃x ∈ X, NEIv_bldg(x) ≤ NEIv_bldg(x*) and NEIp_bldg(x) ≤ NEIp_bldg(x*)}. (10) 

Thus, by excluding dominated buildings (X \ P), the Pareto optimal buildings x* of P become 

the least-nature-exposure candidates for the prioritized improvement. In practice, a buffer 

zone of Pareto front constructed by P, as shown in Figure 4b, can also be set to involve more 

buildings with near-low-level visual-physical nature exposures (e.g., building #1) for more 

inclusive consideration. 330 
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Figure 4. Identification of the Pareto optimal buildings. (a) Example buildings X, and (b) 

Pareto optimal building set P visualized in the plot of NEIv_bldg and NEIp_bldg. 

 335 

3.2.2 Linear weighting analysis for probabilistic outputs and robustness 

 We present a linear weighting analysis to decipher the relationship between 

weightings and the final output from P. In traditional practices, urban planners employ linear 

weightings from various scientific assumptions (e.g., expert knowledge and statistics) to 

integrate multiple indices for a final output, where planners are often puzzled by various 340 

weightings due to varied strengths and weaknesses. The presented analysis involves all the 

recommended weightings at one time and returns the probabilistic outputs and robustness of 

linear weightings. 

 

 Figure 5 shows that a fixed linear weighting represents a set of straight parallel lines 345 

with a determined slope. For example, weighting pair w = (0.5, 0.5) represents parallel lines 

with the slope k = − wv / wp = −1 passing Pareto optimal building points. The closer the line 

to the origin, the lower the level of wNEI the building access. When the weighting ratio k 

changes, the convex point with the lowest wNEI may change, i.e., C1, C2, and C3, as shown in 

Figure 5b. Isoline with the lowest wNEI reaches the same convex point(s) on the Pareto front 350 

when k changes within the ranges of A1, A2, or A3 in blue. The relationship between the output 

and the weighting ratio k = − wv / wp is shown in Eq. 11. 

 C = �
C1, k∈A1=(−∞, k1]
Ci, k∈Ai=[ki, ki+1], 1 ≤ i ≤ N− 1
CN, k∈AN=[kN, 0]

. (11) 
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Figure 5. Analysis of linear weighting schemes. (a) Parallel lines indicating equal weightings, 355 

(b) relationship between weightings and outputs, and (c) least NEI building identification by 

overlapping the target range to the weighting ratio range of C. 

 

 When the recommended weightings are in a range and not finally determined, urban 

planners can directly use the range Atarget as the input in Figure 5c. Then, the probability of 360 

any candidate Ci is measured using the overlap between Ai and Atarget: 

 Probability (Ci) = rad (Ai ∩ Atarget) ⁄ rad (Atarget), (12) 

where rad is a function to compute the radian of A. For example, Figure 5c indicates that the 

Atarget is a subset of A2. Thus, considering all the weightings, the candidate building C2 is 

always the final output, with probability = 100%. In addition, the robustness of target 

weighting for an invariant final output can also be assessed. Eq. 13 shows the robustness of 365 

target weighting ratio k is computed based on the corresponding radian of Ai. For example, 

the target weighting pair, w = (wv, wp), k = − wv ⁄ wp = −1 within A2, as shown in Figure 5b, 

owns a robustness, rad(A2) ⁄ 0.5π, to ensure the invariance of the final output C2. 

 Robustness (w) = rad(Ai) ⁄ 0.5π, k = − wv ⁄ wp ∈Ai. (13) 

4. Case study 

4.1 Study area and settings 370 

 The study area includes a total of 519 buildings in 57 town blocks of Wan Chai, one 

of the most high-rise, high-density areas in Hong Kong (HKPlanD 2018), as shown in Figure 

6. The average building height is 35.5 m and the maximum plot ratio is 10.0. Major natural 

elements, e.g., vegetation and water from mountains and sea, are located in the northern and 

southern areas, while the minor scatters in parks and gardens. Because of the vertical 375 

development and imbalanced natural settings, the occupants in the case area encounter 

considerably different visual and physical nature exposures, the variance of which is 
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confirmed in Sections 4.2.1 and 4.2.2. 

