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Abstract 
Existing construction activity-monitoring technologies, such as CCTV cameras and IoT 

devices, have limitations, such as lack of depth information, 3D measurement errors, or 20 

wireless signal vulnerability. The limitations are particularly problematic for activities related 

to mobile cranes due to their high mobility and flexibility. This paper presents a 4D point cloud 

(4DPC)-based spatial-temporal semantic registration method to overcome the limitations. The 

proposed method integrates spatial-temporal semantic registration into process site 4DPC with 

as-designed BIM semantics. Results from a one-hour on-site experiment demonstrated that the 25 

proposed method achieved 99.93–100% F1 accuracy in detecting BIM objects, and high 

resolution (centimeter-second granularity) of the trajectories of hoisting activities. This paper 

offers a two-fold contribution. First, spatial-temporal semantic registration represents an 

innovative approach to 4D point cloud (4DPC) processing. Secondly, the hoisting activities are 

comprehensively analyzed based on semantic registration, which can improve safety and 30 

productivity monitoring for smarter construction in the future. 

 

Keywords: 4D point cloud (4DPC); Spatial-temporal semantic registration; Monitoring 

construction activities; Mobile cranes; Building information modeling (BIM).  

 35 
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1 Introduction 
Cranes play a pivotal role in hoisting and transporting heavy objects in the construction industry 

(Neitzel et al. 2001). It is widely recognized that crane-related activities are closely associated 

with safety (Lee et al. 2012) and productivity issues (Sacks et al. 2005) in construction sites. 40 

In terms of safety, a considerable number of fatalities and injuries in construction sites were 

caused by crane-related accidents (Beavers et al. 2006). Meanwhile, Cheng and Teizer (2011) 

attributed many crane-related safety incidents, such as crashing, to restricted visibility during 

operations, such as sight occlusion, poor weather, or inadequate lighting conditions. Extra 

monitoring measures will improve operators’ visibility. Regarding productivity, Lee et al. 45 

(2006) have found that effective sensing and monitoring of construction sites can improve 

productivity. Therefore, significant efforts have been dedicated to monitoring crane-related 

activities in the construction industry.  

 

The mobile crane and the tower crane are the two primary types of crane commonly used in 50 

construction sites (Shapira et al. 2007; Görçün & Doğan 2023). The need to monitor mobile 

crane-related activities has been underscored in the construction industry (Teizer et al. 2022). 

The primary reason is that the high mobility and flexibility of mobile cranes mean more risks 

and uncertainties in construction sites compared to fixed tower cranes (Kan et al. 2018). These 

risks and uncertainties can be reduced through accurate sensing and understanding of mobile 55 

crane-related activities. Thus, there is a pressing need for a high-definition monitoring solution 

that fits the construction context and is specifically designed for mobile cranes.  

 

Various sensing technologies, such as closed-circuit television (CCTV) cameras (Fang et al. 

2018) and IoT devices (Mijwil et al. 2023), have been explored for monitoring mobile crane-60 

related activities. However, several technical limitations of existing sensing methods are widely 

criticized for monitoring the construction site. For example, the lack of depth of the information 

from the CCTV camera hinders the accurate spatial positioning of objects (Chen et al. 2017). 

Meanwhile, the processing of images suffers from pixel resolution, lack of 3D measurements, 

continuous object tracking (Son et al. 2023), and triangulation errors (Liu et al. 2019). Internet 65 

of Things(IoT) devices (Chung et al. 2023)—such as Radio-Frequency Identification (RFID) 

(Lee et al. 2006), Global Positioning System (GPS) (Li et al. 2013), and Ultra-Wideband (UWB) 

(Shahi et al. 2013)—are popular in positioning and monitoring cranes but are limited to data 

resolution. Meanwhile, the IoT devices’ wireless signals are also vulnerable to long-distance 
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or environmental occlusion (Udoh & Kotonya 2018). In addition, the installation of an IoT 70 

device for every object increases leading time and labor costs and decreases productivity. The 

RGB-D camera has been considered for sensing or monitoring crane-related activities, but its 

limited detection range, which is generally 0.8 to 5 meters (Alhwarin et al. 2014) restricts its 

applications in outdoor settings (Alphonse & Sriharsha 2021).  

 75 

The emergence of 4D point cloud (4DPC) provides a novel way for sensing (Silva et al. 2022). 

Compared with traditional 3D point clouds which is a collection of three-dimensional data 

points or coordinates, 4DPC additionally incorporates temporal information for spatial data. In 

the construction industry, 3D point clouds representing static scenes for high-quality 3D 

reconstructed building information models (Jarząbek-Rychard & Maas 2023; Wu et al. 2021; 80 

Jiang et al. 2020; Xue et al. 2020; Wu et al. 2024; Yin et al. 2020); in contrast, 4DPC sensing 

can handle dynamic assignments, such as monitoring construction activities (Liang et al. 2023). 

Point cloud provide comprehensive information unaffected by lighting conditions, presenting 

advantages over two-dimensional pictures (Mirzaei et al. 2022; Li et al. 2022; Li et al. 2024; 

Li et al. 2023). In addition, 4DPC enables the observation of object movements in relation to 85 

their surroundings over time, granting it a distinct advantage over other motion monitoring 

technologies like various IoT devices and AI cameras (Liang & Xue 2022). Herein, the AI 

camera refers to systems embedded in ML/DL-driven vision detection algorithms, which help 

make intelligent real-time decisions. 

 90 

 

However, it is challenging to achieve a semantic understanding of 4DPC data, and no ready-

to-use method can be used to process 4DPC data for construction scenarios with a temporal 

nature. Existing semantic segmentation methods using training-relied deep learning were 

studied for 4DPC in applications, such as robotics and human actions (Liu et al. 2019; Fan et 95 

al. 2022). However, these training-relied methods can hardly be directly applied to the 

construction scenario with artifacts of modern construction projects and temporary project-

based organizations. Meanwhile, the semantic result from these deep-learning-based methods 

is still at point level, from which it is hard to further develop some applications such as 

monitoring.  100 
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In contrast to semantic segmentation, Xue et al. (2019b) proposed a semantic registration 

approach to reuse the as-designed Building information modeling (BIM) semantics for 

automatic semantic modeling from 3D point clouds. Xue et al.’s (2019b) approach 

fundamentally differs from existing semantic segmentation approaches in that it is training-105 

free, capable of processing complex scenes, and able to cleverly reuse existing information 

such as BIM models. From the perspective of machine learning, semantic segmentation is 

based on supervised learning with expensive training and labeling (Ma et al. 2020; Xia et al. 

