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Abstract 
A distant view through a window is preferred by urban dwellers due to its benefits to human health 
and well-being. A high window view distance is also valued in real estate markets, especially in high-
rise, high-density urban areas. Thus, an urban-scale assessment of window view distance is significant 
in examining the disparity of sharing of view openness for applications and analytics in urban health, 
planning and design, and housing. However, current limited assessment methods are neither accurate 
nor efficient. The evolving photorealistic City Information Models (CIMs) and 3D Computer Vision 10 
(CV) enable a new solution due to the high-resolution and efficient semantic representation of urban 
landscapes. This study aims to present a window view distance index (WVDI) together with an 
accurate and efficient assessment method using up-to-date 3D CIMs and CV. First, we define the 
WVDI on a CIM-generated window view image considering the visual permeability of greenery. 
Then, an automatic assessment of WVDIs is designed on a type-depth window view using 3D 
semantic segmentation and OpenGL rendering. Experimental tests in Hong Kong Island and Kowloon 
Peninsula of Hong Kong confirmed that our method was i) accurate for both non-greenery views 
(RMSD ≤ 0.0002) and greenery views (RMSD ≤ 0.1781) and ii) improved the efficiency of the 
traditional visibility analysis-based method by 99.96%. The proposed approach can support multiple 
urban applications, e.g., prioritized improvement of visual urban density, overall optimization of 20 
window view distance for architectural and urban design, and precise housing valuation and 
transaction. 
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1 Introduction 
A distant view through a window is preferred by urban dwellers (Kent & Schiavon 2020; Lin et al. 

2022), especially in high-rise, high-density cities, e.g., Hong Kong (Fisher-Gewirtzman 2018; Wang 

& Munakata 2024). The high window view distance and openness benefit urban dwellers’ health and 

well-being through stress relief, living satisfaction, and productivity improvement (Chung et al. 2019; 30 

van Esch et al. 2019; Luo & Jiang 2022). Another benefit is providing urban dwellers with an 

increased sense of privacy in the crowded urban environment (Fisher-Gewirtzman 2018; Ko et al. 

2022). In this study, “window view distance” refers to the average distance between the window 

center and all the visible landscape objects outside (see Figure 1e). In the post-Covid-19 era, the 

benefits of distant views through windows become prominent due to long-term staying at home and 

workplaces (McPhail et al. 2024). By contrast, narrow rooms without windows or with close-range 

views of building facades can lead to the occupants’ mental disorders, stress, and depression (Ulrich 

1984; Chung et al. 2019). Thus, an urban-scale assessment of window view distance is significant in 

examining the disparity of sharing of view openness, particularly for healthy high-rise, high-density 

urban development. 40 

Urban-scale assessment of window view distance enables multiple urban applications and analytics. 

First, window view distances represent visual urban density that urban dwellers experience long-term 

from their residences and offices (Fisher-Gewirtzman 2018; Li et al. 2024). The disparity of assessed 

window view distances can help urban planners identify the buildings and blocks with high local 

urban density for prioritized improvement (Masoudinejad & Hartig 2020). The assessed window view 

distance can support generative architectural and urban design to achieve maximized sharing of 

window view openness (Laovisutthichai et al. 2021; Kim et al. 2022; Wang et al. 2024; 2025). 

Additionally, the quantified window view distance can support both property agents’ precise housing 

valuation and the purchasers’ and renters’ housing selection. Last, the assessed window view distance 

can be correlated with urban mental health issues, e.g., stress and depression (van Esch et al. 2019; 50 

Masoudinejad & Hartig 2020) for advancing environmental justice and urban sustainability. 

Researchers have assessed urban view distance through visibility analysis. For instance, the openness 

of natural and urban open spaces was examined for urban management (Tong et al. 2020; Zhu et al. 

2024), while the distances between window sites and visible landscape outside were assessed for 

urban and architectural design (Fisher-Gewirtzman 2018; Kim et al. 2022). However, current limited 

assessments of window view distance are neither accurate nor efficient. First, high-resolution 3D 

CIMs, e.g., photorealistic CIMs and point clouds, are scarcely utilized for an accurate assessment due 



to high time-cost processing (Inglis et al. 2022; Li et al. 2024). Thereafter, landscape elements are all 

modeled as solid surfaces, although certain elements, e.g., greenery, are porous and visually 

permeable in nature (Bartie et al. 2011; Ruzickova et al. 2021). The inaccuracies and inefficiencies of 60 

current methods are magnified, especially in densely developed urban areas due to the complex 3D 

landscapes. Thus, the research question of the study is: 

“Regarding the visual permeability of landscape elements, how to efficiently and accurately 

assess window view distance using up-to-date photorealistic CIMs for urban applications?” 

This study introduces a window view distance index (WVDI) together with an accurate and efficient 

assessment method using photorealistic CIMs and 3D computer vision. A 3D visualization of WVDI 

based on Building Information Models (BIMs) is presented for applications in urban planning and 

design and real estate marketing. 

The main contribution of this study is twofold. 

i. Theoretically, a novel WVDI is defined on a photorealistic CIM-generated window view 70 

image regarding the visual permeability modeling of greenery. The defined WVDI challenges 

and extends the traditional assessment results of window view distances on both 

oversimplified and solid surface models. 

ii. The proposed method conducted on the 3D CIM-generated type-depth window views is 

automatic and efficient in assessing window view distances at the urban scale. The 

assessment results are accurate for planners, designers, and government policymakers in 

urban planning and design, as well as housing purchasers, renters, and property agencies in 

the real estate market. 

