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Abstract 

Large-scale assessment of window views is demanded for precise housing valuation and quantified evidence 
for improving the built environment, especially in high-rise, high-density cities. However, the absence of a seman-
tic segmentation dataset of window views forbids an accurate pixel-level assessment. This paper presents a City 
Information Model (CIM)-generated Window View (CIM-WV) dataset comprising 2,000 annotated images collected 
in the high-rise, high-density urban areas of Hong Kong. The CIM-WV includes seven semantic labels, i.e., building, 
sky, vegetation, road, waterbody, vehicle, and terrain. Experimental results of training a well-known deep learning (DL) 
model, DeepLab V3+ , on CIM-WV, achieved a high performance (per-class Intersection over Union (IoU) ≥ 86.23%) 
on segmenting major landscape elements, i.e., building, sky, vegetation, and waterbody, and consistently outper-
formed the transfer learning on a popular real-world street view dataset, Cityscapes. The DeepLab V3+ model trained 
on CIM-WV was robust (mIoU ≥ 72.09%) in Hong Kong Island and Kowloon Peninsula, and enhanced the semantic 
segmentation accuracy of real-world and Google Earth CIM-generated window view images. The contribution of this 
paper is three-fold. CIM-WV is the first public CIM-generated photorealistic window view dataset with rich semantics. 
Secondly, comparative analysis shows a more accurate window view assessment using DL from CIM-WV than deep 
transfer learning from ground-level views. Last, for urban researchers and practitioners, our publicly accessible DL 
models trained on CIM-WV enable novel multi-source window view-based urban applications including precise real 
estate valuation, improvement of built environment, and window view-related urban analytics.

Keywords  Image dataset, Window view, City Information Models, High-rise buildings, High-density cities, Semantic 
segmentation, Deep learning

1  Introduction
Assessment of multi-angle urban views is significant 
informatics for comprehensively examining the devel-
opment of urban environment (Shi et al., 2022a, 2022b). 
For example, researchers assess overhead urban views 
via remote sensing imagery for monitoring the change 
in land use (Wang et al., 2022), greenery exposure (Chen 
et al., 2022), and building morphologies (Liao et al., 2023). 
Ground-level urban views from street view images are 
exploited for urban accessibility, vitality, and sustainabil-
ity (Biljecki & Ito, 2021; He et al., 2022; Yang et al., 2021). 
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Different from overhead and ground-level urban views, 
window views of varying heights can serve as a supple-
ment to the urban view hub by vertically examining the 
urban environment (Li et al., 2021, 2022). As a new angle 
of urban views, window views depict the neighborhood-
built environment that urban dwellers observe long-term 
from their residential and working places.

Window views have shown high socio-economic values 
and impacts on multiple urban applications. For example, 
the assessment results can support precise housing valu-
ation and selection regarding scenic window views, e.g., 
sea and greenery views (Baranzini & Schaerer, 2011; Jim 
& Chen, 2009), prioritization of the neighborhood-built 
environment improvement (Li et al., 2023b, 2023c), and 
optimization of acquisition of nature view and daylight 
for architectural design (Laovisutthichai et  al., 2021; 
Zhou & Xue, 2023). In addition, quantified results of 
window views can guide policymakers of government 
and planning agencies on quantitative regulation on 
minimum visual greenery exposure for residences and 
workplaces (Fisher-Gewirtzman, 2018; HKTPB, 2010). 
Last, the urban-scale assessment results of window views 
relate to urban issues, e.g., health, safety, and environ-
mental justice (Helbich et al., 2019; Kuo & Sullivan, 2001) 
especially in high-rise, high-density urban areas, leading 
to a new wave of urban analytics for healthy and sustain-
able urban development.

Assessment of window views has been conducted 
through manual and simulation methods. Initially, 
researchers in the fields of physiology, psychology, and 
urban health manually label the window views for com-
puting window view indicators, e.g., window view pro-
portion and structure (Ulrich, 1984; Stamps III 2005). 
However, the manual collection limits the large-scale 
window view assessment. Recently, high-quality simu-
lated window view images generated on photorealistic 
City Information Models (CIMs) have enabled a large-
scale assessment (Li & Samuelson, 2020; Li et al., 2022). 
Particularly, Li et al. (2022) assessed proportions of view 
features e.g., greenery, waterbody, sky, and construction 
for urban-scale windows through DeepLab V3+ (Chen 
et al., 2018) trained on the real-world street view dataset, 
Cityscapes (Cordts et al., 2016). However, the photoreal-
istic CIM-generated window views of varying heights are 
different from ground-level street views captured from 
the real urban landscape. The absence of annotated pho-
torealistic window view images fails to support an accu-
rate pixel-level semantic segmentation of window views. 
Thus, it is significant to present an annotated window 
view image dataset for advancing an accurate urban-scale 
window view assessment.

This paper presents a photorealistic CIM-generated 
Window View (CIM-WV) dataset for 2D semantic 

segmentation of multi-level urban scenes in high-rise, 
high-density cities. The CIM-WV comprises 2,000 pho-
torealistic window view images with seven semantic 
labels, i.e., building, sky, vegetation, road, waterbody, 
vehicle, and terrain. Window view images of CIM-WV 
were generated from high-rise, high-density urban areas 
of Hong Kong Island and the Kowloon Peninsula. Each 
window view image with 900 × 900 pixels is arranged in 
two layers: photorealistic image and semantic segmenta-
tion mask.

The contribution of the study is three-fold.

	 i.	 First, it presents the first public CIM-generated 
photorealistic window view image dataset with rich 
semantics. The annotated photorealistic window 
view imagery supplements the existing semantic 
segmentation datasets of multi-angle urban views.

	 ii.	 Thereafter, we provide a comprehensive evaluation 
of CIM-WV, including a baseline using DeepLab 
V3 + , a comparative analysis of view segmentation 
using CIM-WV and Cityscapes, and robustness 
and transferability analyses of the trained Deep-
Lab V3 + models. Experimental results confirm a 
more accurate window view assessment using deep 
learning from CIM-WV than deep transfer learn-
ing from ground-level views. The robust DeepLab 
V3 + model in Hong Kong enhances the semantic 
segmentation accuracy of real-world and Google 
Earth CIM-generated window view images.

	iii.	 The publicly accessible deep learning models 
trained on CIM-WV enable multi-source window 
view-based applications including precise real 
estate valuation, improvement of built environ-
ment, and window view-related urban analytics.

The remainder of this paper is arranged as follows. The 
related work in the literature is reviewed in Sect. 2. The 
descriptions of CIM-WV including the specification, 
characteristics, and evaluation process are represented in 
Sect. 3. Section 4 describes the experimental settings and 
results. The discussion and conclusion are presented in 
Sects. 5 and 6, respectively.

2 � Related work
2.1 � Semantic segmentation datasets of urban views
Semantic segmentation datasets for urban views are 
developed in an imbalanced way. There exist numer-
ous semantic segmentation datasets of overhead and 
street views in the fields of remote sensing, computer 
vision, and urban studies. For example, satellite and aer-
ial images with pixel-level semantic annotations such as 
DeepGlobe (Demir et  al., 2018), LoveDA (Wang et  al., 
2021), and SkyScapes (Azimi et  al., 2019) are provided 
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for landscape element extraction (Zhou et al., 2018), land 
cover mapping (Wang et  al., 2022), and urban manage-
ment (Liao et  al., 2023). In addition, researchers also 
annotated synthetic and real-world street view image 
datasets such as SYNTHIA (Ros et al., 2016), Cityscapes 
(Cordts et al., 2016), and BDD100K (Yu et al., 2020) for 
ground-level urban scene understanding. The high acces-
sibility of diversified street view datasets has triggered 
numerous urban studies, e.g., autonomous driving and 
navigation (Chen et  al., 2017) and urban analytics (Xue 
et  al., 2021; Yang et  al., 2021). However, the annotated 
window view image dataset is less available despite the 
socio-economic values of window views in the real estate 
market (Jim & Chen, 2009), landscape management (Li 
et al., 2023b), and urban planning and design (Laovisut-
thichai et  al., 2021) especially in high-rise, high-density 
cities.