 

Building footprints with height information were extracted from the iB1000 digital 380 

map of Hong Kong (HKLandsD 2014), as shown in Figure 6c, while a 3D photorealistic CIM 

was from the Planning Department (2019). For physical accessibility, the 3D entry points of 

case natural sites in blue were collected from the Leisure and Cultural Services Department 

of Hong Kong and Google Map in Figure 6e, while the 3D pedestrian network in red was 

from the Lands Department (HKLandsD 2021). Moreover, the number of stories of buildings 385 

in yellow and lift information were extracted from the Home Affairs Department (HKHAD 

2021) and Electrical and Mechanical Services Department (HKEMSD 2021), respectively. 

 
Figure 6. Study area of Wan Chai, Hong Kong. (a) Location, (b) 519 buildings, (c) building 

footprints and heights, (d) CIM, and (e) 3D pedestrian network with floors and entry points. 390 

 

 The computational process was set up as follows. This study used a workstation with 

an Intel i7-10700 CPU (2.90GHz, 16 cores), 128 GB memory, one NVIDIA GeForce RTX 

2070 graphic card, and Windows 10 and Ubuntu 20.04 dual system (64-bit). Floor-level 

window views were generated with the Cesium (ver. 1.75), a software platform for processing 395 

and visualization of 3D geospatial data. We adopt Li’s (2022) deep transfer learning-based 
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window view quantification with the environment of Tensorflow (ver. 2.4), Python (ver. 3.6), 

and Orange 3 (ver. 3.26, a Python machine learning platform). The NEIp measurement and 

multi-scale spatial pattern visualization were implemented with ArcGIS Pro (ver. 2.7.3). Last, 

Pareto optimality-based bi-objective optimization analytics was implemented through a 400 

decision support tool developed on the ArcGIS Pro platform. 

 

4.2 Results 

 Table 1 lists the time cost of all the steps in the case study. The full assessment and 

analytical process was completed within 21.37 hours. The window view quantification 405 

consumed > 99.9% of the processing time, while all rest steps consumed < 62 s in total. The 

accuracy of NEIv was satisfactory (R2 > 0.95) according to Li et al. (2022), while the accuracy 

of NEIp was confirmed (RMSE < 0.12) by a normal adult through field tests. 

 

Table 1. Computational time of the proposed automatic assessment and analytical method. 410 

Ref. sect. Variable to produce Processing Software library Total time 

3.1.2 NEIv 

 

View quantification (Li et al. 

2022) 

Cesium, Deeplab V3+, 

and Orange 3 

21 .35 h 

Floor-level aggregation ArcGIS Pro 2 .62 s 

3.1.3 NEIp Closest natural site analysis ArcGIS Pro 58 .16 s 

3.1.4 NEIbldg Building-level aggregation ArcGIS Pro 0 .63 s 

3.2.1 P Pareto optimality-based 

optimization 

ArcGIS Pro 0 .52 s 

3.2.2 wNEI Linear weighting analysis ArcGIS Pro 0 .01 s 

   Total 21 .37 h 

 

4.2.1 Floor-level results 

NEIv and NEIp were computed and visualized on the 3D building footprints, as shown 

in Figure 7. Figure 7a shows upper building floors often enjoyed high-level nature views, 

while inland lower building floors were with less visual exposure to nature. Although some 415 

floors could have a high-level nature view (FNVI = 0.62), there still existed floors with no 

visual nature exposure. Meanwhile, Figure 7b shows buildings surrounded by natural sites 

tended to own better convenience for physical access. By contrast, building floors in the 

lighter color indicated lower accessibility, in which the maximum t was above 10 min. 
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 420 

Figure 7. Disparity of exposures to nature. (a) NEIv and (b) NEIp. 