We present the remainder of this study as follows. The literature is reviewed in Section 2. Section 3 

presents the definition of WVDI, the automatic assessment of WVDI, and a 3D BIM-based 80 

visualization of WVDI. Experimental tests were conducted in Section 4. Sections 5 and 6 present the 

discussion and conclusion, respectively. 

2 Literature review 

2.1 Roles of distant views’ benefits and impacts for automatic assessment 
Researchers in psychology, built environment, and urban studies have examined the benefits of distant 

views on human health and well-being. Compared to close-range views, distant views through 

windows provide urban dwellers with high-level openness and spaciousness (Stamps III 2011; Yao et 

al. 2024). Recognized benefits of distant views include visual fatigue relief and post-surgical recovery 

for physical health (Ulrich 1984; Kent & Schiavon 2020; Lin et al. 2022) as well as stress and 

depression relief for mental health (Masoudinejad & Hartig 2020; Luo & Jiang 2022). The benefits of 90 



distant window views for human health and well-being underscore the value of quantification of 

window view distance. 

The impacts of distant views through windows are found in real estate marketing and urban planning 

and design. For instance, by comparing flats online or in-person, housing purchasers and renters are 

willing to pay a premium for openness provided by sky and sea views (Huang 2019; Masoudinejad & 

Hartig 2020; Ling 2022). As a result, property agents often manually identify flats with high window 

view openness in the property market for extra profits (Yamagata et al. 2016). Additionally, a 

satisfactory window view distance has been recommended for architectural design in Europe (CEN 

2018) and the US (IWBI 2020). Window view openness is optimized by architects via improving the 

building envelope and room layouts (Kim et al. 2022; Ko et al. 2022). Visual densities in city blocks 100 

regarding window view distances have been tried to be improved by urban planners and designers 

(Fisher-Gewirtzman 2018). The impacts of window view distances in housing, urban planning, and 

design practices enhance the need for automatic assessment. 

2.2 Current assessment of window view distance 
Current assessment of window view distance is limited, inaccurate, and inefficient. Researchers in 

psychology, built environment, and architectural design manually measured window view distances 

through onsite experiments or 2D maps (Stamps III 2011; Kent & Schiavon 2020). The high labor 

cost is unscalable to the urban scale. Additionally, the amount of sky view seen from the window is 

considered a proxy for view openness (Masoudinejad & Hartig 2020; Li et al. 2022). However, only 

the composition of view types cannot identify the slight difference in view distance. Examples are 110 

window views with the same proportion of sky but varied landscape distances. 

In the fields of Geographic Information Science (GIS) and urban planning, traditional visibility 

analysis such as viewshed and isovist enabled the measurement of window view distance at the urban 

scale (Fisher-Gewirtzman 2018). However, the large-scale assessment methods for window view 

distances are limited and prone to errors regardless of the efficiency. First, current assessments often 

fail to represent the real urban landscape using oversimplified 2.5/3D models (Mistick et al. 2023; Li 

et al. 2023b). For instance, blended objects, e.g., constructions and greenery in the real urban 

landscape, are often modeled by discrete cubic buildings, identical fake trees, and 2.5D Digital 

Terrain Models (DTMs) (Inglis et al. 2022; Qi et al. 2022). On the contrary, high-resolution 3D CIMs 

are less utilized due to high time-cost processing (Inglis et al. 2022; Li et al. 2024). Thereafter, all 120 

landscape elements are consistently modeled using solid surfaces, overlooking the visual permeability 

of certain landscape elements, e.g., porous foliage of greenery (Bartie et al. 2011; Ruzickova et al. 

2021). For instance, porous tree foliage, when modeled as a solid green wall, can completely obstruct 

the sightlines from nearby windows, resulting in negligible errors in view distance (Fisher-

Gewirtzman 2018). 



2.3 Visual permeability modeling of greenery and semantic representation of CIMs 
Visual permeability modeling of greenery has been developed for visibility analysis in GIS and 

landscape management. Researchers argue greenery modeled as solid 2.5D triangle meshes or 3D 

convex hulls is unrealistic and prone to errors (Llobera 2007; Zong et al. 2021; Mistick et al. 2023). 

To estimate the visual permeability of greenery, the classic Beer-Lambert’s Attenuation Law 130 

(Swinehart 1962) in physics was introduced by Llobera (2007). Greenery, e.g., trees, was structured 

as a set of thin and porous slices. The potential extra view distance depends on the thickness and 

porosity of the slices. Llobera’s (2007) formula based on Beer-Lambert’s Attenuation Law (Swinehart 

1962) has been used in the permeability modeling in landscape management and ecological research 

(Bartie et al. 2011; Murgoitio et al. 2013; Ruzickova et al. 2021) 

Evolving 3D urban visual intelligence (Zhang et al. 2024), e.g., semantic representation techniques, 

enable accurate and efficient assessment of window view distance. First, 3D photorealistic CIMs can 

generate high-resolution window views similar to those captured in the real world (Li et al. 2021; 

2022). 3D semantic segmentation of photorealistic CIMs can automatically identify city objects, e.g., 

ground, building, and greenery (Li et al. 2023a), for urban studies, e.g., landscape view assessment 140 

(Qi et al. 2022; Li et al. 2023b), urban infrastructure digitalization (Meng et al. 2025), and 

construction safety (Liang et al. 2024). Last, OpenGL rendering in 3D computer graphics enables both 

efficient and semantic-enriched visualization of 3D photorealistic CIMs (Li et al. 2023b). 