2022), while semantic registration is like unsupervised learning (Xue et al. 2019a; 2019b). 

Meanwhile, compared with the semantics of points provided by semantic segmentation, 110 

semantic registration could directly provide richer semantics at an object level. 

 

This paper presents a 4DPC-based spatial-temporal semantic registration method for 

monitoring mobile crane-related activities. The presented method processes 4DPC data and as-

designed BIM objects and is an optimization-driven semantic registration process. The most 115 

significant advantage of the proposed method is to fill the technical gap of the semantic 

enrichment of 4DPC in the construction scenario with an artifact-like and temporary nature. To 

validate the presented approach, we collected six-hour 4DPC data from a case study of a 

footbridge construction project and conducted experiments on registration accuracy and 

parameter sensitivity. Based on the semantic registration results, mobile crane-related activities 120 

can be accurately detected. 

 

2 Literature review  
2.1 Sensing and monitoring crane-related activities 

In the construction industry, significant efforts have been dedicated to the development of 125 

computer-aided crane monitoring systems to enhance operational efficiency, ensure safety, and 

reduce operator workload. Table 1 compares related research in the literature, including the 

research focus, purpose, contributions, target crane type, method, and limitations.  

Table 1 Summary of related studies in the literature 

Research 
focus Purpose and contribution Sensing method Crane 

type Limitations Source 

crane pose 
estimation 

Develop a UWB-based 
system to track crane 
boom movement, and 

estimate crane pose near 
real-time for collision 

avoidance 

Imaging-based 
(camera) 

& IoT-based 
(UWB) 

Mobile 
crane 

⋅ Long installation time of several sensors 
and multiple tags 

⋅ High positioning error (0.1m) in open-
space environment 

⋅ Rough trajectory estimation based on 
linear interpolation extrapolation of two 
points 

(Zhang et 
al. 2012) 
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Develop a tower crane 
navigation system to help 

operators operate with 
blind spots 

Imaging-based 
(camera)  

& IoT-based 
(encoder sensors) 

 

Tower 
crane 

⋅ Many sensors used in the system. 
⋅ High device and installation cost of 

several sensors and multiple tags 
⋅ Virtual site environment update  

(Lee et al. 
2012) 

Develop a Safety 
Management System to 

monitor the status of 
tower crane groups and 

avoid collisions 

IoT-based (encoder 
sensors) 

Tower 
crane 

⋅ Only the main body of the crane 
considered 

(Zhong et 
al. 2014) 

Understand construction 
activity by monitoring the 

pose of the tower crane 

Imaging-based 
(camera) 

Tower 
crane 

⋅ Low resolution with far distance and 
undesirable light condition 

(Yang et 
al. 2014) 

Detect and Classify 
Cranes for monitoring 

crane-related safety 
hazards 

Imaging-based 
(camera) 

Tower 
crane ⋅ Only the existence of crane detected 

(Roberts 
et al. 
2017) 

Recognize and 3D 
localize the crane 

activities  

Imaging-based 
(camera) 

Tower 
crane 

⋅ Sensitivity to the occlusion of boom 
⋅ Inaccuracy of localization from some 

unrealistic assumption 

(Wang et 
al. 2023) 

crane pose 
estimation 

& 
load sway 

and rotation 
estimation 

& 
Object 

detection 

Track load & 
Detect obstacle and 

worker 

Imaging-based 
(camera and TLS)  

& IoT-based 
(encoder sensors 

and IMU) 

Tower 
crane 

sensor:  
⋅ Errors from noisy encoders  
⋅ Assumption failure due to large crane 

deflection 
vision:  
⋅ Sensitivity to irregular lighting conditions 

and similar color between the load and 
environment 

(Price et 
al. 2021) 

load sway 
and rotation 
estimation 

Develop real-time pro-
active safety assistance 

for mobile crane hoisting 
operations 

IoT-based (encoder 
sensors and IMU) 

Mobile 
crane 

⋅ Static site reconstruction for environment 
sensing 

⋅ High device and installation cost of 
several sensors for real-time sensing 

(Fang et 
al. 2016) 

Track crane load sway Imaging-based 
(camera) Both 

⋅ Only the 2D location of the load 
identified.  

⋅ Errors from similar color for objects and 
background 

(Fang et 
al. 2018) 

Develop a novel method 
to detect and track the 
crane load fall zone 

Imaging-based 
(camera) 

Tower 
crane 

⋅ Overreliance on the quality of the training 
set 

(Chian et 
al. 2022) 

object 
detection in 

the 
workspace 

Identify unauthorized 
work or entrance of 

personnel within a pre-
defined risk zone 

IoT-based (GPS 
and RFID) Both 

⋅ Many tags, receivers, and other units used 
in the proposed system. 

⋅ High cost and installation complexity of 
several sensors and multiple tags 

⋅ Sensitivity to signal strength 

(Li et al. 
2013) 

⋅ Detect object to update 
real-time 3D crane 
workspace 

⋅ Imaging-based 
(camera and 
TLS)  

Mobile 
crane 

⋅ Inaccurate 2D bounding box. 
⋅ Sensitivity to similar color 
⋅ high positioning error (0.1-0.4m) in a non-

occluded environment 
⋅ Static environment reconstruction by 

single LiDAR data frame 

(Chen et 
al. 2017) 

#: UWB: Ultra-Wideband; GPS: Global Positioning System; RFID: Radio-Frequency Identification; WSN: Wireless Sensor 130 
Network; IoT: Internet of Things; IMU: Inertial Measurement Unit; UAV: Unmanned Aerial Vehicle; TLS: Terrestrial Laser 
Scanners.   

