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Abstract 
Mobile cranes are essential equipment in construction 
sites due to their high flexibility and mobility. However, 
the existing sensing or monitoring methods have 
limitations in monitoring mobile cranes on sites. 
Recently, the advent of 4D point cloud (4DPC) 
technology with a unique spatial-temporal data structure 
has shown potential in addressing these issues. In this 
paper, we present a 4DPC monitoring approach, which 
includes a set of prototype devices and a rule-based object 
detection method. We conducted a proof-of-concept test 
to monitor the hoisting process of two H-beams in a 
footbridge construction project. The rule-based object 
detection method successfully detected the target beams 
in the collected six-hour 4DPC data. In the future, we 
expect more efficient and robust 4DPC sensing devices 
and processing methods for proactive crane motion 
prediction and optimization in a time-dynamic site 
environment. 
 

1 Introduction 
Cranes are critical equipment for hoisting and 
transporting heavy objects in the construction industry. In 
recent years, numerous efforts have been made to 
monitoring methods for crane-related activities in both 
academia and industry. The first reason is safety, because  
crane lifting is complex and risky on construction sites. 
Cheng and Teizer  (2011) found that many crane-related 
safety incidents are associated with restricted visibility, 
e.g., sight occlusion, poor weather, or lighting conditions. 
Crane-related accidents usually cause casualties and 
significant economic losses, so extra measures must be 
taken. In addition, monitoring data could be visualized to 
help operators reduce workload and improve work 
efficiency, and the construction time is thus reduced. 
Productivity assessment may be another reason for the 
necessity of crane-related activities monitoring. Based on 
the assessment result, further optimization work could be 
done for the productivity improvement of the crane-
related construction process.  

 
There are two common types of cranes, i.e., mobile cranes 
and tower cranes. The most significant difference between 
them is that one is mobile, and the other one is not. Due 
to its fixed location and working range, monitoring or 
sensing devices are constantly installed on the tower 
crane. However, most existing monitoring methods are 
challenging to implement on mobile cranes. Potential 
reasons are the high mobility and flexibility of the mobile 
crane. Therefore, how to achieve practical and convenient 
monitoring for mobile cranes is still an unresolved issue.  
 
With increasing focus on-site safety of the construction 
industry and the emerging demand of digital construction 
sites, developing a practical monitoring approach for 
mobile cranes has become increasingly necessary and 
urgent. In order to improve the situation, some 
technologies, e.g., CCTV camera (Fang, et al., 2018)s and 
IoT devices (Mijwil, et al., 2023), that are used in other 
monitoring scenarios, are tried for monitoring or tracking 
objects for the mobile crane during the lifting process. 
However, the feasibility is not high for most methods. For 
example, CCTV cameras, the most widely used tool to 
monitor activities in construction sites, always lack depth 
information, making it challenging to accurately capture 
objects’ spatial position (Chen, et al., 2017). In addition, 
quantization errors are widely reported to be the 
shortcoming of conventional image-based video due to its 
grid-based geometric representation. Sensitivity to light 
conditions and the difficulty of multi-source data fusion 
also make it unsuitable for monitoring mobile crane in 
various complex environments. Second, IoT devices are 
other type of tools for sensing objects on sites. IoT devices 
are easy to locate, but various errors are widely reported. 
Meanwhile, IoT devices cannot achieve dynamic detail 
detection, such as rotation, which are significant for some 
tracking purposes. Extra installation procedures for each 
object will decrease productivity and increase risk, and 
using many IoT devices would increase the cost. In 
addition, the interaction of tracked objects and dynamic 
environment cannot be easily reflected. Thirdly, the 
Depth-RGB camera is also often reported to monitor or 
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track objects in sites potentially, but its short detection 
distance restricts its application in outdoor scenarios. 
 