In summary, an accurate and efficient assessment of window view distance is significant for urban 

applications, yet it is lacking in current studies. Two observed issues are the high processing cost of 

high-resolution 3D CIMs and consistent solid landscape surface modeling regardless of the visual 

permeability of greenery. Meanwhile, the up-to-date photorealistic CIMs, 3D semantic segmentation, 

and OpenGL rendering open up new opportunities for an automatic, accurate, and efficient assessment 

of window view distance. 

This study aims to present a window view distance index (WVDI) together with an accurate and 150 

efficient assessment method. We model the visual permeability of greenery on a photorealistic CIM in 

defined WVDI. Leveraging 3D semantic segmentation and OpenGL rendering of CIM, the accuracy 

and efficiency of the automatic assessment are improved through a type-depth window view 

integration.  

3 Research methods 
Figure 1 shows the research framework of the proposed WVDI together with the automatic 

assessment method. The inputs comprise 3D photorealistic CIMs, BIMs, DTM, and density 

parameters of greenery (see Figure 1a). The proposed assessment method comprises two parts: i) 

definition of WVDI on a photorealistic CIM-generated window view image regarding visual 

permeability of greenery (see Figure 1b), and ii) automatic computation of WVDI using 3D semantic 160 



segmentation and OpenGL rendering. Specifically, the automatic computation method comprises 

three steps: i) landscape type estimation of photorealistic CIMs using 3D semantic segmentation (see 

Figure 1c), ii) type-depth landscape scene rendering through OpenGL shading (see Figure 1d), and iii) 

batch generation and quantification of window views for WVDIs (see Figure 1e). Last, BIM-based 

visualization of WVDIs (see Figure 1f) is presented for urban applications such as local urban density 

improvement and informed housing valuation and transaction. The final output is a set of visualized 

WVDIs coded with geolocations of window sites. 

 

Figure 1. Research framework. (a) Input, (b) definition of WVDI, (c)-(e) a three-step automatic 

assessment method, and (f) visualized WVDIs on BIMs. 170 

3.1 Definition of window view distance index (WVDI) 
WVDI in this study is defined on a simulated window view image generated on the photorealistic 

CIMs. The example window view image (see Figure 2a), generated from the window center, presents 

the landscape scene that a normal adult mainly sees when looking out horizontally. Regarding the 

visual permeability of greenery (see Figure 2b), WVDI is the average pixel-level depth of the CIM-

generated window view image using Equation (Eq.) 1. 

WVDI = Σi = 1, 2, … n Di  ∕ n, (1) 

Di=�
di

s+wi(di
m)×di 

p+(1-wi(di
m))×� x×wi(x)

di
m

0
dx, if c(i) = greenery, e.g., tree, shrub, grass,

di
s, if c(i) = other landscape elements and sky,

 (2) 

where Di is the depth of the view elements on pixel i of the window view image. n is the total number 

of image pixels. c is the class of the window view elements, e.g., the tree, shrub, grass, other 

landscape elements, and sky. di
s and di

p are view depths corresponding to surface and penetration, 

respectively, as shown in Figure 2c, whereas di
m is the depth of the greenery alongside the sightline. 180 

wi (di
m) and 1 − wi (di

m) represent the probabilities of the sightline penetrating or being absorbed 



within the greenery, respectively. Since sightline may stop within greenery at a random value of 

transmission length x (0 ≤ x ≤ di
m), we apply the integral function, ∫ x×wi(x)dxdi

m

0 , to calculate the 

expectation value of view depth for the absorption. Note that the usage of penetration and absorption 

in Eq. 2 depends on the percentage of greenery window views in the assessment area. For example, 

there existed accuracy improvement in assessing greenery window views and particularly close-range 

(≤ 30 m) greenery views, which accounted for 83.57 % and 18.27 % of the total samples in the study 

area, respectively (see Section 4). For other landscape elements and sky, only di
s is calculated. 

Particularly, di
s for the sky can be a fixed depth parameter, i.e., α, set by researchers and practitioners.  

 190 

Figure 2. Comparison of (a) CIM-generated and (b) real-world window views, and (c) three typical 

sightlines from the window to the greenery. 

According to the literature review in Section 2.3, Llobera’s (2007) formula based on Beer-Lambert’s 

Attenuation Law (Swinehart 1962) is applied in Eq. 3 to estimate the sightline’s penetration 

probability w(dm), 

wi(x) = �
(1 - fc(i))

x, c(i) = greenery, e.g., tree, shrub, grass, 0 ≤ fc(i) ≤ 1,
0, c(i) = non-greenery, e.g.,  other landscape elements and sky, 

 (3) 

where fc is the average density of a certain type of greenery as one of the four inputs (see Figure 1). 