2.2 � Current automatic assessment of window view
Automatic assessment methods of window views are 
constantly evolving, taking full advantage of the increas-
ingly high-resolution CIMs. Particularly, with the high-
resolution 3D photorealistic CIMs and deep transfer 
learning-based semantic segmentation techniques, auto-
matic quantification of urban-scale window views has 
been enabled for real estate management (Li et al., 2021), 
architectural design (Laovisutthichai et  al., 2021; Li & 
Samuelson, 2020), and urban planning of greenery space 
(Li et  al., 2023b, 2023c). Deep learning models trained 
on street view imagery, e.g., Cityscapes were transduc-
tively applied to segment the CIM-generated window 
view images at the urban scale (Li et  al., 2021, 2022). 
However, the current assessment methods fail to support 
an accurate pixel-level window view assessment. First, 
ground-level street views centered around roads and 
vehicles cannot accurately represent window views of 
varying heights. Thereafter, urban views of the real urban 
landscape are different from photorealistic views with 
distortions and inconsistent resolutions. Consequently, 
transfer learning-based semantic segmentation leads to 
inaccurate detection of photorealistic window view fea-
tures. Thus, it is significant to construct a semantic seg-
mentation dataset especially for photorealistic window 
views to advance an accurate pixel-level window view 
assessment.

3 � The presented window view dataset
3.1 � Dataset specification
3.1.1 � Overview of CIM‑WV
CIM-WV comprises 2,000 photorealistic window view 
images sampled from 203 buildings in Hong Kong as 
shown in Fig.  1a. The target areas in Wan Chai and 
Yau Tsim Mong Districts are within the top high-rise, 

high-density zones according to the Hong Kong Plan-
ning Standards and Guidelines (HKPlanD, 2018). In addi-
tion, the target areas with a long land reclamation history 
ranging from the 1850s to 2010s, offer us the most rep-
resentative and diverse views of the built environment of 
urban Hong Kong (HKCEDD, 2019). Specifically, Fig. 1b 
shows window images with varying locations and orien-
tations collected on both sides of Victoria Harbor to rep-
resent diversified landscape elements, encompassing sea, 
multi-style buildings, vegetation, roads, etc. Figures  1c 
and 1d show window view images of CIM-WV with var-
ied elevations to represent the multi-level urban environ-
ment, e.g., street and sky scenes in Hong Kong Island and 
Kowloon Peninsula, respectively.

Window view images of CIM-WV were generated 
from publicly available photorealistic CIMs (HKPlanD, 
2019a) shared by the Planning Department, Govern-
ment of Hong Kong SAR. The photorealistic CIMs 
registered in the Hong Kong 1980 Grid coordinate sys-
tem (EPSG:2326) were reconstructed from more than 
340,000 aerial images through photogrammetry, covering 
nearly the whole urban areas of Hong Kong Island and 
Kowloon Peninsula (HKPlanD, 2019b). Figures 2b and a 
show a photorealistic window view image of CIM-WV 
vividly representing a landscape scene captured in the 
real world. The photorealistic window view image was 
horizontally captured from the center of the window 
site regardless of the window configuration, such as win-
dow shape and frames. The window view image of CIM-
WV contains 900 × 900 pixels, and the field of view is 60 
degrees to represent the vision of a normal person. Each 
window view image was named by combining the IDs of 
its affiliated building, facade, 3D coordinates (lon, lat, ele-
vation), and heading.

CIM-WV includes seven semantic labels, i.e., build-
ing, sky, vegetation, road, waterbody, vehicle, and terrain. 
For example, Table  1 shows building denotes construc-
tion with roofs and walls. The sky is the space above the 
landscape where the sun and clouds appear. Image pixels 
representing trees, bushes, and grass are labeled as veg-
etation. The seven semantic labels represent the most 
commonly seen city objects in Hong Kong. Figure  2c 
shows a typical segmentation mask with all seven seman-
tic labels for a photorealistic window view as shown in 
Fig. 2b.

3.1.2 � Creation process of CIM‑WV
We created the CIM-WV through a semi-automatic 
method. The inputs were 2D building footprints with 
building height information and 3D photorealistic 
CIMs, shared by the Hong Kong Lands Department 
(HKLandsD, 2014) and Hong Kong Planning Depart-
ment (HKPlanD, 2019a), respectively. And the output 
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was the CIM-WV. A three-step workflow for creating 
CIM-WV comprises batch generation of window view 
images, cleansing of window view images, and semantic 
annotation.

The first step is batch generation of window view 
images. Making full use of the 3D geo-visualization plat-
form, Cesium (Cesium GS 2022), we followed Li et  al.’s 
(2022) method to place a virtual camera on each window 

Fig. 1  Collection area of CIM-WV in Hong Kong. (a) Location, (b) two sampling urban areas, and 2,000 window view sites in (c) the Hong Kong 
Island, and (d) the Kowloon Peninsula

Fig. 2  An example window view. (a)Window view photo captured from the real world, (b) photorealistic window view image of CIM-WV, and (c) 
the semantic segmentation mask
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site to capture the outside photorealistic view as shown 
in Fig. 3b. Specifically, Fig. 3a shows the location param-
eters of the virtual camera in the WGS-84 coordinate 
system (EPSG: 4326), i.e., lon, lat, and elevation were set 
according to the window site’s 3D coordinates. Rotation 
parameters of the virtual camera i.e., heading, pitch, and 
roll, were set to the heading value of the window site, 
0, and 0, respectively. And the field of view of the cam-
era was set to 60 degrees to generate the window view 
images of CIM-WV. 3D coordinates and heading value 
of the window site were computed from geometric and 
height attributes of shared building footprints. To sample 
window views of diversified landscape scenes of vary-
ing heights cost-effectively, we followed Li et al.’s (2022) 
method to generate window views by setting intervals 
of view sites at 20 m and 5 m for large and small build-
ing facades, respectively. Last, we named and saved each 
window view image in the database. Figure 3c shows the 
window view image is named by the combination of its 
four IDs, i.e., unique ID, affiliated building ID, affiliated 
facade ID, and view ID, and location and rotation param-
eters of the virtual camera to generate the view.

The next step is cleansing of window view images. We 
first removed incorrectly modeled window view images 
by detecting fragmented CIM faces. Photorealistic CIMs 
in this study are surface modeling of the real urban land-
scape. The placement of the virtual camera towards the 
interior of photorealistic CIMs can lead to incorrect rep-
resentation of window views, which often co-occur with 
visible fragmented CIM faces. Thereafter, we manually 
selected window view images to comprehensively rep-
resent scenes of the multi-level urban environment. Fig-
ure 4a shows the varied elevations of window views were 
distributed among low (0–30 m), middle (30–60 m), and 
high (≥ 60 m) regions. Figure 4b shows similar quantities 
of window views facing the east, west, south, and north. 
Figure 4c shows the distribution of seven kinds of land-
scape elements of CIM-WV after the manual selection. 
Generally, buildings and sky dominate the window view 
images of CIM-WV.

The last step is semantic annotation. The annotation of 
a photorealistic window view image leads to a semantic 
segmentation mask. Figure  5 shows annotations of the 
seven landscape elements listed in Table 1 in four typical 
window views, i.e., pure building view, street view, moun-
tain view, and sea view. To ensure a high-quality ground 
truth, the authors annotated 100 samples of representa-
tive window views at pixel level, and then supervised 
professional annotators hired online (Alibaba, 2023) to 
annotate the remaining 1,900 window views.

3.2 � The characteristics of CIM‑WV
3.2.1 � CIM‑generated window view images
CIM-WV is the first window view image dataset gener-
ated on photorealistic CIMs. On the other hand, the 
quality of photorealistic CIMs leads to limitations of the 
data quality of CIM-WV. First, there exist inconsistent 
colors of window view images in the Hong Kong Island 
and Kowloon Peninsula due to discontinuous collection 
dates of CIMs. For example, Fig. 6 shows the holistically 
inconsistent color settings, e.g., brightness and color con-
trast of window view images in Hong Kong Island and 
Kowloon Peninsula. The color inconsistency of window 
view images of CIM-WV may enhance the robustness of 
the trained deep learning models for segmenting multi-
source CIM-generated window view images.

In addition, the window view images of CIM-WV own 
three kinds of representation defects inherited from 
low-resolution photorealistic CIMs. First, bottom-level 
window view images tend to be more distorted than 
upper-level ones. For example, Fig. 7a shows more distor-
tions exist at the bottom parts of buildings from the pho-
torealistic CIMs. In addition, close-range window views 
are more blurred than distant ones. Figure 7b shows the 
limited resolution of CIM textures leads to blurred close-
range views. Last, complex landscape surfaces are more 
distorted than simple ones. Figure  7c shows complex 
building surfaces in the red rectangles are more distorted 
than ones in the green rectangles at similar view distance 
and elevation.