 

 The box plots in Figure 8 suggest that the holistic nature view acquisition of the 

building floors in this area was not high, where the median value of FNVI was approximately 

0.16. One-fourth of the building floors were without exposure to nature (FNVI < 0.1) due to 425 

compact surrounding construction elements. Meanwhile, the median t was approximately 4.5 

mins, with a distribution from 0.14 to 11.86 mins. Travel time from at least one-fourth of the 

building floors to the closest natural site was longer than 5.7 mins. As shown in Figure 8c, 

NEIv nearly had an ignorable negative correlation with NEIp (Spearman’s coefficient ρ = 

−0.149, p ≤ 0.0001). The ignorable correlation also indicated that it is necessary to use an 430 

integrated assessment for a more comprehensive understanding of exposure to nature in the 

case area. 

 

 
Figure 8. Statistical results. Box plots for (a) FNVI and (b) t, and (c) Spearman’s correlation 435 

coefficient of NEIv and NEIp (#: two-tailed significance p ≤ 0.0001). 
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4.2.2 Building-level results 

 Figure 9 shows spatial patterns of NEIv_bldg and NEIp_bldg. The distribution of NEIv_bldg 

was found to be discrete. Through the validation from 3D photorealistic CIM, unobstructed 440 

buildings nearby the hills, artificial greenery, or seaside, as shown in circles #1 and #2, 

tended to have a better nature view acquisition. By contrast, the spatial distribution of 

NEIp_bldg was more clustered. For example, buildings in red circle #3 had higher NEIp_bldg, 

whereas NEIp_bldg of buildings in circle #4 was lower. Observation of CIM showed that 

buildings in circle #3 owned a close-range park in the surrounding environment, while there 445 

only existed surrounded construction elements for the buildings in circle #4. That is, the 

current natural resource setting has led to an evident disparity of visual and physical nature 

acquisitions for urban dwellers in the context area. 

 

 450 

Figure 9. Building-level results with observational validation. (a) NEIv_bldg and (b) NEIp_bldg. 

 

4.2.3 Automatic identification of least-nature-exposure areas for urban planning 

 The building-level analytics was implemented as a user-friendly add-on on the 

ArcGIS platform, as shown in Figure 10. A user can input NEIv_bldg and NEIp_bldg in Section 455 

4.2.2, as well as the buffer zone of the Pareto front, acceptable weighting range, and target 

weighting pair for robustness analysis, as shown in Figure 10b. Note that representations of a 

weighting pair (wv, wp), e.g., “0.25, 0.75” and its ratio “0.33” are both acceptable for the 
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inputs. The analytics outputs comprised three parts: (i) Pareto optimal buildings, namely, the 

set of buildings with both low-level visual and physical nature exposures; (ii) probabilistic 460 

outputs according to acceptable linear weightings; and (iii) robustness of the target weighting 

for an invariant output. 

 
 Figure 10. Results of automatic identification. (a) Pareto optimal buildings, (b) NEI-based 

building query through an ArcGIS addon, (c) two probabilistic output buildings from a range 465 

of linear weightings, (d) results of probabilities in the addon, (e) robustness of a target 
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weighting for an invariant output, and (f) results of robustness in the addon. 

 

The Pareto optimal solutions included six buildings with the least NEIs using 

exhaustive Pareto optimality-based bi-objective optimization (buffer zone range = 0), as 470 

shown in Figures 10a and 10b. No other buildings could have poorer visual and physical 

nature exposures than the six in red in Figure 10a. Figures 10c and 10d show the probabilistic 

buildings under a target linear weighting ratio range—from wv : wp = 0.33 to 3 set by users. 

Only two buildings were possible to be the final outputs because Atarget covered two weighting 

ratio ranges (i.e., A2 and A3) as shown in Figure 10c. Figure 10d shows building #110***16 475 

was selected when the weight ratio ranged between 0.46 and 3, while building #110***94 

represented the ratio from 0.33 to 0.46. Within the acceptable weighting ratio range, building 

#110***16 had a higher possibility (88.12%) to be considered as the final output. By 

contrast, concave points on the Pareto front, such as building #110***08, had zero possibility 

of being selected when using the acceptable weight ratio range, though they also owned low-480 

level visual-physical nature exposures. Table 2 details the values of wNEI for two 

probabilistic buildings using the acceptable maximum and minimum weighting pairs. 