3.2 Automatic computation of WVDI using 3D colored City Information Models 

3.2.1 Landscape type estimation of photorealistic CIMs using 3D semantic segmentation 
Computation of WVDI requires both the type c and depth d of each pixel of the CIM-generated 

window view image according to Eq. 1 to 3. Thus, we estimate the landscape type c of photorealistic 200 

CIMs through a three-step workflow. First, landscape type c of photorealistic CIMs was estimated 

from the sampled point clouds. Making full use of publicly available deep learning methods and 

training datasets of point clouds, we segment the sampled point clouds (see Figure 3a) into two 

categories: greenery and non-greenery (see Figure 3b). The most high-performance 3D semantic 

segmentation method validated in Section 4.3.1, namely, StratifiedTransformer (Lai et al. 2022) is 

applied for greenery detection. Example subtypes of greenery, i.e., grass, shrubs, and trees are then 

differentiated by their heights. The greenery height h is represented as the elevation difference 

between the greenery surface and the terrain or building roof where it is located. Eq. 4 shows the A-



priori rules, where the thresholds β and γ are set as 0.9 m and 4 m according to the sensitivity 

analytical result in Section 4.3.2. Example segmented point clouds are shown in Figure 3c. 210 

c = �
tree, γ ≤ h

shrub, β ≤ h < γ
grass, 0 ≤ h < β.

 (4) 

 

Secondly, we remove the textures of the photorealistic CIM (see Figures 3d and e). The textureless 

CIM is for both segmentation result loading and the landscape scene rendering in Section 3.2.2. Last, 

the segmented point clouds are registered to the textureless CIM to estimate the landscape type of 

each triangular face. The output is CIM colored by estimated landscape types (see Figure 3f). 

 

Figure 3. Workflow of landscape type estimation. (a) Photorealistic CIM as input, (b) greenery 

detection of (c) sampled point clouds using 3D semantic segmentation, (d)-(e) texture removal of 

photorealistic CIMs, and (f) CIM geo-registered with estimated landscape types. 

3.2.2 Type-depth scene rendering through OpenGL shading 220 

By collecting depth d, we integrate the estimated landscape type c and view depth d on a 3D scene 

using OpenGL shading. First, the 3D textureless CIMs (see Figure 4a) are loaded on the digital terrain 

of a 3D geo-visualization platform, e.g., Cesium. Figure 4b shows the estimated landscape type c of 

the CIM from Section 3.2.1 and the pixel-level depth d collected from the depth buffer test of the 

OpenGL rendering pipeline. Then, the OpenGL fragment shader is set for a colored scene that depicts 

landscape type c and view depth d simultaneously. Specifically, the R value of the scene represents 

estimated landscape type c (see Figure 4b). The R value ranges between 0 and 255, representing at 

most 256 types of landscape elements. To explicitly visualize the different types of landscape, we set 

R values to 0, 80, 160, 240, and 255 to represent trees, shrubs, grass, other landscapes, and sky, 

respectively, as shown in Figure 4c. Meanwhile, we regard the G and B values of the scene as tens 230 

and ones place of the 256-base number to represent the view depth d.  The 256-base number ranges 

between 0 and 65,535, which can represent varied view depth ranges with different accuracy. For 

example, setting the maximum view depth at 65,535 m corresponds to 1-m accuracy, whereas setting 



the maximum view depth at 6,554 m corresponds to an accuracy of 0.1 m. At the accuracy of 0.1 m, 

Figure 4c shows a type-depth scene by dynamically rendering values of R, G, and B for each pixel. 

Particularly, we represent ds on the 3D scene without extra settings (see Figure 4d), and represent ds + 

dm and ds + dp on the 3D scene by inversing the normal of triangular faces of greenery and setting 

their visibility off, respectively (see Figures 4e and f). 

 

Figure 4. Pipeline of type-depth scene rendering through OpenGL shading. (a) Textureless CIM, (b) 240 

customized shading of CIM, and (c)-(f) rendered type-depth scenes representing depths ds, dm, and dp. 

3.2.3 Batch generation and quantification of window views for WVDIs 
Last, the type-depth window views are generated from the rendered type-depth scene for computing 

WVDIs. Specifically, we set the parameters of the virtual camera function of a 3D geo-visualization 

platform, e.g., Cesium, to capture the window view (see Figure 5b). The 3D coordinates, e.g., lon, lat, 

and elevation, of the window center from BIMs (see Figure 5a) are used to place the virtual camera, 

while rotation parameters, i.e., heading, pitch, and roll, of the virtual camera are adjusted to align with 

the window orientation. The field of view, e.g., 60 degrees, and the image aspect ratio of the virtual 

camera, e.g., 1:1, are set to capture the landscape elements that a normal adult mainly sees from the 

window center. Note that researchers and practitioners can adjust the virtual camera’s parameters, 250 

e.g., 3D coordinates, rotation, field of view, and image aspect ratio, which change WVDI values, to 

capture their desired views of windows with varying sizes and height-width ratios. By repetitively 

placing the virtual camera at each window center in the rendered type-depth scene (see Figure 5d), 

type-depth window views are automatically generated (see Figure 5e). Last, landscape type c and 

view depth d are decoded from the R, G, and B values of the window view image to compute WVDI 

(see Figure 5f) using Eq. 5, 6, and 1. 



c(i) =

⎩
⎪
⎨

⎪
⎧

tree, if Ri = 0,
shrub, if Ri = 80,
grass,

others,
sky,

if Ri = 160,
if Ri = 240,
if Ri = 255,

 (5) 

di = (Gi × 256 + Bi) ∕ 10 if c(i) ∈ {tree, shrub, grass, other landscape elements} else α, (6) 

where α is the depth parameter of the sky set by researchers and practitioners for computing WVDIs. 