3.2.2 � Representation of the multi‑level urban environment
CIM-WV represents the multi-level urban environment 
of high-rise, high-density areas. Window view images 
of CIM-WV depict diversified urban scenes of Hong 
Kong at different locations, elevations, and orientations. 
Figure  8a shows the window views facing the streets, 
buildings, and open space at the same elevation and ori-
entation but from different buildings. Figure  8b shows 
three window views at changed elevations of the same 
building facade. Figure 8c shows the varied window views 
of multiple orientations of the same building.

Table 1  Description of seven semantic labels of CIM-WV

Type Description

Building Construction with roofs and walls

Sky The space above the landscape where the sun and clouds 
appear

Vegetation Plants, e.g., trees, bushes, and grass

Road Constructed paths without covers, e.g., streets and walk-
ways

Waterbody Areas of water, e.g., pools, ponds, lakes, rivers, and sea

Vehicle Car, ship, vessel, etc

Terrain Unconstructed or rugged land areas, e.g., bared earth
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3.3 � Evaluation of CIM‑WV
We provide an evaluation on assessing semantic segmen-
tation of window views using CIM-WV. First, a base-
line of a popular deep learning model, DeepLab V3 + on 
CIM-WV was provided regarding three backbones, i.e., 
ResNet, Dilated ResNet (DRN), and Xception, and two 
optional values of the output stride (OS) of the model, 
i.e., 8 and 16. Thereafter, we compared the segmenta-
tion accuracy of DeepLab V3 + trained on the proposed 

CIM-WV with the one trained on Cityscapes transduc-
tively used in (Li et  al., 2022). Next, we validated the 
robustness of trained DeepLab V3 + models in multiple 
areas of Hong Kong, i.e., the test sets of CIM-WV in the 
Hong Kong Island and Kowloon Peninsula, and non-
CIM-WV images in the western Hong Kong Island. Last, 
the transferability of the trained DeepLab V3 + model 
was validated for multi-source window view images, e.g., 
the real-world images in Hong Kong and Google Earth 

Fig. 3  Batch generation of window view images. (a) Camera settings based on window site information, (b) image generation process (Li et al., 
2022), and (c) naming rule of the window view images of CIM-WV
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CIM-generated images in two other typical high-rise, 
high-density cities, i.e., New York and Singapore.

For the first two analyses,  we selected 1,400 window 
view images of CIM-WV as the training set, 300 window 
view images for validation, and the last 300 window view 
images as the test set. The goal of the control of data-
set splits was similar quantity distributions of the seven 
annotated view elements in the training, validation, and 
test sets. First, we clustered the window view images by 
their quantity distributions of seven annotated view ele-
ments in Hong Kong Island and the Kowloon Peninsula, 
respectively. Then, window view images in each cluster 
were randomly assigned into the training, validation, 
and test sets according to the ratio, 70:15:15. Last, we 

examined each set of CIM-WV to ensure a similar and 
balanced quantity distribution of seven annotated view 
elements. Figure 9a shows a similar quantity distribution 
of seven annotated view elements in three sets. The num-
bers of pixels especially for waterbody, vehicle, and ter-
rain in validation and test sets were non-zero and almost 
equal. Meanwhile, window view images of Hong Kong 
Island and the Kowloon Peninsula were distributed into 
the training, validation, and test sets with a similar ratio 
as shown in Fig. 9b.

For the third analysis, 60 more window view images 
from the western Hong Kong Island, more than 3.05 km 
away from the target areas of CIM-WV, were manually 
annotated to test the robustness of the trained DeepLab 

Fig. 4  Quantity distributions of window sites by (a) elevation and (b) heading and (c) quantity distribution of semantic labels of CIM-WV

Fig. 5  Typical window views of CIM-WV with semantic annotations. (a) building view, (b) street view, (c) mountain view, and (d) sea view
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V3 + models. Last, we annotated 30 real-world  win-
dow view images  in Hong Kong and 30 Google Earth 
CIM-generated photorealistic window view images 
from each of another two cities, i.e., New York and Sin-
gapore to initially test the transferability of the trained 
DeepLab V3 + models. To compare the segmentation 
performances, we trained a DeepLab V3 + model on 

multi-source window view images only and meanwhile 
finetuned another DeepLab V3 + model trained on CIM-
WV by feeding multi-source window view images.

Three indicators including Overall Accuracy (OA), 
mean class Accuracy (mAcc), and mean Intersection 
over Union (mIoU) were used to evaluate the perfor-
mance of six trained DeepLab V3 + models. OA reports 

Fig. 6  Inconsistent colors of window view images collected in the Hong Kong Island and the Kowloon Peninsula

Fig. 7  Three kinds of low-resolution representation of CIM-WV. (a) Comparison of distortions of window view elements at bottom and upper floors, 
(b) comparison of blurs of close-range and distant views, and (c) comparison of distortions of window views against complex and simple building 
surfaces
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Fig. 8  Window view images of CIM-WV representing diversified urban scenes of Hong Kong at different (a) locations, (b) elevations, and (c) 
orientations

Fig. 9  Quantity distributions of window view elements in training, validation, and test sets by (a) semantic labels and (b) locations
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the percentage of total pixels that are correctly classi-
fied, whereas mAcc represents the average percentage 
of pixels that are correctly classified in each semantic 
class l. mIoU is the average of the IoUs of the set of seven 
semantic classes L, which indicates the average magni-
tude of the detection confusion between each semantic 
label l. We compute OA, mAcc, and mIoU using Eqs. 1, 2, 
and 3, respectively.

where Pll is the set of pixels belonging to the class l and 
predicted as l, Pl is the whole set of pixels manually 
assigned the label l as ground truth, Plo is the set of pixels 
belonging to the class l but wrongly predicted into other 
classes o, and Pol is the set of pixels belonging to other 
classes o but wrongly predicted into the class l, and | · | is 
the operator indicating the number of pixels, e.g., in the 
set Pll and Pl. Three indicators, i.e., OA, mAcc, and mIoU 
all range between 0 and 1. The high values of the metrics 
indicate an accurate semantic segmentation, where OA 
measures pixel-level performance and mIoU emphasizes 
the performance at the class level.

4 � Experimental tests
4.1 � Experimental settings
The experiments were implemented on a high-per-
formance computing cluster with 7 servers, each of 
which owns dual Intel Xeon 6226R (16 core) CPUs, 
384GB RAM, 4 × NVIDIA V100 (32GB) SXM2 GPUs, 
and a CentOS 8 system. Specifically, each DeepLab 
V3 + model with specific settings described in Sect. 3.3 
was trained on assigned 16 core CPUs, 64GB RAM, 
and one NVIDIA V100 (32GB) SXM2 GPU. All six 
models were trained with the environment of PyTorch 
(ver. 1.10) and Python (ver. 3.7). We finetuned seven 
hypermeters, i.e., the batch size, loss function, opti-
mizer, learning rate, scheduler mode, momentum 
factor, and weight decay to compare the model per-
formances. Table 2 lists the finally controlled values of 
the seven hypermeters to achieve holistically optimal 
results of six models we could acquire. The early-stop 
method was applied to avoid overfitting and we saved 
the checkpoint with minimal validation loss for com-
parison. Last, the four experimental tests were imple-
mented in the same development environment.

(1)OA =
∑

L
|Pll |/

∑
L
|Pl |,

(2)mAcc =
L
(|Pll | / |Pl |)/7,

(3)mIoU =
∑

L
(IoUl) / 7, where IoUl = | Pll | / (

∑
o

| Plo| +
∑

o
| Pol | − | Pll |),

4.2 � Results
4.2.1 � Baseline of CIM‑WV via DeepLab V3 + 
Table 3 lists the performances of six variants of DeepLab 
V3 + on the test set of CIM-WV. Overall, the six trained 
models achieved similar performances on segmenta-
tion, with OA, mAcc, and mIoU consistently equal to or 
greater than 97.49%, 87.96%, and 76.55%, respectively. 
DeepLab V3 + with the backbone, Xception, and OS at 
8 achieved the highest mAcc and mIoU at 91.17% and 
77.93%, respectively, while DeepLab V3 + with the back-
bone, DRN, and OS at 16 achieved the highest value of 
OA at 97.80%. By contrast, the trained model with the 
backbone, ResNet, and OS at 16 performed poorly with 
the lowest OA, mAcc, and mIoU.