 

Table 2. List of probabilistic buildings for the acceptable weighting ratio range. 

No. Building ID Weighting pair (wv, wp) Least wNEI 

1 110***16 (0.75, 0.25) 0.09 

2 110***94 (0.25, 0.75) 0.11 

 485 

Figures 10e and 10f show the robustness analysis of a target weighting ratio wv : wq = 0.33. 

The robustness of the weighting ratio wv : wq = 0.33 was 27.34% to ensure invariance of the 

output (i.e., building #110***94) using Eq. 13. In summary, the in-house developed ArcGIS 

add-on can effectively guide a user to examine buildings’ NEIs, list the probabilistic outputs, 

present robustness of a linear weighting, and support explainable decision-making processes. 490 

 

4.2.4 Comments from domain experts 

Four domain experts were interviewed independently to validate and evaluate the 

proposed method. Two experts are professors of landscape management, while the other two 

are urban planners working at planning and redevelopment authorities. Before asking 495 

questions in the interviews, we introduced and demonstrated NEI and the analytical results 
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through the case study. The two professors emphasized the integrated 3D quantification of the 

exposure to nature in the vertical metropolis and compared the fixed weight setting method 

with the Pareto optimality-based bi-objective analytics, respectively: 

Professor A: “It is promising for guiding urban landscape management and planning, 500 

especially in high-rise, high-density cities. The integrated 3D nature exposure assessment 

is more comprehensive and effective for understanding the multi-level urban 

environment.” 

Professor B: “Expert knowledge is often used to determine the weight setting. Pareto 

optimality-based bi-objective optimization method and the linear weighting analysis can 505 

identify all the building candidates and explain the possible outputs.” 

In the end, both professors suggested that the view is “rather complex than a simple 

proportional indicator.” Views can be “further quantified from in-depth perspectives such as 

view structure in the future.” 

 510 

In comparison, the two planners focused on the potential scenarios and availability for 

decision-making: 

Planner C: “It allows the user to better understand the data relationship, and thus 

minimizes the data size to be studied. The full picture between the linear weightings and 

probabilistic outputs gives us a much clearer understanding and decision-making space.” 515 

Planner D: “It can effectively provide insights on how to enhance the site selection process 

for urban renewal, and to my best knowledge, no bi-objective optimization-based analytics 

was utilized to help the identification of buildings and blocks in need of nature exposure.” 

Although it is promising and practical to identify the “first-needed” area with comprehensive 

evidence, both suggested other indicators, such as building condition, to supplement NEI for 520 

more comprehensive decision-making in urban redevelopment and preservation. 

 

 In general, both disciplines of experts confirmed that the proposed method was 

promising for guiding landscape management and urban planning. First, the integrated 3D 

nature exposure assessment is markedly comprehensive and effective for understanding the 525 

multi-level urban environment. The proposed analytics can narrow the focus scope, identify 

all building candidates with low-level visual-physical exposures to nature, and explain the 

probabilistic outputs of linear weightings. As far as they were concerned, no bi-objective 
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optimization-based analytics was available for identifications of buildings and blocks with 

low-level visual-physical exposures to nature. In terms of applicability, all experts agreed that 530 

the Pareto optimality-based bi-objective decision support tool could effectively help inform 

decision-making in both disciplines. 

5 Discussion 

5.1 Significance 

 From a theoretical perspective, the proposed visual-physical NEI definition extends 535 

the existing studies on isolated nature exposure measurement to an integrated examination 

process. The NEI enables and advocates holistic urban planning and analytics for multi-

dimensional nature exposures. Integrated analytics of visual-nature nature exposures for 

buildings and city blocks is significant in improving the current urban planning paradigm in 

the high-rise, high-density cities. 540 

 

From a methodological perspective, an integrated 3D assessment of visual and 

physical exposures to nature effectively examines the disparity of natural resource possession 

in the multi-level urban environment. NEI-based bi-objective analytics bridges the 

assessment results with decision-making in landscape management and urban planning. The 545 

proposed Pareto optimality-based optimization method can ensure all the buildings and 

blocks with low-level visual and physical nature exposures are identified at one time, thereby 

offering an entire picture of the focus scope. 