 

Figure 5. Batch generation of type-depth window views for WVDIs. (a) BIMs as input, (b) parameter 

setting of the virtual camera function, (c)-(d) texture and type-depth scenes, and (e)-(f) generated 260 

type-depth views and WVDIs.  

3.3 BIM-based 3D visualization of WVDI 
We visualize WVDIs on geo-registered BIMs (see Figure 6a) for urban applications, e.g., local urban 

density improvement and housing valuation and transaction. First, windows and other components of 

BIMs are separated (see Figures 6b and d). Then, we color the vertexes of window polygons using 

WVDIs (see Figure 6c). We use the maximum and minimum WVDIs of the buildings in the study 

area to determine the range of the color bar. By contrast, the color of other components is unified to 

serve as the background (see Figure 6e). Last, we re-integrate colored windows and other background 

components to construct a 3D map of WVDIs (see Figure 6f). The dark blue indicates a high WVDI, 

whereas the light blue represents a low view distance of the window. 270 



 

Figure 6. Visualization of WVDIs based on BIMs. (a) BIMs as input, (b)-(c) extracted windows 

colored by WVDIs, (d)-(e) other components colored as background, and (f) visualized result. 

4 Experimental tests 

4.1 Experimental area and settings 
We chose high-rise, high-density urban areas in Hong Kong Island and Kowloon Peninsula of Hong 

Kong, as the study area (see Figure 7a). The average building height reaches 23.92 m, whereas the site 

coverage of the study area is 0.8 (HKPlanD 2018). With the compact urban settings, the greenery 

blends with high-rise buildings and other landscapes. View distances of windows vary by their floor 

height and orientations. Figure 7c shows the photorealistic CIMs collected from the Hong Kong 280 

Planning Department (2019). Window locations were sampled from the building datasets shared by 

the Hong Kong Lands Department (2023) and the Urban Renewal Authority (2022). Annotated point 

clouds, the HRHD-HK (Li et al. 2023a) in Hong Kong were applied to train the StatifiedTransformer 

for landscape type estimation in Section 3.2.1. A 0.5-m DTM (HKLandsD 2020) represented the 

terrain in Sections 3.2.1 and 3.2.2. The average densities for trees, shrubs, and grass collected from 

the field test were finetuned to 0.7, 0.8, and 0.9 for a high assessment accuracy, according to the 

sensitivity analytical result in Section 4.3.3. 



 

Figure 7. (a) Study area, (b) 4,805 randomly sampled buildings, and (c) four inputs of the proposed 

method. 290 

We sampled 73,512 window view images from 4,805 buildings (see Figure 7b) in the study area to 

assess the proportion of close-range greenery window views. Window view images were first 

classified by landscape view distance and the presence of greenery into 7 × 2 categories. Considering 

the impact of the visual permeability of greenery, especially for close-range window views, we 

classified view distances in meters into seven categories, i.e., (0, 5], (5, 10], (10, 15], (15, 20], (20, 

25], (25, 30], (30, 2,279). We used 5 m as an interval to classify close-range (≤ 30 m) window views, 

regarding the high-rise, high-density context of the study area. The dummy variables for the presence 

of greenery were set to 0 and 1. Figure 8b showed around 3% of the total number of samples existed 

at every 5-m interval for greenery window views. Then, we extended the dummy variables into five 

categories, i.e., [0, 0.2), [0.2, 0.4), [0.4, 0.6), [0.6, 0.8), and [0.8, 1], to examine our method’s 300 

efficiency and accuracy. With one window view image randomly collected from each category, we 

computed WVDIs of 35 window view images using both our method and the typical 3D visibility 

analytical tool, Line of Sight (LoS) of ArcGIS Pro (ver. 2.9.0), for comparison. Specifically, we 

generated each window view in a RGB image with 900 × 900 pixels. The field of view was 60 

degrees to represent what urban dwellers mainly see from the center of the window. Meanwhile, an 

in-house LoS program using ArcPy (ver. 2.9.0) was developed to assess the distance between the 

window center and the landscape within a 60-degree viewing frustum, using 900 × 900 samples. To 

preliminarily test the feasibility of the proposed method, we set the distance to sky α as 2,000 m (Qi et 

al. 2022) for computing WVDIs. The maximum view depth for G and B channels is 6,336 m to retain 

the accuracy at the 10th percentile. 310 

The experiments were implemented in the workstation with a 16-core Intel i9-11900K CPU, a 24G 

Nvidia GeForce RTX 3090 graphic card, 64GB memory, and a Windows 10 system (64-bit). We 

implemented the 3D semantic segmentation in a docker container with Pytorch (ver. 1.10.0), making 

full use of the CPU and GPU resources of the workstation. Editing of CIM, e.g., normal setting of 



triangular faces of greenery, was implemented using the PyMeshLab (ver. 1.0.2). The type-depth 

scene of the textureless CIMs was rendered on a 3D geo-visualization platform, Cesium (ver. 1.99). 

Last, the WVDIs were computed through a Python (ver. 3.7.11) program and visualized on BIMs 

loaded in ArcGIS Pro (ver. 2.9.0). 