For all six models, landscape elements in the window 
view, i.e., buildings, sky, vegetation, and waterbody were 
mostly detected, with per-IoUs beyond 83.21%. Figure 10a 
shows a typical window view image with the four well-seg-
mented landscape elements. By contrast, roads, vehicles, 
and terrain were poorly segmented, with per-IoUs lower 
than 72.93%. There existed three reasons for the low-per-
formance segmentation of roads, vehicles, and terrain. First, 
there existed incorrect recognitions of close-range roads in 
the window view as parts of nearby buildings, and close-
range flat building roofs as roads, which led to low per-class 
IoUs of the road (per-class IoUs ≤ 72.93%). For example, the 
high-performance model (Backbone = Xception, OS = 8) 
detected the close-range flat building roofs as roads due to 
similar textures as shown in Fig. 10b. In addition, consider-
able false negative and false positive detections of vehicles 
caused by incomplete vehicle representation in limited 
pixels of the window views led to a low-performance seg-
mentation (per-class IoUs ≤ 48.31%). For example, Fig. 10c 
shows the profiles of small vehicles on the building podium 
were not recognized. Last, there existed confusion among 

Table 2  Controlled hypermeters of six models

Parameter Value

Batch size 4

Loss function Cross entropy

Optimizer Stochastic gradient descent

Learning rate 0.005

Scheduler mode Polynomial

Momentum factor 0.9

Weight decay 5e-4
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terrain, vegetation, and buildings especially at the distant 
landscape layers of the window views due to their close 
proximity, similar textures, and limited pixels of represen-
tation as shown in Fig. 10d.

In addition, we also trained six variants of Deep-
Lab V3 + models on the sets of Hong Kong Island 
and Kowloon Peninsula, respectively, and then tested 
their performances in the local areas. Table  4 shows 
six DeepLab V3 + models trained on the Hong Kong 

Island set achieved a consistently high performance 
(mIoU ≥ 75.54%) in the Island area, while the models 
trained on the Kowloon Peninsula set achieved mIoUs 
above 71.81% in Kowloon as shown in Table 5. Window 
view elements including the building, sky, and water-
body were highly detected (per-class IoUs ≥ 86.47%) 
by both branches of models trained on the Hong Kong 
Island set and the Kowloon Peninsula set, whereas 
roads, vehicles, and terrain were poorly detected with 

Table 3  Performances of DeepLab V3 + with different backbones and values of OS

The highest and lowest values in each column are in bold and underlined, respectively

Backbone OS (px) Overall metric (%) Per-class IoU (%)

Training efficiency
t (s) / epoch

OA mAcc mIoU Building Sky Vegetation Road Waterbody Vehicle Terrain

ResNet 8 269.152 97.59 89.22 77.08 97.48 98.64 83.21 70.78 86.48 47.44 55.54

ResNet 16 101.311 97.49 87.96 76.55 97.35 98.73 84.37 67.19 89.01 46.13 53.06

Xception 8 302.781 97.77 91.17 77.93 97.69 98.83 85.35 71.75 87.64 48.31 55.96

Xception 16 116.438 97.68 90.74 77.22 97.51 98.73 86.23 70.78 89.00 46.19 52.09

DRN 8 185.567 97.74 88.74 77.64 97.58 98.89 83.89 72.93 89.35 44.21 56.62
DRN 16 187.102 97.80 88.90 77.23 97.68 98.90 84.83 71.82 88.94 45.44 52.97

Fig. 10  Semantic segmentation results of four example images in the test set using the DeepLab V3 + (Backbone = Xception, OS = 8) trained 
on CIM-WV. High-performance segmentation of (a) buildings, sky, vegetation, and waterbody, and poor segmentations of (b) roads, (c) vehicles, 
and (d) terrain
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per-class IoUs ≤ 73.42%. Similar reasons for the poor 
performance in detecting roads, vehicles, and terrain 
are i) confusion between roads and buildings, ii) consid-
erable false negative and false positive detection errors 
of incomplete small vehicles, and iii) confusion among 
terrain, vegetation, and buildings especially in the dis-
tant landscape layers of the window views due to similar 
textures. In addition, differently, models trained on the 
Hong Kong Island set segmented vegetation and ter-
rain more accurately, but poorly for vehicles than mod-
els trained on the Kowloon Peninsula set, as shown in 
Tables  4 and 5. Possible reasons include the inconsist-
ent model quality of landscape elements. For example, 
the modeling quality of vegetation and terrain in Hong 
Kong Island is the higher of the two, whereas the mod-
eled vehicles in Kowloon Peninsula are more complete 
and less distorted.

4.2.2 � Comparative analysis of photorealistic window view 
segmentation using CIM‑WV and Cityscapes

Table 6 lists the evaluation results of DeepLab V3 + (Back-
bone = Xception, OS = 16) trained on ImageNet (Deng 
et  al., 2009) and Cityscapes transductively used in Li 
et  al.’s method (2022), and on ImageNet and our pro-
posed CIM-WV, respectively. Evaluation results showed 
that the DeepLab V3 + model trained on Cityscapes 
poorly detected all the seven window view elements, 
with mIoU at 34.14%. Waterbody was fully incorrectly 
detected as roads and terrain due to the absence of the 
label in Cityscapes as shown in Fig.  11a. The per-class 
IoUs of the road, vehicle, and terrain were low (per-class 
IoUs ≤ 11.98%) due to the significant difference between 
multi-level window views and ground-level street views. 
For example, regarding window view as street view, the 
trained model segmented close-range building facades 

Table 4  Performances of six DeepLab V3 + models trained on the Hong Kong Island set

The highest and lowest values in each column are in bold and underlined, respectively

Backbone OS (px) Overall metric (%) Per-class IoU (%)

OA mAcc mIoU Building Sky Vegetation Road Waterbody Vehicle Terrain

ResNet 8 97.79 87.07 76.14 97.79 97.92 84.66 68.69 88.04 35.13 60.73
ResNet 16 97.81 88.73 75.70 97.95 97.27 84.24 70.19 90.21 36.23 53.79

Xception 8 97.99 89.41 77.06 97.95 98.53 85.46 73.42 90.49 37.00 56.53

Xception 16 97.85 89.14 75.54 97.87 98.18 82.94 73.16 89.78 36.04 50.78

DRN 8 97.82 88.90 76.48 97.81 98.53 84.33 70.69 90.73 35.41 57.83

DRN 16 97.97 88.79 77.20 98.00 98.52 85.04 72.22 91.41 37.88 57.35

Table 5  Performances of six DeepLab V3 + models trained on the Kowloon Peninsula set

The highest and lowest values in each column are in bold and underlined, respectively

Backbone OS (px) Overall metric (%) Per-class IoU (%)

OA mAcc mIoU Building Sky Vegetation Road Waterbody Vehicle Terrain

ResNet 8 96.61 85.49 72.33 95.99 98.79 69.73 69.46 89.28 62.04 21.01

ResNet 16 96.49 83.96 71.81 95.93 98.75 71.36 64.03 89.85 61.37 21.37

Xception 8 96.86 85.44 72.54 96.42 98.59 72.64 70.47 88.50 55.06 26.13
Xception 16 96.81 83.90 71.83 96.20 98.41 73.73 69.58 86.47 58.64 19.77

DRN 8 96.75 83.68 72.50 96.10 98.94 68.85 72.04 87.38 65.75 18.46

DRN 16 96.77 82.66 73.42 96.21 98.95 70.32 69.65 89.79 64.26 14.76

Table 6  Performances of DeepLab V3 + with the backbone, Xception, and OS = 16 (highest value in each column is in bold)

a The “Waterbody” class excluded due to no training label in Cityscapes

Training dataset Overall metric (%) Per-class IoU (%)

OA mAcc mIoU Building Sky Vegetation Road Waterbody Vehicle Terrain

ImageNet + Cityscapes 59.18 50.98a 34.14a 53.43 94.25 40.90 11.98 0.00 0.28 3.97

ImageNet + CIM-WV 97.60 91.48 76.78 97.49 98.67 85.23 70.02 89.95 47.53 48.56
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as vehicles and roads as shown in Fig. 11b. There existed 
confusion between flat terrain and sea surface as shown 
in Fig. 11a. In addition, the model trained on Cityscapes 
exhibited only half the performance in segmenting veg-
etation and buildings compared to the model trained on 
CIM-WV. This disparity can be attributed to the discrep-
ancies between CIM-generated images and real-world 
view images. For example, close-range CIM-generated 
vegetation view was incorrectly recognized as vehicles 
as shown in Fig.  11c. Close-range building facades with 

low-resolution textures were incorrectly segmented 
as vehicles, roads, and vegetation as shown in Figs.  11b 
and d. By contrast, DeepLab V3 + trained on CIM-WV 
achieved higher performance, with mIoU at 76.78% as 
shown in Table 6.