Point clouds, a three-dimensional collection of data points 
or coordinates, provide a new data form to produce high-
quality 3D reconstructions of the world (e.g. 
reconstructing building information model in construction 
site (Chen & Xue, 2023)). They provide more information 
than two-dimensional pictures and are insensitive to light. 
However, point clouds always refer to 3D point clouds 
and the application of 3D point clouds is limited in 
capturing some static objects due to only spatial 
information contained in the data (Mirzaei, et al., 2022). 
The advent of the 4D point cloud, consisting of three 
dimensions and time information, has expanded the 
application of the point cloud into a dynamic world (Silva, 
et al., 2022). 4D point cloud (4DPC), a form of time-series 
3D point clouds, is a rich data source demonstrating how 
objects move against the background. 4DPC has unique 
advantages against other motion tracking technologies, 
e.g., various Internet of Things (IoT) and AI cameras 
(Liang & Xue, 2022): 

a) Real-time environment (including objects and 
background) updating 

b) Highly precise geometry updates 
c) Higher adaptability in poor visibility 

environments 
d) Innate localization and mapping information 
e) Innate capability of multi-/many-device data 

fusion to eliminate visual blind spots 
f) Lower cost, minimal infrastructure 

requirements, lower carbon footprints 
g) Remote, non-destructive sensing 

4DPC is a novel enabling data source that facilitates 
precise 4D motion tracking. In contrast to conventional 
camera/IoT, our methods have three characteristics:  

i. High-definition 4D motion data (cm-s-level 
accuracy);  

ii. Precise depth information in a far range (up to 
500m); 

iii. Simultaneous motion tracking of multiple 
objects; and 

iv. Low cost of devices and easy operating. 

2 Related works 
2.1 Crane monitoring 
In past research, numerous efforts have been put into 
developing computer-aided crane monitoring systems. 

Their primary purpose is to improve the efficiency and 
safety of crane operations and reduce operator workload. 
As listed in Table 1, this study reviews related to research, 
and the purpose, contribution, research focus, target crane 
type, methodology, and limitation are summarized. The 
research generally has three types of goals, i.e. crane pose 
estimation (Zhang, et al., 2012; Lee, et al., 2012; Zhong, 
et al., 2014; Yang, et al., 2014; Roberts, et al., 2017), load 
sway and rotation estimation (Fang, et al., 2018; Fang, et 
al., 2016; Chian, et al., 2022), and object detection in 
workspace (Li, et al., 2013; Chen, et al., 2017). Although 
both crane monitoring and object detection are 
investigated to help operators operate the crane in blind 
areas in the study by Price et al. (2021), the two functions 
are relatively separated and not well integrated into a 
system.  
 
Meanwhile, two types of sensing methods, i.e., sensor-
based and vision-based, are used in these studies. For the 
former, different sensors are serving for different sensing 
goals. In specific, the UWB system, consisting of several 
sensors and multiple tags, is used to estimate the crane 
pose in the study by Zhang et al. (Zhang, et al., 2012), but 
it is not practical due to various errors from different 
sources and too many sensors required for full coverage 
of activity range. Li et al. try to use GPS and RFID to 
obtain positioning data of both site workers and the crane, 
and using multiple tags and receivers decreases its 
practicality. Zhong et al. (Zhong, et al., 2014) combined a 
Wireless Sensor Network (WSN) and the Internet of 
Things (IoT) to monitor the status of tower crane groups 
to avoid collisions, but the interactions of tower cranes 
with environment are not considered. Fang et al. (2016) 
use a series of encoder and IMU sensors to monitor the 
load object and visualize in the virtual platform. Except 
for extensive use of sensors, another problem is the 
dynamic change of the environment cannot be reflected 
by a limited number of sensors. For the latter, CCTV 
cameras or UAV camera are used to estimate crane pose 
(Lee, et al., 2012; Yang, et al., 2014; Roberts, et al., 2017), 
monitor load (Fang, et al., 2018) (Chian, et al., 2022), and 
detect object (Chen, et al., 2017). The common limitation 
stems from the data, such as not containing depth 
information or sensitivity to lighting conditions and color. 
In addition to shared drawbacks, UAV's endurance, 
stability, and safety are also criticized. 