 

 For practitioners, the proposed method is easy to use and low-cost. Assessment 550 

methods can automatically identify buildings and blocks with low-level visual-physical 

nature exposures from holistic perspectives. The analytical results of prioritization of 

buildings for improvement in visual-physical nature exposures are comprehensive and 

explainable with the possible linear weighting schemes. Accordingly, urban planners and 

other decision-makers are enabled to make a well-informed determination with quantified 555 

evidence. In summary, the proposed method contributes an integrated visual-physical nature 

exposure assessment using CIM and pedestrian network, and thus provides a low-cost and 

highly explainable analytical tool for landscape management and urban planning. 
 

5.2 Limitations and future work 560 

 This study has several limitations. First, NEIv and NEIp in this paper involve neither 
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window settings nor personalized travel preferences. Thus, NEIv modeled on the 

photorealistic CIM can be extended to represent window settings such as grills and scales 

through Building Information Modeling, while NEIp can be personalized by path weighting, 

such as a 50% “psychological” discount on walking time for a clean, familiar, and safe path 565 

environment. Another future research direction is integrating other representations of 

exposure to nature, e.g., incidental nature interactions on the streets and inverse 

representation of acoustic nature exposure, such as urban noise. Moreover, urban planners 

and landscape architects need to review the exposure suggestions with other indicators, such 

as availability of lands, maintenance costs, and social concern, to determine the final 570 

objectives for improvement of the built environment. Another future endeavor is to 

incorporate related indicators and turn the proposed bi-objective optimization analytics into a 

multi-objective decision-making. Besides, despite the acceptable time cost of Pareto 

optimality-based bi-objective analytics, the NEIv computing process is still time-consuming 

owing to the generation and segmentation of view photos. Thus, given that the proposed 575 

definition is compatible with various window view quantification techniques, more efficient 

methods will be useful. Last, the aggregation of human-level assessment results of nature 

exposure into buildings and blocks can be more accurate than the floor-level one in this study, 

which can be another direction to advance fine-scale nature exposure modeling in future 

landscape management and urban planning. 580 

6 Conclusion 

Natural settings in the urban context are multi-faceted resources for urban dwellers. A 

holistic visual-physical nature exposure assessment is needed for improving the built 

environment. Traditional assessment often focuses on either visual or physical dimension in 

isolation, and thus fails to identify the buildings and blocks with both low visual and physical 585 

nature exposures. 

 

 This study defines a Nature Exposure Index (NEI) that has both visual and physical 

components. Thereafter, NEI is measured through floor-level window views and walkability 

of nearby natural sites. By aggregating the results into building or block levels, a bi-objective 590 

optimization-based analytics is presented to identify areas with the least visual-physical 

nature exposures. Last, probabilistic output buildings or blocks and robustness of linear 

weightings are gauged through a linear weighting analysis. Our method achieved a 

satisfactory result for a pilot study of 519 buildings in the high-rise, high-density area of Wan 
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Chai in Hong Kong. Comments from experts and planners indicated that the proposed 595 

method is effective and applicable for better landscape management and urban planning. 

 

 The proposed method is automatic, effective, and scalable up to buildings and city 

blocks. The assessment results of NEI represent a full picture of visual-physical nature 

exposures. The analytical results of Pareto optimality and weighting analysis enable a holistic 600 

and in-depth understanding of the buildings and city blocks that need improvement in visual-

physical exposures to nature. Future directions include in-depth and comprehensive visual-

physical nature exposure examination, more efficient view quantification methods, human-

level analytics of nature exposure, and incorporating related indicators to the presented addon 

for a decision-making system. 605 
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