4.2.3 � Robustness of trained DeepLab V3 + models in the 
study area

Table  7 compares the performances of the best Deep-
Lab V3 + model (Backbone = Xception, OS = 8) trained 

Fig. 11  Comparison of semantic segmentation results of DeepLab V3 + trained on Cityscapes and CIM-WV. (a) Sea view, (b) building view, (c) 
greenery view, and (d) street view

Table 7  Robustness of the DeepLab V3 + model (Backbone = Xception, OS = 8) trained on CIM-WV on the test sets of Hong Kong 
Island (CIM-WV: Hong Kong), Kowloon Peninsula (CIM-WV: Kowloon), and another 60 images in the western Hong Kong Island

The highest and lowest values in each column are in bold and underlined, respectively

Training set Test set Overall metric (%) Per-class IoU (%)

OA mAcc mIoU Building Sky Vegetation Road Waterbody Vehicle Terrain

CIM-WV CIM-WV: Hong Kong 98.07 87.94 76.00 98.05 98.70 86.07 72.10 87.00 32.02 58.08
CIM-WV: Kowloon 96.87 90.90 75.78 96.43 99.06 83.64 71.16 88.59 60.30 31.30

Non CIM-WV: Another 60 images 
in the western Hong Kong Island

97.16 84.52 72.09 96.30 99.08 93.43 58.01 84.99 35.42 37.37
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on CIM-WV on the test sets of Hong Kong Island and 
Kowloon Peninsula, and another 60 diversified photore-
alistic window view images in the western Hong Kong 
Island. Overall, the model achieved similar performance 
on the test sets of Hong Kong Island and Kowloon Pen-
insula with mIoU above 75.78%. The mIoU of the trained 
model slightly dropped to 72.09% for 60 other photoreal-
istic window view images in unseen areas of Hong Kong. 
A possible reason is the fluctuated low performance of 
the model on detecting non-dominated landscape ele-
ments, e.g., roads, vehicles, and terrain. For example, 
there existed confusion between building podiums and 
roads as shown in Fig.  12b, incorrect detection of une-
venly modeled building roofs as vehicles as shown in 
Fig.  12c, and confusion between vegetation and terrain 
(see Fig. 12d) at the distant layer of the window view. By 
contrast, similar and high per-class IoUs were achieved 
for dominated landscape elements in the window view, 
i.e., building, sky, vegetation, and waterbody as shown in 
Table 7. Figure 12a shows a typical well-segmented win-
dow view image with the four landscape elements. The 
similarly high values of OAs also reflected the holisti-
cally consistent segmentation performance of the trained 

DeepLab V3 + (Backbone = Xception, OS = 8) for differ-
ent areas of Hong Kong.

Table  8 lists the performances of the best DeepLab 
V3 + model (Backbone = DRN, OS = 16) trained on the 
Hong Kong Island set only on test sets of Hong Kong Island 
and Kowloon Peninsula. The trained model achieved high 
performance in segmenting photorealistic window view 
images in Hong Kong Island with mIoU at 77.20%. By con-
trast, the performance of the model on the test set of Kow-
loon Peninsula slumped to 57.11%. There existed a similar 
performance decrease in Table 9 for the best model (Back-
bone = DRN, OS = 16) trained on the Kowloon Peninsula 
set on segmenting window view images of the Hong Kong 
Island set. The mIoU of the trained DeepLab V3 + declined 
from 73.42% to 43.17%. The significant performance dif-
ferences also reflected the diverse style representations, 
e.g., brightness, color contrast, and modeling difference of 
CIM-WV as mentioned in Sect. 3.2.1.

4.2.4 � Transferability of trained DeepLab V3 + models for 
learning multi‑source view images

Table  10 lists the performance of two DeepLab 
V3 + models trained on real-world window view images. 

Fig. 12  Semantic segmentation results of four example images in the western Hong Kong Island using the DeepLab V3 + (Backbone = Xception, 
OS = 8) trained on CIM-WV. Similar high-performance detection of (a) buildings, sky, vegetation, and waterbody, and poor segmentations of (b) 
roads, (c) vehicles, and (d) terrain
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With currently limited annotated real-world window 
view images, the finetuned model achieved a higher per-
formance (mIoU = 52.22%) than the model trained from 
scratch (mIoU = 33.97%). Specifically, buildings and sky 
were more finely detected as shown in Figs. 13a, b, and 
d. Table 10 shows a high improvement of per-class IoUs 
(≥ 22.81%) of vegetation, roads, and waterbody. Exam-
ple semantic segmentation results are shown in Figs. 13 
b, d, and c, respectively. A possible reason is the reutili-
zation of low-level representations from the DeepLab 
V3 + model trained on CIM-WV to improve the perfor-
mance comprehensively.

Similar performance improvements were also observed 
on models trained on CIM-WV and finetuned by feeding 
Google Earth CIM-generated window view images from 
New York and Singapore. With limited annotated Google 
Earth CIM-generated images, Fig.  14 shows a holisti-
cally consistent performance improvement for all seven 
landscape elements by OA, mAcc, mIoU, and per-class 
IoUs. Specifically, the performances of segmenting small-
volume landscape elements, i.e., roads were significantly 
improved (Increase of per-class IoUs ≥ 28.82%) in both 

New York and Singapore sets, as shown in Fig. 14. Roads 
were mostly detected from buildings in both  New York 
and Singapore as shown in Figs. 15a, b, and d. In addition, 
the finetuned model outperformed in detecting vehicles 
from buildings in New York as shown in Fig. 15a, and in 
detecting waterbody in Singapore, as shown in Fig. 15c.

5 � Discussion
5.1 � Significance and contribution
High-quality window views, e.g., sea view, sky view, 
and greenery view are valued by urban dwellers, espe-
cially in high-rise, high-density cities. The narrow liv-
ing space and crowded cityscapes further amplify the 
benefits of high-quality window views to human physi-
cal and mental health. Large-scale quantified window 
view indicators can bring high socio-economic values, 
e.g., supporting precise housing valuation and selection 
and prioritization of improvement of the built envi-
ronment. The correlations between quantified window 
view indicators and human perception and physical and 
mental health may further bring quantified evidence for 
reshaping the multi-level urban environment, e.g., the 

Table 8  Performances of the DeepLab V3 + model (Backbone = DRN, OS = 16) trained on the Hong Kong Island set only on the test 
set of CIM-WV

The highest value in each column is in bold

Training set Test set Overall metric (%) Per-class IoU (%)

OA mAcc mIoU Building Sky Vegetation Road Waterbody Vehicle Terrain

CIM-WV: 
Hong Kong

CIM-WV: Hong Kong 97.97 88.79 77.20 98.00 98.52 85.04 72.22 91.41 37.88 57.35
CIM-WV: Kowloon 94.88 63.87 57.11 94.06 98.80 61.79 52.86 75.25 12.57 4.41

Table 9  Performances of the DeepLab V3 + model (Backbone = DRN, OS = 16) trained on the Kowloon Peninsula set only on the test 
set of CIM-WV

The highest value in each column is in bold

Training 
set

Test set Overall metric (%) Per-class IoU (%)

OA mAcc mIoU Building Sky Vegetation Road Waterbody Vehicle Terrain

CIM-WV: 
Kowloon

CIM-WV: Kowloon 96.77 82.66 73.42 96.21 98.95 70.32 69.65 89.79 64.26 24.76
CIM-WV: Hong Kong 88.65 63.21 43.17 87.24 95.58 49.69 21.74 40.97 3.02 3.94

Table 10  Performance improvement in predicting real-world window view images using CIM-WV

The highest value in each column is in bold

Training dataset Overall metric (%) Per-class IoU (%)

OA mAcc mIoU Building Sky Vegetation Road Waterbody Vehicle Terrain

 Real-world window 
view images

 81.86  52.28  33.97  75.58  73.47  66.88  19.96  0.12  1.79  0.00

 CIM-WV + real-world 
window view images

95.15 61.87 52.22 93.66 90.34 89.69 45.41 41.97 4.47  0.00
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quantified evidence on minimum window-level nature 
exposure for decreasing the depression and crime rates.