4.2 Results 

Figure 8 shows the distribution of the window views according to the greenery view proportion and 320 

average landscape view distance. Figure 8a shows most sampled window views contained greenery, 

while varied proportions of greenery existed in close-range (≤ 30 m) window views. Statistically, the 

greenery window views accounted for 83.57% of the whole samples (see Figure 8b), whereas the 

close-range (≤ 30 m) greenery window views took up 18.27%. The presence of greenery window 

views as a majority and the substantial existence of close-range greenery window views both reflected 

the significance of our method. 

 

Figure 8. Distribution of sampled window views by average landscape view distance and greenery 

view proportion. 

Table 1 compares the efficiency of the LoS analysis-based window view assessment and the proposed 330 

method. The LoS analysis consumed 10,326 seconds to measure the distance between the window 

center and 810,000 samples of the landscape scene through sequential ray tracing. By contrast, our 

method’s rendering of the full type-depth landscape scene at one time consumed 0.5 seconds, which 

improved the efficiency of the LoS analysis by 99.99%. Furthermore, the LoS analysis failed to 

measure the depths of probabilistic penetration and absorption without the visual permeability 

modeling of the greenery (see Table 1). On the contrary, our method consumed 0.56 seconds and 2.68 

seconds for probabilistic penetration and absorption within greenery, respectively. Overall, our 

method consumed 3.76 seconds for the WVDI of each window view image, improving the efficiency 

of the LoS analysis by 99.96%. 



Table 1. Comparison of computational time (t) of the LoS analysis and the proposed method (The 340 

average for 35 selected window view images) 

No. Depth type d in WVDI (Eq. 1&2) LoS t (s) Proposed method t (s) Improvement 
1 Surface ds Sequential 

ray tracing 
10,326 OpenGL rendering  0.50# 99.99% 

Image array computing 0.02 

2 Probabilistic 
penetration 

w(dm) × dp / / OpenGL rendering  0.50# / 
Image array computing 0.06 

3 Probabilistic 
absorption 

(1 − w(dm)) 
×∫ x×w(x)dxdm

0
 

/ / OpenGL rendering 0.50# / 
Image array computing 2.18 

   Total 10,326 Total 3.76 99.96% 

# The average time depends on the setting of the time interval for the sequential generation of window 
view images.  

 

Figure 9 shows our method’s improvement in distance assessment because of the visual permeability 

modeling of greenery. For window views without greenery, the WVDI computed by our method was 

consistently close to the measured WVDI from the LoS analysis, as shown in the orange rectangle of 

Figure 9a. The absolute deviation (Dev.) and the Root Mean Squared Deviation (RMSD) were less 

than 0.01 m and 0.0002, respectively. The possible reason for the deviation was the retainment of the 

accuracy to the 10th percentile of the rendered type-depth scene set in Section 4.1. For greenery 350 

window views, substantial positive deviations (Dev. ≥ 0.2893) existed between the results of the LoS 

and our method. Particularly, the deviations for 71.43% of greenery window views exceeded 1.03 m, 

as shown in the red rectangle of Figure 9a. There existed a small improvement in the assessed view 

distance for the last eight greenery window views. With similar proportions of greenery views, 

possible reasons are i) low visual permeability rate w(dm) (denoted as w in the following parts) and the 

dp or ii) mismatching of high values of w and dp at the pixel level. For example, compared to other 

window views with greenery proportions ranging from 0.2 to 0.4, the improvement for window view 

#1 at 0.29 was the smallest due to both low w and dp. With similar values of w and dp, the 

improvement for window view #2 was 2.21% of that of window view #3 due to the mismatching of 

high values of w and dp at the pixel level. 360 

Figure 9b shows the defined WVDI matters, especially for greenery window views with low ds
 and 

high visual permeability rate w and dp. With low ds, Figure 9b shows the assessed distances of eight 

close-range greenery window views, indicated by red arrows, improved by more than 12.43%. The 

assessed WVDIs effectively represented the extra window view distance due to the visual 

permeability of the greenery, e.g., sparse tree foliage in front of the windows. Additionally, with 

relatively high ds, three window views, indicated by black arrows, also owned high adjustment ratios 

above 9.58% due to high visual permeability rate w and dp. The high adjustment ratios further 

reflected that the modeling of visual permeability isr significant in accurately assessing window view 

distances, even for distant window views. 
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Figure 9.  (a) Assessment accuracy of the proposed method compared to the ArcGIS Pro LoS analysis 

and (b) comparison of adjustment ratios for greenery window views. 

Figure 10 illustrates ten example window views with different WVDIs, categorized into non-greenery 

(proportion = 0) and greenery (proportion > 0). The WVDI computed by ds for non-greenery views 

effectively represented the view distances. Window views #3, #4, and #5 with the sky elements were 

more distant than the window views #1 and #2. The view distances for windows #1 and #2 against 

pure building walls were differentiated, with the gap at 18.59 m. By contrast, the WVDIs for greenery 

views were larger than ds regarding the visual permeability of greenery. The differences were less 

than 1.78 m for window views #6, #7, and #9 due to the close-range building or terrains behind the 

greenery. On the contrary, there existed a high adjustment ratio (≥ 10.00%) of assessed view distances 380 

for window views #8 and #10 due to potentially large amounts of the sky behind the greenery. 

 

Figure 10. Typical (a) non-greenery and (b) greenery window views with WVDIs. 