Table 1 Summarization of related literature 

Purpose and contribution Research focus Sensing method Crane type Limitation Source 
Develop a UWB-based 
system to track crane 
boom movement, and 

estimate crane pose near 

crane pose 
estimation UWB Mobile 

crane 

1) the installation space and device cost 
of several sensors and multiple tags 

would be a problem 

(Zhang, et 
al., 2012) 



real-time for collision 
avoidance 

2) the accuracy in an ideal environment 
(open space) is 10cm, and it may be 

worse in unordered sites 
3) trajectory estimation is relatively 

rough since it is based on linear 
interpolation extrapolation of only two 

points 

Develop a tower crane 
navigation system to help 

operators operate with 
blind spots 

crane pose 
estimation 

Video camera 
& 

sensors 

Tower 
crane 

1) too many kinds of sensors increase 
the complexity of the proposed system 
2) virtual environment (BIM model) 

cannot BIM model cannot fully 
represent the as-is site condition 

(Lee, et al., 
2012) 

Identify unauthorized 
work or entrance of 

personnel within a pre-
defined risk zone 

object detection in 
the workspace 

GPS 
& 

RFID 

Not limited 
to a 

specific 
type of 
crane 

1) too many tags, receivers, and other 
units are used; 

2) installation complexity and high cost 
would hinder its practical application; 

3) signal strength is also a possible issue 

(Li, et al., 
2013) 

Develop a Safety 
Management System to 

monitor the status of 
tower crane groups and 

avoid collisions 

crane pose 
estimation 

WSN 
& 

IoT 

Tower 
crane 

1) only the main body of the crane is 
considered, but the site situation is 

usually more complex 

(Zhong, et 
al., 2014) 

Understand construction 
activity by tracking the 
pose of the tower crane 

crane pose 
estimation Video camera Tower 

crane 

1)  large range view needs to be 
covered, and the resolution of the object 
will become lower, so the recognition 
accuracy will fluctuate due to many 

factors, such as light condition 
2) the recognition result is general 

(Yang, et al., 
2014) 

Develop real-time pro-
active safety assistance 

for mobile crane 
lifting operations 

load sway and 
rotation estimation 

Encoder sensors 
& 

IMU sensor 

Mobile 
crane 

1) The pre-reconstructed site cannot 
reflect the dynamically changing site 

conditions 
2) A large number of sensors are 

required to sense the movement of the 
crane in real time 

(Fang, et al., 
2016) 

Detect and Classify 
Cranes for monitoring 

crane-related safety 
hazards 

crane pose 
estimation UAV Tower 

crane 
1) The endurance and stability of drones 
are obstacles to the practical application 

(Roberts, et 
al., 2017) 

Update real-time 3D crane 
workspace 

object detection in 
the workspace 

TLS 
& 

Video camera 

Mobile 
crane 

1) positioning accuracy (0.1-0.4m) in 
the ideal test environment is relatively 

high 
2) signal synchronization of camera and 
LiDAR is complicated, and the error is 

relatively large 

(Chen, et al., 
2017) 

Track crane load sway load sway and 
rotation estimation Video camera 

Not limited 
to a 

specific 
type of 
crane 

1) only the 2D location of the load could 
be identified 

2) errors highly depend on the quality of 
the image 

(Fang, et al., 
2018) 

Detect workers near the 
crane load 

crane pose 
estimation 

& 
load sway and 

rotation estimation 

Sensors, 
Camera, 

IMU, 
& 

TLS 

Tower 
crane 

1) sensor-part: positioning system has a 
high reliance on data from noisy 
encoders; large crane deflection 

caused by the load leads to errors 
2) vision-part: positioning errors are 

widely reported during irregular lighting 
conditions and when the surrounding 

environment contains objects that have a 
similar color to the load 

(Price, et al., 
2021) 



Develop a novel method 
to detect 

and track the crane load 
fall zone 

load sway and 
rotation estimation Video camera Tower 

crane 

1) the estimation accuracy heavily relies 
on many factors, such as the quality of 
training data since it is based on deep 

learning 

(Chian, et al., 
2022) 

#:UWB: Ultra Wideband; GPS: Global Positioning System; RFID: Radio-Frequency Identification; WSN: Wireless Sensor Network; 
IoT: Internet of Things; IMU: Inertial Measurement Unit; UAV: Unmanned Aerial Vehicle; TLS: Terrestrial Laser Scanners.   