However, traditional manual methods, e.g., onsite assess-
ment, are limited to small-scale experiments. Although 
CIM-generated window views have opened up oppor-
tunities for assessing urban-scale window views, current 
automatic methods based on deep transfer learning fail to 
accurately segment CIM-generated window view images. 
The models trained on other urban view datasets, e.g., 
street views in the real world cannot accurately assess CIM-
generated window view images of varying heights. Thus, a 
semantic segmentation dataset of rich window view con-
tents is significant for advancing an accurate pixel-level 
window view assessment.

This paper presents the first publicly accessible win-
dow view image dataset with rich semantic annotations. 
To our best knowledge, CIM-WV is the first dataset 
of CIM-generated window view images for advancing 
the urban-scale window view assessment. The CIM-
WV supplements the existing semantic segmentation 
datasets of the multi-angle urban view hub including 
satellite and street views. Experimental results con-
firmed a more accurate window view assessment using 

deep learning from CIM-WV than deep transfer learn-
ing from ground-level views. The DeepLab V3 + model 
trained on CIM-WV was robust (mIoU ≥ 72.09%) in 
Hong Kong and enhanced the semantic segmentation 
accuracy of real-world and Google Earth CIM-gener-
ated window view images in multiple cities. Last, for 
urban researchers and practitioners, our publicly acces-
sible deep learning models trained on CIM-WV enable 
novel multi-source window view-based urban applica-
tions, including precise real estate valuation, improve-
ment of built environment, and window view-related 
urban analytics.

In addition, the findings in this paper may also inspire 
researchers to study or regenerate urban views of any 
viewports from photorealistic CIMs for unlocking poten-
tial socio-economic values. Possible examples include 
quantifying window views of specific groups, such as the 
elderly and disabled, as well as revitalizing street views 
along pedestrian walkways and bicycle lanes for cyclists, 
rather than focusing solely on central lanes for cars. In 
addition, the proposed CIM-WV can also facilitate the 
projection-based 3D semantic segmentation of photore-
alistic CIM (Li et al., 2023a).

Fig. 13  Comparison of semantic segmentation results of DeepLab V3 + trained on real-world window view images and trained on CIM-WV 
and finetuned by feeding real-world view images. Improved detection of (a) buildings, (b) vegetation, (c) waterbody, (d) sky, and roads
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5.2 � Limitations and future work
This study has several limitations. First, the number, col-
lection areas, and styles of window view images of CIM-
WV are limited. Our work encourages more interest and 
annotated datasets for large-scale window view assessment 

across high-rise, high-density cities. Thereafter, the study 
lacks a quantitative judgment of the image quality of CIM-
WV against real-world view images. Clustering of CIM-
generated window views by image quality may further 
improve the semantic segmentation accuracy. Our future 

Fig. 14  Performance improvement in segmenting window view images in (a) New York and (b) Singapore by using the DeepLab 
V3 + (Backbone = Xception, OS = 8) trained on CIM-WV

Fig. 15  Comparison of example window view images segmented by DeepLab V3 + models trained on images of the local text and trained 
on CIM-WV and finetuned by feeding images of the local context, respectively. Four window view images in (a)-(b) New York and (c)-(d) Singapore
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research directions include a comparison of patterns of 
window view images across different cities, quality assess-
ment of CIM-generated urban view images for improve-
ment of segmentation accuracy, and interpretability 
analysis of deep learning models using architecture, engi-
neering, and construction knowledge (Liang & Xue, 2023).

6 � Conclusion
Urban-scale assessment of window views plays a sig-
nificant role in advancing precise housing valuation and 
selection and prioritization of improvement of the built 
environment, especially in high-rise, high-density cities. 
However, existing automatic assessment methods fail to 
precisely assess window views due to the deep transfer 
learning from the other urban views, e.g., street views. 
The absence of publicly accessible annotated photoreal-
istic window view image datasets has hindered accurate 
pixel-level semantic segmentation.

This paper presents a City Information Model-gener-
ated Window View image dataset (CIM-WV) with rich 
semantic annotations. CIM-WV comprises 2,000 window 
view images containing 1.62 billion pixels. Window view 
images of CIM-WV were collected in high-rise, high-
density urban areas of Hong Kong with seven semantic 
labels, i.e., building, sky, vegetation, road, waterbody, 
vehicle, and terrain. We provided a comprehensive evalu-
ation of CIM-WV, including a baseline of assessment 
of seven window view elements using DeepLab V3 + , a 
comparative analysis of view segmentation using CIM-
WV and Cityscapes, and robustness and transferability 
analyses of the trained DeepLab V3 + models for multi-
source window view images in different high-rise, high-
density cities. Experimental results confirmed a more 
accurate window view assessment using deep learning 
from CIM-WV than deep transfer learning from street 
views. The robust DeepLab V3 + model in Hong Kong 
enhances the semantic segmentation accuracy of real-
world and Google Earth CIM-generated window view 
images.

The proposed CIM-WV pushes the boundary of 
semantic segmentation of the multi-angle urban view 
hub beyond ground-level street views and overhead-
level satellite views. To our best knowledge, it is the first 
annotated window view image dataset generated on pho-
torealistic CIMs. We make the CIM-WV dataset and 
trained DeepLab models publicly accessible for research-
ers to advance future vertical urban view applications. 
Our future work includes examining patterns of window 
view images across cities, quality assessment of simulated 
urban view images, and interpretability analysis of deep 
learning for improvement of segmentation accuracy.

Acknowledgements
N.A.

Authors’ contributions
ML: Conceptualization, Data Collection and Processing, Methodology, Soft-
ware, Validation, Charting, Writing – Original Draft Preparation, Funding Acqui-
sition; AGOY: Supervision, Writing – Review and Editing, Funding Acquisition; 
FX: Conceptualization, Writing – Review and Editing, Funding Acquisition.

Funding
The Department of Science and Technology of Guangdong Province (GDST) 
(2020B1212030009, 2023A1515010757) and the University of Hong Kong 
(HKU) (A/C No. 203720465).
Guangdong Science and Technology Depart-
ment, 2020B1212030009, Anthony G.O. Yeh, 2023A1515010757, Fan Xue, Uni-
versity of Hong Kong, 203720465, Maosu Li

Availability of data and materials
Published in online data repository: https://​doi.​org/​10.​25442/​hku.​24647​487.

Declarations

Consent for publication
All authors have read and agreed to the submitted version of the manuscript.

Competing interests
The authors declare that they have no known competing financial interests 
or personal relationships that could have appeared to influence the work 
reported in this paper.

Received: 9 August 2023   Revised: 21 December 2023   Accepted: 30 Janu-
ary 2024

References
Alibaba. (2023). Taobao. Hangzhou: Alibaba Group. Retrieved from https://​ai.​

taobao.​com/
Azimi, S. M., Henry, C., Sommer, L., Schumann, A. & Vig, E. (2019). Skyscapes 

fine-grained semantic understanding of aerial scenes. Proceedings 
of the IEEE/CVF International Conference on Computer Vision (pp. 
7393–7403). IEEE. https://​doi.​org/​10.​1109/​ICCV.​2019.​00749

Baranzini, A., & Schaerer, C. (2011). A sight for sore eyes: Assessing the value 
of view and land use in the housing market. Journal of Housing Eco-
nomics,20(3), 191–199. https://​doi.​org/​10.​1016/j.​jhe.​2011.​06.​001

Biljecki, F., & Ito, K. (2021). Street view imagery in urban analytics and GIS: A 
review. Landscape and Urban Planning,215, 104217. https://​doi.​org/​10.​
1016/j.​landu​rbplan.​2021.​104217

Cesium GS. (2022). The Cesium Platform. Philadelphia, USA: Cesium GS, Inc. 
Retrieved from https://​cesium.​com/​platf​orm/

Chen, X., Ma, H., Wan, J., Li, B. & Xia, T. (2017). Multi-view 3d object detection 
network for autonomous driving. IEEE Conference on Computer Vision 
and Pattern Recognition (pp. 1907–1915). IEEE. https://​doi.​org/​10.​
1109/​CVPR.​2017.​691

Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F. & Adam, H. (2018). Encoder-
decoder with atrous separable convolution for semantic image segmenta-
tion. Proceedings of the European Conference on Computer Vision (ECCV) 
(pp. 801–818). Springer. https://​doi.​org/​10.​1007/​978-3-​030-​01234-2_​49

Chen, B., Tu, Y., Wu, S., Song, Y., Jin, Y., Webster, C., Xu, B., & Gong, P. (2022). 
Beyond green environments: Multi-scale difference in human exposure 
to greenspace in China. Environment International,166, 107348. https://​
doi.​org/​10.​1016/j.​envint.​2022.​107348

Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, 
R., Franke, U., Roth, S. & Schiele, B. (2016). The cityscapes dataset 
for semantic urban scene understanding. Proceedings of the IEEE 

https://doi.org/10.25442/hku.24647487
https://ai.taobao.com/
https://ai.taobao.com/
https://doi.org/10.1109/ICCV.2019.00749
https://doi.org/10.1016/j.jhe.2011.06.001
https://doi.org/10.1016/j.landurbplan.2021.104217
https://doi.org/10.1016/j.landurbplan.2021.104217
https://cesium.com/platform/
https://doi.org/10.1109/CVPR.2017.691
https://doi.org/10.1109/CVPR.2017.691
https://doi.org/10.1007/978-3-030-01234-2_49
https://doi.org/10.1016/j.envint.2022.107348
https://doi.org/10.1016/j.envint.2022.107348


Page 19 of 19Li et al. Urban Informatics            (2024) 3:12 	

Conference on Computer Vision and Pattern Recognition (pp. 
3213–3223). IEEE. https://​doi.​org/​10.​1109/​CVPR.​2016.​350

Demir, I., Koperski, K., Lindenbaum, D., Pang, G., Huang, J., Basu, S., Hughes, 
F., Tuia, D. & Raskar, R. (2018). Deepglobe 2018: A challenge to parse the 
earth through satellite images. Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition Workshops (pp. 172–181). 
IEEE. https://​doi.​org/​10.​1109/​CVPRW.​2018.​00031

Deng, J., Dong, W., Socher, R., Li, L. J., Li, K. & Li, F.-F. (2009). Imagenet: A 
large-scale hierarchical image database. IEEE Conference on Computer 
Vision and Pattern Recognition (pp. 248–255). IEEE. https://​doi.​org/​10.​
1109/​CVPR.​2009.​52068​48

Fisher-Gewirtzman, D. (2018). Integrating ‘weighted views’ to quantitative 
3D visibility analysis as a predictive tool for perception of space. Envi-
ronment and Planning b: Urban Analytics and City Science,45(2), 345–366. 
https://​doi.​org/​10.​1177/​02658​13516​676486

He, D., Miao, J., Lu, Y. S., & Liu, Y. (2022). Urban greenery mitigates the nega-
tive effect of urban density on older adults’ life satisfaction: Evidence 
from Shanghai. China. Cities,124, 103607. https://​doi.​org/​10.​1016/j.​
cities.​2022.​103607

Helbich, M., Yao, Y., Liu, Y., Zhang, J., Liu, P., & Wang, R. (2019). Using deep 
learning to examine street view green and blue spaces and their 
associations with geriatric depression in Beijing, China. Environment 
International,126, 107–111. https://​doi.​org/​10.​1016/j.​envint.​2019.​02.​013

HKCEDD. (2019). Role of Reclamation in Hong Kong Development. Hong 
Kong: Civil Engineering and Development Department, Government 
of Hong Kong SAR. Retrieved from https://​www.​cedd.​gov.​hk/​filem​
anager/​eng/​conte​nt_​954/​Info_​Sheet3.​pdf

HKLandsD. (2014). iB1000 Digital Topographic Map. Lands Department, 
Government of Hong Kong SAR.

HKPlanD. (2018). Hong Kong Planning Standards and Guidelines. Hong 
Kong: Planning department, Hong Kong SAR. https://​www.​pland.​gov.​
hk/​pland_​en/​tech_​doc/​hkpsg/​full/​pdf/​ch2.​pdf

HKPlanD. (2019b). 3D Photo-realistic Model Data Specification. Hong Kong: 
Planning Department, Government of Hong Kong SAR. Retrieved 
from https://​www.​pland.​gov.​hk/​pland_​en/​info_​serv/​3D_​models/​3D_​
Photo_​reali​stic_​Model_​Speci​ficat​ion.​pdf

HKPlanD. (2019a). 3D Photo-realistic Model. Hong Kong: Planning Depart-
ment, Government of Hong Kong SAR. Retrieved from https://​www.​
pland.​gov.​hk/​pland_​en/​info_​serv/​3D_​models/​downl​oad.​htm

HKTPB. (2010). Guidelines on submission of visual impact assessment for 
planning applications to the Town Planning Board. Hong Kong: Town 
Planning Board. https://​www.​info.​gov.​hk/​tpb/​en/​forms/​Guide​lines/​
TPB_​PG_​41.​pdf

Jim, C. Y., & Chen, W. Y. (2009). Value of scenic views: Hedonic assessment of 
private housing in Hong Kong. Landscape and Urban Planning,91(4), 
226–234. https://​doi.​org/​10.​1016/j.​landu​rbplan.​2009.​01.​009

Kuo, F. E., & Sullivan, W. C. (2001). Environment and crime in the inner city: 
Does vegetation reduce crime? Environment and Behavior,33(3), 343–367. 
https://​doi.​org/​10.​1177/​00139​16501​333002

Laovisutthichai, V., Li, M., Xue, F., Lu, W., Tam, K. & Yeh, A. G. (2021). CIM-enabled 
quantitative view assessment in architectural design and space planning. 
38th International Symposium on Automation and Robotics in Construc-
tion (ISARC 2021). Dubai. https://​doi.​org/​10.​22260/​ISARC​2021/​0011

Li, M., Xue, F., Yeh, A. G. & Lu, W. (2021). Classification of photo-realistic 3D win-
dow views in a high-density city: The case of Hong Kong. Proceedings 
of the 25th International Symposium on Advancement of Construction 
Management and Real Estate (pp. 1339–1350). Wuhan: Springer, Singa-
pore. doi:https://​doi.​org/​10.​1007/​978-​981-​16-​3587-8_​91

Li, M., Xue, F. & Yeh, A. G. (2023c). Efficient Assessment of Window Views in 
High-Rise, High-Density Urban Areas Using 3D Color City Information 
Models. Proceedings of the 18th International Conference on Computa-
tional Urban Planning and Urban Management (pp. 1-11). Montreal: OSF. 

Li, M., Wu, Y., Yeh, A. G. & Xue, F. (2023a). HRHD-HK: A benchmark dataset of 
high-rise and high-density urban scenes for 3D semantic segmentation 
of photogrammetric point clouds. 2023 IEEE International Conference on 
Image Processing (pp. 1–5). IEEE, in press. https://​doi.​org/​10.​48550/​arXiv.​
2307.​07976

Li, M., Xue, F., Wu, Y., & Yeh, A. G. (2022). A room with a view: Automated 
assessment of window views for high-rise high-density areas using City 
Information Models and transfer deep learning. Landscape and Urban 
Planning,226, 104505. https://​doi.​org/​10.​1016/j.​landu​rbplan.​2022.​104505

Li, M., Xue, F., & Yeh, A. G. (2023b). Bi-objective analytics of 3D visual-physical 
nature exposures in high-rise high-density cities for landscape and urban 
planning. Landscape and Urban Planning,233, 104714. https://​doi.​org/​10.​
1016/j.​landu​rbplan.​2023.​104714

Li, W., & Samuelson, H. (2020). A new method for visualizing and evaluating 
views in architectural design. Developments in the Built Environment,1, 
100005. https://​doi.​org/​10.​1016/j.​dibe.​2020.​100005

Liang, D., & Xue, F. (2023). Integrating automated machine learning and 
interpretability analysis in architecture, engineering and construction 
industry: A case of identifying failure modes of reinforced concrete shear 
walls. Computers in Industry,147, 103883. https://​doi.​org/​10.​1016/j.​compi​
nd.​2023.​103883

Liao, C., Hu, H., Yuan, X., Li, H., Liu, C., Liu, C., Fu, G., Ding, Y., & Zhu, Q. (2023). 
BCE-Net: Reliable building footprints change extraction based on histori-
cal map and up-to-date images using contrastive learning. ISPRS Journal 
of Photogrammetry and Remote Sensing,201, 138–152. https://​doi.​org/​10.​
1016/j.​isprs​jprs.​2023.​05.​011