 
The studies in Table 1 can generally be divided into three main categories: crane pose 

estimation, load sway and rotation estimation, and object detection in the workspace. The 135 

studies of crane pose estimation aimed to detect the crane’s position, orientation, and motion 

to ensure precise and reliable operation. Early studies by Zhang et al. (2012), Lee, et al. (2012), 
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and Zhong, et al. (2014) mainly employed IoT sensors to achieve the aim. Then, more research 

(Yang et al. 2014; Roberts et al. 2017; Wang et al. 2023) used imaging-based methods due to 

the rapid development of computer vision and deep learning.  140 

 

The second category focused on load sway and rotation estimation, both directly and indirectly, 

to monitor the load status. Load sway and rotation are related to crane stability and safety 

during hoisting operations. The indirect method including the study by Fang et al. (2016) used 

the physical model of mobile crane and sensing data from a series of encoder sensors and IMU 145 

to indirectly estimate the status of load. In comparison, research by Fang, et al. (2018) and 

Chian, et al. (2022) used the imaging-based method to directly capture the motion and rotation 

of load. Besides, Price et al. (2021) investigated both crane status monitoring and load detection, 

which were intended to assist operators in handling blind areas effectively.  

 150 

The third category of related studies emphasized other construction objects, such as site 

workers, nearby vehicles, and construction components before hoisting, for identifying 

potential obstacles or hazards. Both IoT-based (Li et al. 2013) and imaging-based (Chen et al. 

2017) methods were developed. However, the methods were mainly challenged by rapidly and 

dynamically changing poses of moving humans and vehicles (Nakanishi et al. 2022). 155 

 

Overall, there were several common limitations, as listed in Table 1, of both IoT-based and 

imaging-based methods in terms of accuracy and real-timeliness (Liang & Xue 2022). For IoT-

based methods, the most criticized aspect was the vulnerability of signals caused by long 

distances and obstacles (Zhang et al. 2012). Furthermore, it was always complex, labor-160 

consuming, and time-consuming to deploy and maintain a fleet of sensors, such as RFID tags 

and receivers, at construction sites. In addition, a geometrically complex and time-dynamic site 

was reported to be too hard to cover by a limited fleet of sensors (Bohn & Teizer 2010). For 

imaging-based methods, images or videos from cameras were criticized for the absence of 

depth information and the sensitivity to lighting conditions and color variations (Chen et al. 165 

2017). Moreover, 3D laser scanning through TLS was known to be time-consuming for one 

scan and contain mismatched geometries from different timestamps of scanning (Russhakim et 

al. 2018). Therefore, there has been an urgent need for the development of more effective and 

comprehensive sensing methods for monitoring mobile-crane-related activities. 

 170 
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2.2 4DPC in construction 

A point cloud comprises three-dimensional data points or coordinates as an unstructured 

collection, or “cloud” (Hu & Brilakis 2024). In comparison with 2D pictures, 3D point clouds 

provide more comprehensive information and are not affected by lighting conditions (Bhople 

et al. 2021). In the construction industry, 3D point clouds have been applied for as-built BIM 175 

reconstruction and digital twin development (Hu et al. 2023; Yin et al. 2023; Zhou et al. 2019). 

However, existing applications of the traditional 3D point clouds were limited to capturing the 

features of non-moving objects.  

 

The advent of the 4DPC (Shi et al. 2020), consisting of three dimensions and time information, 180 

has opened new opportunities in site surveying and monitoring. The 4DPC was known to be 

capable of recording and understanding a time-dynamic 4D world that it was challenging for 

2D images or static 3D point clouds to describe (Fan et al. 2021). Recently, the 4DPC led to 

many innovative studies that focused on subjects such as monitoring plant growth (Li et al. 

2013), tracking pedestrians (Chiu et al. 2021), and capturing high-definition human motions 185 

(Fan et al. 2021). Moreover, spatial-temporal information in the 4DPC was proven to be 

valuable in various identification tasks, such as calculating the acceleration of moving objects 

or identifying human activities (Fan et al. 2021). The 4DPC was expected to be advantageous 

for sensing and monitoring mobile crane-related activities thanks to the spatial-temporal data 

and high adaptability in poor visibility environments (Liang & Xue 2022). In addition, 4DPC 190 

data streams from multiple devices can be directly registered to cover the blind areas for each 

other.  

 

In other industries, a lot of effort on deep learning has been invested in semantic enrichment 

for the 4DPC in recent years (Shi 2023). The deep learning-based methods can be categorized 195 

as two groups, i.e., point-based (Fan et al. 2021; Fan & Yang 2019) and voxelization-based 

(Choy et al. 2019; Luo et al. 2018). Large-scale training and testing datasets were required to 

develop and validate the methods (Luo et al. 2023). 

 

However, understanding and enriching the semantics of 4DPC were challenging in the 200 

construction industry in comparison with conventional 3D point clouds. One reason was the 

limited 4DPC datasets. Another reason was that the training-relied methods are hard to apply 

to construction projects with a temporary nature. Thus, existing methods for semantic 
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enrichment of 4DPC in other industries cannot be transferred to construction scenarios. 

Recently, Liang et al. (2023) proposed a geometry-based semantic segmentation method for 205 

4DPC processing, but the method suffered from low generalization ability. Meanwhile, the 

semantic segmentation in Liang et al. (2023) produced point-level segmentation, which was 

insufficient for understanding and enriching the object-level semantics on the site. In addition, 

point cloud sensors recently used to collect 4DPC returned lower density of points than that of 

traditional 3D point clouds (Shi et al. 2020). The low density of 4DPC may cause the loss of 210 

crucial spatial information, which will also increase the difficulty of semantic understanding 

of point clouds. 