Figure 11 shows the visualized WVDIs on BIMs of 207 example buildings in To Kwa Wan, Kowloon 

City District. The visualized WVDIs can support multiple applications in urban planning and design 



and real estate marketing. For instance, aging buildings #1 with consistently low WVDIs can be first 

considered by urban planners and designers for redevelopment. For building #2, slight differences in 

WVDIs between floors #1, #2, #3, #4, and #5 can support precise housing valuation by property 

agents, whereas tagging rooms with WVDIs on the property website can better inform housing 

purchasers and renters’ decision-making without entering every room in-person. For example, 390 

assuming similar housing prices, rooms on floors #2 may be first selected compared to ones on floors 

#3 due to high WVDIs. Rooms on floors #2 share similarly high WVDIs, and thus, other factors, e.g., 

indoor decorations, shall be emphasized. 

 

Figure 11. Visualized WVDIs of 207 example buildings in To Kwa Wan, Kowloon City District. 

4.3 Sensitivity analysis 

4.3.1 Performance of different 3D semantic segmentation methods 
We examined five typical 3D semantic segmentation methods (see Table 2) with varied learning 

mechanisms for greenery detection. Overall, all five methods achieved satisfactory results, with 

Overall Accuracy (OA) above 97.55%, mean Accuracy (mAcc) above 96.08%, and mean Intersection 400 

over Union (mIoU) above 92.66%, respectively. StratifiedTransformer achieved the highest 

performance in distinguishing greenery and non-greenery, with Overall Accuracy (OA) at 98.38%, 

mean Accuracy (mAcc) at 97.26%, and mean Intersection over Union (mIoU) at 95.00%. Both 

greenery and non-greenery were classified with satisfactory per-class IoUs at 91.99% and 98.02%. 

The optimal performance benefits from the attention mechanism of the transformer and multi-scale 

receptive fields. Thus, the StratifiedTransformer was applied to estimate landscape types on CIMs in 

Sections 3.2.1 and experimental tests. 

 

 

 410 



Table 2. Performances of five typical 3D semantic segmentation methods for greenery detection. 

Group Deep learning method Reference Overall metric (%)  Per-class IoU (%) 
OA mAcc mIoU  Greenery Non-

greenery 
Voxel  SparseConvUnet (Graham et al. 2018) 97.55 96.62 92.66  88.31 97.00 
2D projection  BEV-Seg3D-Net (Zou & Li 2021) 97.64 96.08 92.82  88.52 97.12 
Kernel KPConv (Thomas et al. 2019) 97.65 96.11 92.84  88.56 97.12 
Multilayer 
perceptron 

RandLANet (Hu et al. 2020) 98.03 96.98 93.98  90.39 97.58 

Transformer StratifiedTransformer (Lai et al. 2022) 98.38 97.26 95.00  91.99 98.02 

Note: The highest and lowest values in each column are in bold and underlined, respectively. 

 

4.3.2 Parameter setting of A-priori rules in estimating greenery subtypes 

The thresholds β and γ were finetuned for the optimal performance of greenery subtype estimation. 

Referring to (HKEPD 2012), the height ranges of trees, shrubs, and grass are 2-15 m, less than 3-6 m, 

and 0.03-2 m, respectively. Thus, we set β between 0.1 m and 1.9 m, and γ between 2 m and 11 m to 

examine the detection performance. The evaluation metric is mIoU for detecting trees, shrubs, and 

grass on ten tiles of 250 m × 250 m annotated point clouds (see Figure 12b). Figure 12a shows the 

highest mIoU at 55.02% with β = 0.9 m and γ = 4 m. Tree was relatively well segmented, with IoU at 420 

81.08%, whereas the detection of grass and shrub was poor, with IoUs at 53.49% and 30.49%, 

respectively. The primary reasons were the low-performance differentiation between the shrub and the 

other two greenery subtypes, as well as minor mismatches in the input data caused by resolution 

variations, as illustrated in the rectangles in Figure 12b. Thus, we set β = 0.9 m and γ = 4 m in Section 

4 to initially test the feasibility of our method. 

 

Figure 12. Finetuning height threshold values β and γ. (a) Heatmap of mIoUs and (b) an example 

segmented CIM. 



4.3.3 Parameter setting for visual permeability modeling of greenery 
The WDVIs are adjustable to approach the ground truth of window view distances by controlling the 430 

greenery density f in Eq. 3. In this study, we finetuned the greenery density parameters for trees, 

shrubs, and grass using two quality-varying CIMs reconstructed from varied proportions of the same 

set of photogrammetric images (see Figure 13a). Compared to window view images generated from 

low-quality CIMs, the ones generated from high-quality CIMs offer a more accurate representation of 

window view distance. The reason is the detailed modeling of greenery and building envelopes. Thus, 

referring to WVDIs generated on high-quality CIMs as ground truth, we tested whether the finetuning 

of the greenery density parameter rendered the computed WVDIs on the low-quality CIMs more 

accurate. Specifically, we used the two CIMs to represent greenery while controlling other 

landscapes, e.g., buildings and roads, represented by the same high-quality CIM. By testing WVDIs 

on 20 window view images, Figure 13 shows the density parameters of trees, shrubs, and grass at 440 

0.70, 0.80, and 0.90, respectively, achieving the most accurate WVDIs (RMSD = 0.17804). Compared 

to WVDIs computed on low-quality CIMs (RMSD = 1.86133), the finetuable greenery density 

parameters increased the accuracy of the computed WVDIs by 90.43%. The result further confirmed 

that the proposed WVDIs and the automatic assessment method are accurate by precisely setting the 

greenery density parameters. Thus, we set the density parameters of trees, shrubs, and grass to 0.70, 

0.80, and 0.90 for experimental tests in Section 4. 