Ros, G., Sellart, L., Materzynska, J., Vazquez, D. & Lopez, A. M. (2016). The synthia 
dataset: A large collection of synthetic images for semantic segmentation 
of urban scenes. 2016 IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR) (pp. 3234–3243). Las Vegas: IEEE. https://​doi.​org/​10.​
1109/​CVPR.​2016.​352

Shi, W., Batty, M., Goodchild, M., & Li, Q. (2022a). The digital transformation of cities. 
Urban Informatics,1(1), 1. https://​doi.​org/​10.​1007/​s44212-​022-​00005-1

Shi, W., Goodchild, M., Batty, M., Li, Q., Liu, X., & Zhang, A. (2022b). Prospective 
for Urban Informatics. Urban Informatics,1(1), 2. https://​doi.​org/​10.​1007/​
s44212-​022-​00006-0

Stamps, A. E., III. (2005). Enclosure and safety in urbanscapes. Environment and 
Behavior,37(1), 102–133. https://​doi.​org/​10.​1177/​00139​16504​266806

Ulrich, R. S. (1984). View through a window may influence recovery from surgery. 
Science,224(4647), 420–421. https://​doi.​org/​10.​1126/​scien​ce.​61434​02

Wang, J., Zheng, Z., Ma, A., Lu, X. & Zhong, Y. (2021). LoveDA: A Remote Sensing 
Land-Cover Dataset for Domain Adaptive Semantic Segmentation. Pro-
ceedings of the Neural Information Processing Systems Track on Datasets 
and Benchmarks (pp. 1-12). Virtual: Curran Associates, Inc. https://​doi.​org/​
10.​5281/​zenodo.​57065​78

Wang, J., Ma, A., Zhong, Y., Zheng, Z., & Zhang, L. (2022). Cross-sensor domain 
adaptation for high spatial resolution urban land-cover mapping: From 
airborne to spaceborne imagery. Remote Sensing of Environment,277, 
113058. https://​doi.​org/​10.​1016/j.​rse.​2022.​113058

Xue, F., Li, X., Lu, W., Webster, C. J., Chen, Z., & Lin, L. (2021). Big data-driven 
pedestrian analytics: Unsupervised clustering and relational query based 
on Tencent Street View photographs. ISPRS International Journal of Geo-
Information,10(8), 561. https://​doi.​org/​10.​3390/​ijgi1​00805​61

Yang, L., Ao, Y., Ke, J., Lu, Y., & Liang, Y. (2021). To walk or not to walk? Examin-
ing non-linear effects of streetscape greenery on walking propensity of 
older adults. Journal of Transport Geography,94, 103099. https://​doi.​org/​10.​
1016/j.​jtran​geo.​2021.​103099

Yu, F., Chen, H., Wang, X., Xian, W., Chen, Y., Liu, F., Madhavan, V. & Darrell, T. 
(2020). Bdd100k: A diverse driving dataset for heterogeneous multitask 
learning. Proceedings of the IEEE/CVF Conference on Computer Vision 
and Pattern Recognition (pp. 2636–2645). Seattle: IEEE. https://​doi.​org/​10.​
1109/​CVPR4​2600.​2020.​00271

Zhou, L., Zhang, C. & Wu, M. (2018). D-LinkNet: LinkNet with pretrained 
encoder and dilated convolution for high resolution satellite imagery 
road extraction. Proceedings of the IEEE Conference on Computer Vision 
and Pattern Recognition Workshops (pp. 182–186). Salt Lake City: IEEE. 
https://​doi.​org/​10.​1109/​CVPRW.​2018.​00034

Zhou, Q., & Xue, F. (2023). Pushing the boundaries of Modular-integrated Construc-
tion: A symmetric skeleton grammar-based multi-objective optimization of 
passive design for energy savings and daylight autonomy. Energy and Build-
ings,296, 113417. https://​doi.​org/​10.​1016/j.​enbui​ld.​2023.​113417

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1109/CVPR.2016.350
https://doi.org/10.1109/CVPRW.2018.00031
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1177/0265813516676486
https://doi.org/10.1016/j.cities.2022.103607
https://doi.org/10.1016/j.cities.2022.103607
https://doi.org/10.1016/j.envint.2019.02.013
https://www.cedd.gov.hk/filemanager/eng/content_954/Info_Sheet3.pdf
https://www.cedd.gov.hk/filemanager/eng/content_954/Info_Sheet3.pdf
https://www.pland.gov.hk/pland_en/tech_doc/hkpsg/full/pdf/ch2.pdf
https://www.pland.gov.hk/pland_en/tech_doc/hkpsg/full/pdf/ch2.pdf
https://www.pland.gov.hk/pland_en/info_serv/3D_models/3D_Photo_realistic_Model_Specification.pdf
https://www.pland.gov.hk/pland_en/info_serv/3D_models/3D_Photo_realistic_Model_Specification.pdf
https://www.pland.gov.hk/pland_en/info_serv/3D_models/download.htm
https://www.pland.gov.hk/pland_en/info_serv/3D_models/download.htm
https://www.info.gov.hk/tpb/en/forms/Guidelines/TPB_PG_41.pdf
https://www.info.gov.hk/tpb/en/forms/Guidelines/TPB_PG_41.pdf
https://doi.org/10.1016/j.landurbplan.2009.01.009
https://doi.org/10.1177/0013916501333002
https://doi.org/10.22260/ISARC2021/0011
https://doi.org/10.1007/978-981-16-3587-8_91
https://doi.org/10.48550/arXiv.2307.07976
https://doi.org/10.48550/arXiv.2307.07976
https://doi.org/10.1016/j.landurbplan.2022.104505
https://doi.org/10.1016/j.landurbplan.2023.104714
https://doi.org/10.1016/j.landurbplan.2023.104714
https://doi.org/10.1016/j.dibe.2020.100005
https://doi.org/10.1016/j.compind.2023.103883
https://doi.org/10.1016/j.compind.2023.103883
https://doi.org/10.1016/j.isprsjprs.2023.05.011
https://doi.org/10.1016/j.isprsjprs.2023.05.011
https://doi.org/10.1109/CVPR.2016.352
https://doi.org/10.1109/CVPR.2016.352
https://doi.org/10.1007/s44212-022-00005-1
https://doi.org/10.1007/s44212-022-00006-0
https://doi.org/10.1007/s44212-022-00006-0
https://doi.org/10.1177/0013916504266806
https://doi.org/10.1126/science.6143402
https://doi.org/10.5281/zenodo.5706578
https://doi.org/10.5281/zenodo.5706578
https://doi.org/10.1016/j.rse.2022.113058
https://doi.org/10.3390/ijgi10080561
https://doi.org/10.1016/j.jtrangeo.2021.103099
https://doi.org/10.1016/j.jtrangeo.2021.103099
https://doi.org/10.1109/CVPR42600.2020.00271
https://doi.org/10.1109/CVPR42600.2020.00271
https://doi.org/10.1109/CVPRW.2018.00034
https://doi.org/10.1016/j.enbuild.2023.113417

	CIM-WV: A 2D semantic segmentation dataset of rich window view contents in high-rise, high-density Hong Kong based on photorealistic city information models
	Abstract 
	1 Introduction
	2 Related work
	2.1 Semantic segmentation datasets of urban views
	2.2 Current automatic assessment of window view

	3 The presented window view dataset
	3.1 Dataset specification
	3.1.1 Overview of CIM-WV
	3.1.2 Creation process of CIM-WV

	3.2 The characteristics of CIM-WV
	3.2.1 CIM-generated window view images
	3.2.2 Representation of the multi-level urban environment

	3.3 Evaluation of CIM-WV

	4 Experimental tests
	4.1 Experimental settings
	4.2 Results
	4.2.1 Baseline of CIM-WV via DeepLab V3 + 
	4.2.2 Comparative analysis of photorealistic window view segmentation using CIM-WV and Cityscapes
	4.2.3 Robustness of trained DeepLab V3 + models in the study area
	4.2.4 Transferability of trained DeepLab V3 + models for learning multi-source view images


	5 Discussion
	5.1 Significance and contribution
	5.2 Limitations and future work

	6 Conclusion
	Acknowledgements
	References