 

2.3 3D Point cloud registration methods 

Point cloud registration is the task that aligns two or more sets of points within a shared 215 

coordinate system (Huang et al. 2021). Point cloud registration has evolved from manual 

alignments to sophisticated automatic algorithms by leveraging advancements in 

computational power and machine learning (Gu et al. 2020). These new registration methods 

significantly enhance accuracy and efficiency in aligning multiple point sets within a shared 

coordinate system. Point cloud registration is vital to the remote sensing of 3D point clouds 220 

and various applications in computer vision, robotics, and construction informatics (Pomerleau 

et al. 2015). Kin et al. (2018) used 3D point cloud registration for robotic mapping in the indoor 

environment in the construction industry. In addition, 3D point cloud registration was used to 

align two photographs of defects between two inspections (Bush et al. 2022). However, 

incomplete data was highlighted as a common pain point of point cloud registration in the 225 

construction scenarios since there are many occlusions from construction equipment, materials, 

and temporary structures (Kim et al. 2018).  

 

Existing 3D point cloud registration methods can be broadly divided into coarse and fine 

registration. Coarse registration methods, such as Fast Global Registration (FGR) (Zhou et al. 230 

2016) and Random Sample Consensus (RANSAC) (Raguram et al. 2008), aim at providing a 

rough alignment of two or more point clouds and serve as a preliminary step for fine registration 

(Bueno et al. 2017). FGR and RANSAC work by finding correspondences between features 

extracted from the point clouds, and they do not require an initial guess of the alignment. 

 235 
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In contrast, fine registration methods were developed to improve the coarse registration results 

to achieve a more precise alignment of the point clouds (Al-Rawabdeh et al. 2020). A fine 

registration method usually requires an initial alignment as a starting point and focuses on 

minimizing the distance between corresponding points or features in the point clouds. Iterative 

Closest Point (ICP) (Rusinkiewicz & Levoy 2001) and Coherent Point Drift (CPD) 240 

(Myronenko & Song 2010) were among the most widely used methods for fine registration. 

ICP iteratively optimizes the alignment between a source and target point cloud by minimizing 

the distances between corresponding points, while CPD models point clouds as Gaussian 

mixture models and uses probabilistic optimization to globally estimate the non-rigid 

deformation relationship between the source and target point clouds. In the literature, fine 245 

registration was considered essential for high-precision applications, such as 3D modeling, 

object recognition, and robot navigation (Zhao et al. 2022). In most studies, the coarse-to-fine 

strategy is employed to solve registration problems of the 3D point cloud (Bosche 2010).  

 

Point cloud registration methods were also extended to volumetric 3D models (Wang et al. 250 

2016; Xue et al. 2019b; Zhang & Arditi 2013) in the construction industry. Zhang & Arditi 

(Zhang & Arditi 2013) aligned scanning 3D point clouds with simulated columns to achieve 

automated progress control. In addition, Wang et al. (Wang et al. 2016) registered BIM models 

for scanning 3D point clouds based on features on precast concrete elements to achieve 

automated quality assessment. Xue et al. (2019b) developed a derivative-free optimization-255 

based (DFO) semantic registration method for registering volumetric and semantic BIM objects 

to 3D point clouds. The DFO semantic registration is designed as a derivative-free optimization 

process for finding the optimal position of a BIM object in the input 3D point clouds. The 

results showed that the proposed DFO semantic registration method achieved a coarse-to-fine 

registration process. 260 

 

In summary, both IoT-based and image-based sensing approaches were limited in monitoring 

crane-related activities at construction sites. 4DPC is a promising sensing source but also 

challenging in data processing to monitor the activities. Inspired by some studies on registration 

methods between 3D point clouds and as-designed BIMs in the construction industry, it is 265 

promising to develop a semantic registration method for 4DPC using BIM semantics. However, 

existing registration methods for 3D point clouds cannot be directly used in 4DPC due to its 

low density and spatial-temporal characteristics. Therefore, developing a spatial-temporal 
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semantic registration method that processes site 4DPC with as-designed BIM semantics is 

significant.  270 

 

3 The 4DPC-based spatial-temporal semantic registration method 
3.1 Overview 

Fig. 1 shows an innovative 4DPC-based spatial-temporal semantic registration method for 

monitoring mobile crane-related activities. The inputs to the method include 4DPC and as-275 

designed BIM objects. The core of the proposed method consists of three iterative steps after 

4DPC pre-processing: (i) Temporal semantic registration (local), (ii) Clustering, and (iii) 

Spatial semantic registration (global). Three key parameters of the method are the registration 

pattern (whether to enable Step (i)), the time interval between key frames from Step (iii), and 

the optimization algorithm in Steps (i) and (iii). Finally, the results of spatial-temporal semantic 280 

registration are integrated and demonstrated for construction management in the post-

processing.  
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Fig. 1. Workflow of the proposed spatial-temporal semantic registration method 
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3.2 Pre-processing 285 

The pre-processing part mainly includes two parts, i.e., 4DPC data registration from multiple 

LiDAR sensors and environment removal of integrated 4DPC data. For the first part, 4DPC 

data from multiple sources was registered using transformation parameters obtained by manual 

extraction in the first few frames of 4DPC data. The registration accuracy across frames was 

based on the fixed LiDAR sensors when collecting data.  290 

 

For the second part, removing environmental points is as simple as cropping out the 

construction area of interest, as shown in Fig. 1. The environment elements within the 

construction area of interest, such as the ground, were removed manually using the RANSAC 

algorithm (Schnabel et al. 2007). The RANSAC algorithm includes three key parameters, i.e., 295 

distance-threshold, ransac-n, and num-iterations. In specific, distance-threshold indicates the 

distance threshold used to determine whether a data point is consistent with the estimated model. 

The ransac-n and number-of-iterations indicate the number of randomly sampled points used 

in each iteration and the number of iterations, respectively. The key parameters of the 

RANSAC algorithm were adopted from the suggested values from the algorithm library 300 

(open3d (Zhou et al. 2018) ver. 0.18.0) and calibrated using the initial 5 frames of 4DPC data. 