 

Figure 13. Finetuning parameters of greenery density. (a) Two CIMs of varying qualities, (b)-(c) 3D 

and 2D heatmaps of RMSDs. 



5 Discussion 450 

5.1 Significance and contribution 

Theoretically, the proposed study defines a novel WVDI on photorealistic CIMs regarding the visual 

permeability of greenery. The WVDI, relating depth, landscape type, and greenery density, represents 

the average view distance between the window site and the visible landscape outside, addressing 

inaccuracy issues of traditional assessment via oversimplified solid surface modeling. Integrating 

Beer-Lambert’s Attenuation Law (Swinehart 1962) in Physics, the presented WVDI extended the 

modeling of visual permeability of greenery in GIS (Llobera 2007; Bartie et al. 2011) into window 

view assessment. The WVDI enables new solutions for multiple urban applications, e.g., precise 

housing valuation and transaction, prioritization of local urban density improvement, and optimization 

of window view openness for architectural and urban design. 460 

Methodologically, the proposed study presents an accurate and efficient assessment method for 

window view distance using up-to-date photorealistic CIMs, 3D semantic segmentation, and OpenGL 

rendering. By using type-depth window view nexus, the proposed method improves the efficiency of 

the traditional visibility analysis-based assessment method by 99.96%. For non-greenery window 

views, the computed WVDIs are close to the results of visibility analysis (RMSD ≤ 0.0002). For 

greenery window views, the WVDIs are more accurate (RMSD ≤ 0.1781), which effectively captures 

the potential view distance of greenery due to visual permeability. The high efficiency of the proposed 

method enables urban-scale quantification and updates of window view distances. The accurate 

assessment results support the decision-making of urban planners and designers in local urban density 

improvement, as well as developers, housing purchasers, and renters in real estate marketing. 470 

5.2 Limitations and future work 

The study has a few limitations. First, the accuracy of input parameters for estimating the view 

distance of greenery requires improvement. There still exists room to improve the accuracy of 3D 

semantic segmentation for greenery subtypes, e.g., the tree, shrub, grass, and even more fine-grained 

species. Possible measurement errors exist in the view depth of the interior greenery due to 

photorealistic CIMs’ continuous surface modeling. Future directions include the development of 3D 

CIM segmentation methods for accurately detecting greenery subtypes and the reconstruction of 3D 

volumetric and instantiated CIMs (Wu et al. 2024) for precise interior depth measurement. Second, 

the holistic semantic segmentation and rendering of CIMs can be costly for assessing window views 

at a small scale, e.g., for one building. Future directions include lightweight reconstruction of 3D 480 

CIMs for efficient 3D processing. Last, the presented WVDI is an objective metric without subjective 

calibration. Future directions include calibrating the WVDI via urban dwellers’ perceptions and 

landscape architects’ knowledge to estimate window view quality and its human health and well-

being benefits. 



6 Conclusion 
The scarcity of a distant view through the window leads to its amplified impacts on both urban health 

and real estate, especially in high-rise, high-density urban areas. Known benefits of distant window 

views from the literature include stress relief, living satisfaction, productivity improvement, and 

increased sense of privacy. As a big selling point, the distant window views of flats are also identified 

for profits in the real estate market. Thus, urban-scale assessment of window view distance is 490 

significant in examining the disparity of window view openness for prioritized built environment 

improvement and precise housing valuation and transaction. Current studies are limited, inaccurate, 

and inefficient in assessing window view distance at the urban scale. To address the research gap, we 

present an automatic assessment of window view distance for high-rise, high-density urban areas 

using CIMs and 3D computer vision and graphics. 

We first define a Window View Distance Index (WVDI) on a photorealistic CIM-generated window 

view image considering the visual permeability of greenery. Then, an automatic method was designed 

with three steps: i) landscape type estimation of photorealistic CIMs, ii) type-depth scene rendering, 

and iii) batch generation and quantification of window views for WVDIs. Last, we visualize the 

WVDIs on BIMs to support urban applications, e.g., local urban density improvement and informed 500 

housing valuation and transaction. Experimental results in Hong Kong Island and Kowloon Peninsula 

of Hong Kong showed that the method was automatic, efficient (2,753 times faster), and accurate 

(RMSD ≤ 0.1781) compared to the traditional visibility analysis-based method. 

Our automatic assessment of window view distance enables new solutions for multiple applications 

and analytics in urban planning and design, real estate marketing, and urban health, thereby benefiting 

millions of urban dwellers. Examples include window view distance guided local urban density 

improvement via urban renewal, maximized achievement of window view distance for architectural 

and urban generative design, precise housing valuation and transaction, and a series of window view 

distance-based analytics for urban health and sustainability. Future work includes the development of 

3D CIM segmentation methods for greenery subtype detection, reconstruction of 3D volumetric and 510 

instantiated CIMs for interior depth assessment, and lightweight reconstruction of 3D CIMs for 

efficient 3D semantic segmentation and rendering. 
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