 

In summary, existing sensor-based sensing methods in the 
literature showed the following drawbacks: 

1) Deploying and maintaining sensors in every 
object onsite is complex and time-consuming, 
which may affect productivity of the 
construction process; 

2) sensors are composed of many components 
susceptible to damage, and low reliability may 
hind its practice; 

3) many high-precision sensors are expensive, and 
the use of numerous sensors on-site may increase 
the cost;  

4) sensor technologies are sensitive to signal 
interference and may not adapt to the complex 
construction site with many existing physical 
obstacles (e.g., existing buildings and 
equipment); 

5) it is difficult for sensors to capture the whole 
environment with dynamical change, and hence 
the interaction between tracking objects with the 
existing site environment cannot be captured;  

6) Synchronization and visualization of multi-
source data increase the practice complexity of 
sensor technologies. 

Meanwhile, current vision-based sensing methods have 
other limitations: 

1) Depth information is not contained in 2D image, 
and hence vertical position information cannot 
be precisely captured;  

2) video errors caused by irregular lighting 
conditions and similar colors make it unreliable 
in daily use; 

3) 3D laser scanning by TLS only captures the site 
geometry at the time of scanning, and hence site 
condition cannot be dynamically reflected in 
real-time; 

4) Multi-angle view fusion has not been well 
resolved, which hinders its broad practice.  

2.2 4DPC 
Point clouds, a three-dimensional collection of data points 
or coordinates, provide more information than two-
dimensional pictures and are insensitive to light (Bhople 
et al., 2021). Conventional static point clouds have 
already been widely used in many research and industrial 
domains, such as surveying, electricity, construction, and 
industry, due to their excellent ability to represent our 
three-dimensional world. In the construction industry, the 

3D point cloud is currently used for various aims such as 
as-built building reconstruction and digital twin city (Wu, 
et al., 2021; Xue, et al., 2019; 2020). It should be noted 
that the applications of 3D point clouds are limited in 
capturing non-moving or assumingly non-moving 
objects. 
 
As a window into our ever-evolving 3D environment, 
4DPC are widely used in robotics and augmented reality 
systems. Point cloud sequences play an important role in 
understanding environmental changes and supporting 
interactions with the world that are difficult to describe 
with 2D images or static 3D point clouds due to their 
ability to record movements in physical space. In order to 
more accurately simulate the world, respond to changes in 
the environment, and interact with it, an intelligent agent 
must handle this kind of data with great precision. 
 
4DPC has gained popularity for some reasons. First, the 
ability to comprehend a changing 3D world is essential for 
robotic agents and various other applications. 4DPC has 
enabled many innovative studies, such as how a plant 
grows (Li, et al., 2013) and high-definition human 
motions (Fan, et al., 2021), as shown in Figure 1. In 
addition, various identification tasks, such as calculating 
a moving object's acceleration or identifying human 
activities, benefit from temporal data sequences longer 
than two frames (Fan, et al., 2021). 4D point cloud has 
also been widely utilized in robotic SLAM, autonomous 
driving, and video-assisted training of athletes. 

 

 
Figure 1 Example 4DPC-enabled studies. (a) how plant grows 
(Li, et al., 2013)—permission requesting, (b) high-definition 
human motions (Fan, et al., 2021)—permission requesting 

In contrast to grid-based RGB video, where points 
regularly emerge over time, point cloud video displays 
irregularities and lacks order along the spatial dimension. 
Therefore, numerous efforts have been engaged in 
processing the 4DPC data. Two existing methods, i.e., 



voxelization-based (Choy, et al., 2019) and point-set-
based, explored by many researchers to process 4DPC 
data.  