According to the tests, the one-off calibrated parameters effectively accomplished the task of 

environmental removal for the whole construction period. The successful one-off calibration 

was rooted in the consistent spatial information of the project’s 3D environment – while the 

LiDAR scanners’ poses were fixed throughout the entire data collection period. 305 

 

 

3.3 Temporal semantic registration (local search) 

Temporal semantic registration aims to avoid the repeated search of BIM objects in the 

following spatial semantic registration process. The design of this step is based on the fact of 310 

motion continuity of the construction object at site. Meanwhile, this step is activated when time 

t > 1. The temporal semantic registration of a BIM at time t is a nonlinear optimization problem: 

arg min Σ1≤i≤N ft (posi,t) ≈ arg min ft (pos1,t), ft (pos2,t), …, ft (posN,t) 

s.t. | posi,t − posi,t −1 | ≤trmax, where 1 ≤ i ≤ N // continuous motion (1) 

t > 1, // not the first frame 315 

where N is the number of semantic BIM objects, i ∈ {1, 2, …, N} is i-th BIM object, the posi,t 

= {xi,t, yi,t, zi,t, rxi,t, ryi,t, rzi,t} is a 6-DoF pose of the i-th BIM object at time t, | · | is the absolute 
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value function. In order reduce the complexity of the problem, the minimization of a sum is 

approximated to the sum of the minimization of every single solution. The approximation “≈” 

in Eq. (1) is because all objects move independently and have no physical collisions. The first 320 

constraint in Eq. (1) indicates that any BIM object’s pose change from time t – 1 to t is no 

greater than a given threshold trmax; that is all BIM objects move continuously.  

 

If the DFO method is accepted to solve the Eq. (1), the objective function ft in in Eq. (1) need 

to be further approximated by computing the root-mean-square error (RMSE) between the ith 325 

BIM object’s pose (BIM(posi,t)) and input 4DPCt in the current time frame (t). The approximate 

RMSE computation is presented in Eq. (2):  

ft(posi,t) ≈ RMSE(BIM(posi,t), 4DPCt)                                          // most fitted (2) 

 = Sqrt[Σpj∈BIM(posi,t) nndist(pj, 4DPCt)] / || BIM(posi,t)|| 

where BIM(posi,t) is a down-sampled point cloud from the i-th BIM,  nndist denotes the 330 

Euclidean distance between point pj and its nearest neighbor in 4DPC at time t, pj is the j-th 

point in BIM(posi,t), and “|| · ||” is the total number of points of in BIM(posi,t). The nndist metric 

can employ the octree data structure, which guarantees a balance between accuracy and 

computational time (Elseberg et al. 2013). Apart from RMSE, other metrics such as point cloud 

correspondence ratio and BIM object surface support density (number of associated points 335 

divided by surface area) are alternative metrics of ft. The registration success is also measured 

by ft in Eq. (2). If the value ft is less than the threshold for temporal semantic registration (θtemp), 

the successful registration result (BIM(posi,t)) will be recorded.  On the contrary, the i-th BIM 

object is considered out of the 4DPC. 
 340 

Some modern optimization algorithms libraries, such as NLopt (ver. 2.7), offer off-the-peg 

DFO algorithms. Examples of update-to-update DFO algorithms are Bound Optimization BY 

Quadratic Approximation (BOBYQA) (Powell 2009), New Unconstrained Optimization with 

quadratic Approximation with bound constraints (NEWUOA_BND) (Powell 2006), Nelder–

Mead (Nelder & Mead 1965), Constrained Optimization BY Linear Approximations 345 

(COBYLA) (Powell 1994), Dividing RECTangles (DIRECT) (Jones et al. 1993), PRincipal 

AXIS (PRAXIS) (Brent 2013). Many DFO algorithms were already confirmed to have 

outstanding capacity in optimizing complex problems (Siegbert et al. 2014; Wortmann et al. 

2017).  

 350 
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In addition, some fine registration algorithms, such as ICP or CPD, can also be introduced to 

solve the Eq. (1), since the position in the last frame can be an excellent initial alignment for 

registration. After the registration of all existing objects, the registration result will be used to 

crop registered points out of the 4DPCt.  

 355 

The significance of this step can be originated from two aspects. The first is that it increases 

the registration efficiency since the first constraint in Eq. (1) reduces the registration process's 

search space. In addition, the use of temporal information enhances the spatial information of 

point cloud by using the registration information from the previous frame, which could reduce 

the negative impact of incompleteness or noise of point cloud. 360 

 

3.4 Density-based object clustering 

This part aims to cluster unregistered 4DPC to potential objects. The input to this step is thus 

unregistered 4DPC (4DPCt,unreg). Note that environment points have been removed from 

4DPCt,unreg in pre-processing. The target construction objects exhibited robust geometric 365 

connectivity and evenly distributed density. Therefore, density and connectivity-based 

clustering algorithms can be adopted for clustering, such as the Density-Based Spatial 

Clustering of Applications with Noise (DBSCAN) (Ester et al. 1996). The resulting clusters 

(Ct) of interconnected point patches represent the surfaces of potential objects in the 

construction area of interest.  370 

 

3.5 Spatial semantic registration (global search) 

This part involves an optimization process for an optimal match between BIM objects and point 

cluster Ct. The registration objective ft is to minimize the RMSE between the kth BIM object 

(BIMk) and jth Ct cluster (C j,t): 375 

arg min ft (posk,t) ≈ arg minct,j ∈ Ct RMSE(BIM(posk,t), C j,t)        //best fitted patch

 (3) 

The indicator (RMSE)of registration success is calculated as the minimal distance of every 

single point (pointk) in BIM(posi,t) to the Ct,j: 

RMSE(BIM(posi,t), Ct,j) = Sqrt[Σpj∈BIM(posi,t) nndist(pj, Ct,j)] / || BIM(posi,t)|| (4)  380 

If the minimal ft is less than the threshold of spatial registration (θspat), it is considered to find 

the successful registration of BIM(posi,t) for k-th BIM objects and j-th cluster (Cj,t). After 

searching the global spatial area, the semantic registration for all clusters can be conducted 
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according to the optimization result. Meanwhile, the traditional coarse-to-fine registration 

method can also solve the Eq. (3). Compared with temporal semantic registration, spatial 385 

semantic registration is based on the random search in the global area of the point cloud frame, 

which is usually time-consuming. Therefore, the time interval is designed here to accelerate 

the registration process. Specifically, the time interval refers to the period for spatial 

optimization registration, i.e., conducting a global search to identify whether new objects enter 

the construction area of interest. A reasonable value of time intervals can achieve a good 390 

balance between the speed and accuracy of the proposed method.  

 

3.6 Post-processing 

Post-processing steps of the proposed method are also needed to visualize and apply the 

semantic registration results for site safety and productivity. First, a spatial-temporal load 395 

trajectory reconstruction process measures and restores the high-definition poses. The 

reconstructed trajectories can be visualized on the Cesium platform (ver. 1.117). Then, the 

construction activity analysis detects and measures the key states of construction activities. The 

post-processing outcomes can benefit crane operators, site managers, and other construction 

project stakeholders by enabling informed decision-making that will improve safety and 400 

productivity.  

 

In conclusion, the presented method first introduces 4DPC to overcome the limitations of 

existing sensing methods for monitoring construction sites. Meanwhile, the three challenges of 

semantic enrichment for 4DPC data, that is, expensive training data, the temporary nature of 405 

construction projects, and only existing point-level results, are addressed by as-designed BIM 

objects, temporally inherited poses from the last frame, and the construction area of interest for 

mobile cranes, respectively.  

 

3.7 Significance of the proposed method 410 

The presented method is significant in three aspects. (i) A general spatial-temporal formulation 

for 4DPC semantic registration; 

(ii) Efficient method with approximation in two levels, i.e., registration problem level and 

objective function level;   

(iii) A flexible registration method compatible with various algorithms, including DFO and 415 

traditional coarse-to-fine 3D registration algorithms. 
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Overall, this is the first study towards the training-free semantic registration of 4DPC, as far as 

we are concerned. 

 

3.8 Evaluation  420 

To measure and compare the result among different registration methods and settings, in 

addition to RMSE, three other indicators, that is, precision, recall, and F1, are introduced: 

 Precision = TP / (TP + FP), 

Recall = TP / (TP + FN),  (5) 

F1 = 2 × Precision × Recall / (Precision + Recall),  425 

where TP, TN, FP, and FN indicate true positives, true negatives, false positives, and false 

negatives for the registration result of objects, respectively. True signifies the object is 

precisely registered, while false indicates the opposite. Positive denotes the presence of the 

object within the point cloud frame, whereas false signifies the opposite. 

 430 

The IoU3D was used as an indicator to determine whether the BIM object is precisely 

registered: 

IoU3D = Volumeoverlap / (Volumeg + Volumereg - Volumeoverlap)       (6) 

where Volumeg indicates the object volume of the ground truth annotated by authors, 

Volumereg indicates the volume of the registered object, Volumeoverlap indicates the overlap 435 

volume between Volumeg and Volumereg. When the IoU3D is higher than 0.7, the object will 

be regarded as being successfully registered. 

 

4 Experimental results 
4.1 A test project  440 

An experiment was conducted to validate the proposed method, as illustrated in Fig. 2. The test 

project was a footbridge project involving the installation of prefabricated steel members at 

midnight on June 28, 2022, in Hong Kong. The project conducted the hoisting and installation 

of two major steel tie-beams. Figs. 2 (a), (b), (c), and (d) show the site conditions before 

hoisting, the process of unloading the tie-beams from a flatbed truck, the installation of Beam 445 

2 with a crane truck, and the completed status of the tie-beams, respectively. A mobile crane 

was utilized for hoisting operations in this infrastructure project. In addition, two other objects 

were involved: a flatbed truck, primarily used for transporting the beam, and a crane truck, 

utilized for further installation when the beam was hoisted into the installation position. In this 
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case, the proposed method aims to monitor hoisting load and on-site vehicles since they are the 450 

most significant source of risks (Forteza et al. 2017). The potential risks include the collision 

between hoisting loads and vehicles and between hoisting loads and surrounding buildings. 

 
Fig. 2. Test project. (a) Site condition before hoisting; (b) hoisting process of Beam 1 from a 

flatbed truck; (c) installation status of the Beam 1 with a crane truck; (d) completed status of 455 

two major steel tie-beams hoisting. 
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The case project met typical challenges regarding efficiency and safety for nighttime 

construction work in a congested area. First, construction activities were only allowed at 

midnight, and the construction work needed to be completed before dawn. This was because 460 

the site work required closing the road, which needed to resume operations in the daytime. 

Second, the efficiency of hoisting, as the most challenging part of the site work, considerably 

impacted the construction time. Third, there were buildings within close range; one building’s 

facades were glass curtain walls. Thus, a collision between a load and the facades during the 

hoisting process would cause economic losses.  465 

 

Thus, advanced monitoring was needed for mobile-crane-related site activities to ensure the 

safety and efficiency of this project. However, the traditional vision-based or sensor-based 

methods were challenging due to the unusual project characteristics. Specifically, the external 

light for the project was dim at night, so effective monitoring would be greatly impacted by 470 

common cameras that were sensitive to lighting conditions. For IoT devices, signals would be 

blocked or interfered with by tall buildings nearby, and the accuracy of monitoring could not 

be effectively guaranteed. 