3 Case study 
3.1   Case description 
A pilot study was conducted on an infrastructure project 
in Hong Kong, as shown in Figure 4. The case project was 
the 3rd Sassoon Road footbridge project that links a new 
Campus building to the student residents across Sassoon 
Road. Two major steel tie-beams were hoisted and 
installed in the mid-night of 28 June 2022, and Figure 2 
shows the site condition before hoisting, the hoisting 
process of component 1, the completed status of the 
component 1 hoisting, and completed status of two 
components hoisting, respectively. This project uses a 
mobile crane since it is a temporary infrastructure project 

and the road is only temporarily closed for construction at 
night. 
 
The case project had characteristics and requirements in 
hoist efficiency, collision risk, and personnel safety. First, 
the process needs to be completed swiftly before dawn to 
resume day traffic from the temporary close of the road. 
As the most important and challenging work in this 
project, hoisting efficiency will directly affect the 
construction time. In addition, there were already building 
works on both sides of the road, and the facades are 
expensive glass curtain walls. A collision during the 
hoisting process will cause economic losses. Therefore, 
effective measures should be taken to reduce the potential 
collision risk. Furthermore, the workers working on other 
processes on-site may have entered the risky zone where 
the hoisted objects may fall due to negligence of steel 
beam at high height during the hoisting process. 

 
Figure 2 construction site condition of case study 

3.2 4DPC devices and setup 
To address the limitations mentioned in Sec. 2.1, this 
study proposes and validates a scheme that 4DPC 
technology is used to achieve the goal of monitoring all 
crane-related activities in real-time, including estimating 
crane pose, tracking load, and detecting objects on sites. 
To achieve that, a novel 4DPC sensing equipment for 
collecting high-definition 4D motion data from 
construction environments is developed in this study. The 
target spatial accuracy is cm-level, while the temporal 
accuracy is 0.5s-level. As shown in Figure 3(b), the device 
has four essential modules, i.e., (Ⅰ) Livox Mid-70 sensor, 
(Ⅱ) controller (Raspberry Pi 4), (Ⅲ) LED monitor, (Ⅳ) 
USB drive. The Livox Mid-70 has 70.4° circular fov, 5 
cm minimum detection range, and 2 cm range precision. 
Raspberry Pi 4 controller transmits 4DPC data to remote 
server via WiFi/4G/USB. The proof-to-concept test of the 
device is conducted in the pilot study. In order to cover 
the whole site, two LiDAR devices in Figure 3 (b) were 
installed on different locations, i.e., one is in the ground 
floor and the other is in the 4th floor (shown in Figure 
3(a)), to collect 6 hours of 4DPC data (format: lvx; size: 
80MB/min).  
 

 
Figure 3 (a) Installation illustration of 4DPC devices on site; 

(b) Components of our 4DPC device: (Ⅰ) Livox Mid sensor, (Ⅱ) 
controller (Raspberry Pi 4), (Ⅲ) LED monitor, (Ⅳ) USB drive 

3.3 Methods 
The most popular processing methods of 4DPC in existing 
research are based on deep learning.  The impetus for this 
trend is mainly based on the large amount of data that can 
be collected. In this study, we only collected 1 
construction scenario; hence, deep learning is not 
applicable. Therefore, a rule-based object detection 
method on 4DPC data is proposed to monitor target 



components in real time effectively. As shown in Figure 
4, a cyclic processing workflow is determined:    

1) 4DPC data input: Each frame of data is input in 
chronological order; 

2) Background removal:  using random sample 
consensus (RANSAC) algorithm (Schnabel, et 
al., 2007) is used to detect and delete plane of 
existing ground and walls 

3) Clustering:  using DBSCAN clustering 
algorithm (Ester, et al., 1996) to cluster the 
remaining point cloud. 