 

4.2 Data collection  475 

A novel 4DPC sensing device, as shown in Fig. 3, was developed in-house to collect the high-

definition 4D motion data of construction activities. The devices consisted of four essential 

modules: (Ⅰ) a Livox Mid-70 sensor, (Ⅱ) a controller (Raspberry Pi 4B), (Ⅲ) an LED monitor, 

and (Ⅳ) a USB drive, as shown in Fig. 3. As an offline data transmission plan, the 4DPC data 

was later copied to a computer workstation via USB. Costs of parts Ⅰ, Ⅱ, Ⅲ, and Ⅳ were USD 480 

830, 110, 42, and 11, respectively. The total cost for a set of 4DPC sensing devices is about 

993 USD. 
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Fig. 3. 4DPC device in this study. (a) Installation illustration of 4DPC devices on site; (b) 

Components of our 4DPC device: (Ⅰ) Livox Mid sensor, (Ⅱ) controller (Raspberry Pi 4), (Ⅲ) 485 

LED monitor, (Ⅳ) USB drive; (c) Livox Mid sensor (Liang et al. 2023) 

 

To design an effective monitoring solution for mobile crane-related activities, three main 

factors, including the sensing range of devices, the construction area of interest, and the 

potential location of sensing devices, need to be considered. The basic principle is to place an 490 

appropriate number of sensors within the range where sensor equipment can be placed to 

achieve complete coverage of the construction area in 3D space. Therefore, the location design 

of sensors will vary in cases. The 4DPC sensor was Livox Mid-70, which had a 70.4° circular 

field of view, a minimum detection range of 5 cm, a maximum detection range of 70 m (r), and 

a range precision of 2 cm, as shown in Fig. 3(c). The construction area of interest was 12m × 495 

20m × 12m (W×L×H) with a tilt angle (θ) of 4.8 degrees in the z-y plane. As shown in Fig. 4, 

to cover the whole 3D space of the construction area of interest, two devices were installed on 

the ground floor and the fourth floor, which are out of the construction area of interest. 

 

 500 
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Fig. 4 Spatial relationship illustration of construction area of interest and sensing range of 

sensors: (a) decomposition in xy plane; (b) decomposition in xz plane; (c) decomposition in yz 

plane; (d) global view 

 505 

The sensor scanned cm-accurate 4DPC at 20 frames per second, but the limited scanning 

duration per frame may have resulted in decreased target resolution. In total, the devices 

collected 6 hours of 4DPC data (size: 80 MB/min) from the construction site. One hour of 

4DPC data was then selected for analysis in this paper. The selected 4DPC data contained the 

whole hoisting activity related to the mobile crane. For a satisfying and sufficient resolution of 510 

registration, the 4DPC data was aggregated every 2 seconds, i.e., a frame rate at 0.5 fps, 

resulting in a total of 1800 frames. 
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4.3 Experimental settings 

The computational experiment of the proposed method was operated in single threading mode 515 

on a desktop computer with Intel i7-10700 2.9 GHz CPU, 32 GB memory, Python 3.8, and 

Windows 11 64-bit. The geometric point-level error of 4DPC points was reported to be less 

than 2cm at 20 m. The area of interest was within 60m, and, thus, the precisions in the 

experiments were kept at cm level. For both BIM objects and input 4DPC, the voxel grid sizes 

were set to 80 mm. To remove the large planes of ground and walls in the environment, the 520 

RANSAC algorithm is selected to find the main plane of the ground and main walls. The 

parameters distance-threshold, ransac-n, and number-of-iterations were set to 150mm, 3, and 

1000, respectively. DBSCAN was selected for clustering, and the maximum neighborhood 

distance (eps) was 500 mm, and the minimum number of required points for a cluster 

(min_points) was 20. According to our tests with different algorithms, a DFO algorithm 525 

BOBYQA (Powell 2009) implemented in NLopt library was selected. It should be noted that 

the xyz coordinates in the analysis were aligned to the site’s ground plane for motion tracking 

and key state detection for site managers’ decision-making; there existed a 4.8° angular 

difference from the sea-level plane, which was assumingly ignorable for site safety and 

productivity analyses. 530 

 

First of all, one reference case with the DFO registration mode was designed; the three 

recommended key parameters are listed in Table 2. A total of 12 more test cases were designed 

for sensitivity analysis, as shown in Table 2. The first aspect examined in the sensitivity 

analysis was the registration algorithm. Five more cases with different DFO algorithms are 535 

designed for the DFO registration mode. Meanwhile, four coarse-to-fine registration modes 

combined with two coarse registration methods, i.e., FGR and RANSAC, and two fine 

registration methods, i.e., ICP and CPD, are considered. In addition, the time interval between 

the key frames varied: 8s, 16s, and 0s (every frame is a key frame). The last aspect examined 

in the sensitivity analysis was the spatial-only registration pattern (S8). The spatial-only pattern 540 

indicated that the Sect. 3.3 temporal registration process was disabled. In specific, the temporal 

information from the previous frame would not be used. The clustering and spatial registration 

were conducted in the current 4DPC data frame. 

Table 2 Details of eight test cases and associated values of the key parameters 

Category Case code Algorithm Registration pattern Time interval 
Reference case Ref. BOBYQA BOBYQA Spatial-Temporal 8 

NEWUOA_BD NEWUOA_BD Spatial-Temporal 8 
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Registration 
algorithms 

NELDERMEAD NELDERMEAD Spatial-Temporal 8 
COBYLA COBYLA Spatial-Temporal 8 
DIRECT DIRECT Spatial-Temporal 8 
PRAXIS PRAXIS Spatial-Temporal 8 
FGR-ICP FGR+ICP Spatial-Temporal 8 

RANSAC-ICP RANSAC+ICP Spatial-Temporal 8 
FGR-CPD FGR+CPD Spatial-Temporal 8 

RANSAC-CPD RANSAC+CPD Spatial-Temporal 8 

Time interval ST0 DFO Spatial-Temporal 0 
ST16 DFO Spatial-Temporal 16 

Regis. pattern S8 DFO Spatial-only 8 
 545 

4.4 Experiment results 

For the reference case, the total processing time for the one-hour 4DPC data was 3,349 seconds 

(0.93 hours) on the desktop computer. The average processing time for each data frame (every 

2s) was 1.86s, less than 2s. Therefore, a near-real-time processing was possible.  