4) First round match:  judging whether the point 
cloud clustering results match the objects with 
known geometric dimensions. If all known 
components match, go to step 7. If not, continue 
to step 5.  

5) crop point cloud: using bounding box of 
previous frame to crop the whole point cloud 

(based on the assumption that there will be no 
large displacement of the member in a very short 
time-0.5s) 

6) Second round match:  judging whether the crop 
result of point cloud match the objects with 
known geometric dimensions. If known 
components match, go to step 7. If not, the result 
of the previous frame will be assigned to the 
current frame (based on the assumption that 
there will be no large displacement of the 
member in a very short time-0.5s). 

7) Result saving: Saving related point cloud 
segmentation results and creating a 
corresponding bounding box for the 
corresponding component 

The program ends when all the time series data are 
processed.

 
Figure 4 logic flow of rule-based detection method for time series 4DPC data

3.4 Preliminary results and discussion 
As shown in Figure 5, the two steel beam components can 
be precisely detected in more than 95% of the time using 
the rule-based method described in Sect 3.3. The 4DPC 
data processing time per minute is within 1s. 
 
Figure 5(a), (b), (c), and (d) illustrate the motion detection 
result of two beams from two views at different times, and 

different typical statuses of beams, i.e., remaining on the 
transport vehicle, being placed on the ground, hoisting in 
the air, are all covered, or completing hoisting. However, 
there are also some time frames that beams cannot be 
tracked. Detailed analysis suggests the ineffective capture 
is that the point cloud data is too sparse or no data points 
exist due to small sensing area of components at specific 



view angles, long sensing distances, or some physical 
obstacles. These problems can be attributed to the limited 
number of 4DPC devices used in this pilot study and the 
low point cloud density provided by Livox. Increasing the 
number of LiDAR devices and using advanced LiDAR 
devices providing higher point cloud density would 
improve the robustness of 4DPC data. Obtaining the 
spatial-temporal information of beams will help further 
achieve a set of proactive motion prediction and 
optimization applications. In addition, it could facilitate 
the productivity assessment of mobile cranes, and future 
improvement may be based on these data records.  

3.4 Limitation 
While this study's proposed method effectively captures 
targeted objects, its rule-based approach is limited to the 

specific scenario in which it was tested. Therefore, future 
research is necessary to explore its actual deployment 
and extended application in different conditions. 
Furthermore, the rule-based method can only detect 
known objects since rules must be set with prior 
knowledge of components. Also, due to the angle of the 
equipment installation, the object cannot be fully 
scanned, which limits the reflection of the true detailed 
geometry of the component. Detailed modeling requires 
additional effort. Finally, it should be noted that the 
4DPC data collected from two devices was registered 
manually, which is a time-consuming process and 
hinders its application in mobile situations..  

 
Figure 5 typical detection result of 4DPC data

4 Conclusion and future work 
This paper evaluated the existing studies focusing on 
sensing or monitoring crane-related activities, including 
estimating crane pose, tracking load, and detecting objects 
in workspace. Meanwhile, the limitation of sensor-based 
and vision-based sensing methods are analyzed and 
summarized. In order to overcome shortcoming of 
existing methods, a state-of-art 4DPC sensing and 
monitoring method is proposed. A rule-based object 
detection method is developed with two prototype devices 
of 4DPC sensing, and a proof-to-concept test was 
conducted on a footbridge construction project. In the 
pilot study, two 4DPC devices covered the whole 
construction site for 6 hours.  The promising preliminary 
results suggested that target beam components were 
precisely captured in different statuses. The spatio-
temporal data series obtained from the tracking results 
could generally satisfy the goal of monitoring load.  
 

There are three directions for future works. One is to 
develop more efficient and robust methods, such as some 
ML-based methods (Zhang, et al., 2019; Liang & Xue, 
2023), to match or detect objects from the collected data. 
Another is to explore a set of proactive motions prediction 
and optimization applications. The last is to integrate 
obtained spatial-temporal information of all objects and 
workers to achieve dynamic site management.  
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