5.4.1 Semantic registration results 550 

Fig. 5 shows typical registration results. Fig. 5(a) shows one data frame of unloading Beam 2 

from a flatbed truck, and Fig. 5(b) shows another data frame of installing Beam 2 with a 

crane truck. The darker points in Fig. 5 represent registered semantic BIM objects, of which 

the surfaces were sampled as dense 3D points. Overall, the registration results were all 

correct.  555 

 
Fig. 5. Examples of registration results, where darker points represent registered semantic 

BIM objects. (a) Unloading Beam 2 from a flatbed truck at t =126 (01:03:10 a.m.); (b) 

installing Beam 2 with a crane truck at t = 786 (01:25:10 a.m.) 

 560 

Table 3 illustrates the registration accuracy at the object level. Beam 1 and Beam 2 were 

accurately registered (Macro F1 = 100%) on average. The average F1 value of the flatbed 

truck and crane truck were 99.96% and 99.83%, respectively. The average F1 was 99.95% for 

all the objects in Table 3. From our observations of the experiments, the failed registration of 

flatbed and crane trucks only occurred when the trucks entered or left the area of interest. 565 

Furthermore, the failed registration of the flatbed truck was attributed to data incompleteness, 
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where over half of the truck was outside of the area of interest when exiting. The crane truck 

was not timely registered because there was no key frame to detect it when it entered the area. 

In summary, the high accuracy demonstrated consistent and successful registration at the 

object level. 570 

Table 3. List of average registration accuracy from the reference case 

Object Precision (%) Recall (%) Macro F1 (%) 
Beam 1 100 100 100 
Beam 2 100 100 100 
Flatbed truck 99.92 100 99.96 
Crane truck 99.86 99.79 99.83 
Average 99.95 99.95 99.95 

 

Fig. 6 presents example hoisting motions showcasing three typical activities from the 

registration results. Fig. 6(a) shows the motions of the hoisting process for Beam 2 from the 

flatbed truck to the ground between t = 123 and t = 186. Fig. 6(b) shows hoisting for 575 

installation of Beam 2 from t = 450 to t = 786. Subsequently, Beam 1 was hoisted from the 

ground to the installation position between t = 1296 and t = 1591, as shown in Fig. 6(c). The 

motions in the registration results provided precise and near-real-time object-level 

information for site managers. It is important to note that the crane truck in Fig. 6(c) at t = 

1591 was correctly registered, despite the sparse or discontinuous point cloud due to 580 

occlusion. The successful registration in sparse or discontinuous 4DPC was achieved due to 

the temporal patterns from the previous key frame. 
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Fig. 6. Example hoisting motions represented form the registration results. (a) Hoisting Beam 

2 from the flatbed truck from t = 126 to 186 (01:03:10 – 01:05:10 a.m.); (b) hoisting Beam 2 585 

for installation from t = 450 to 786 (01:13:58 – 01:25:10 a.m.); (c) hoisting Beam 1 for 

installation from t = 1296 to 1591 (01:42:10 – 01:52:00 a.m.) 

 

4.4.1 Load activity monitoring 

High-definition trajectories of the tie-beams were reconstructed and visualized with the Cesium 590 

platform based on the semantic registration result of the 4DPC data. Figs. 6(a–c) visualize three 

typical states of hoisting Beam 1 on the Cesium platform, that is, start, process, and end. Each 

state was associated with a precise timestamp (2s resolution) and 3D pose. The intuitive 
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visualization in the main window offered site managers the graphical trajectory of Beam 1, 

while the timestamp at the bottom indicated the exact time of the state. 595 
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Fig. 7. Trajectory of Beam 1. (a)(b)(c) 3D illustrations; decomposed motion in (d) x-axis; (e) 

y-axis; (f) z-axis; decomposed angle of main axis with (g) x-axis; (h) y-axis; (i) z-axis;  
 

To facilitate site managers’ measurement of the key states, Figs. 6(d–f) show the decomposed 

motions of Beam 1 along the x-axis, y-axis, and z-axis, respectively. In addition, Figs. 6(g–i) 

depict the 3D angles of Beam 1. Figs. 6(d–f) show that during the hoisting process, the largest 

displacement of the center of Beam 1 was on the z-axis, with an approximately 9760 mm 600 

hoisting and subsequent lowering to the installation position at approximately 6670 mm.  

 

In Figs. 6(g) and (h), Beam 1 was detected in a rotation of about 82°, from nearly parallel to 

the x-axis at t = 1296 to a near-perpendicular direction. Moreover, Fig. 7(i) indicates that the 

angle between Beam 1 and the z-axis remained consistent with minor fluctuations. The detected 605 

and measured rotation implied that Beam 1 maintained the angular motions in the horizontal 

plane during the hoisting process. 
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As shown in Fig. 8, Beam 2 experienced a two-stage hoisting process, which was more complex 

than that of Beam 1. Figs. 7(a–c) visualize the 3D trajectory of Beam 2 in two stages, which 610 

involved unloading it from the flatbed truck to the ground and hoisting it from the ground to 

the installation position. Figs. 7(d–i) illustrate the decomposed and angular motions of Beam 

2. During the first stage from t = 126 (01:03:10 a.m.), noticeable motion changes were 

measured on the y-axis and z-axis, as shown in Figs. 7(e) and (f). Specifically, Fig. 8(f) reveals 

that the height of Beam 2 first increased from about 2550 mm to about 3890 mm and then 615 

decreased to ground level, reflecting the unloading and hoisting. Meanwhile, there was a slight 

rotation (about 10°) in all three axes, as shown in Figs. 7(g–i). The rotation in rz reflected the 

fact that Beam 2 was initially inclined on the flatbed truck, as shown in Fig. 6(a). In the second 

stage, when 450 ≤ t ≤ 786 (01:13:58 to 01:25:10 a.m.), two considerable changes were motion 

along the z-axis and a slight rotation in the horizontal plane. Fig. 8(f) demonstrates that Beam 620 

2 was hoisted to a height of about 9615 mm and then lowered to 6980 mm. Furthermore, Figs. 

7(g) and (h) show that Beam 2 rotated approximately 78°, from roughly parallel to the x-axis 

to parallel to the y-axis, during the hoisting.  
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Fig. 8. Trajectory of Beam 2: (a)(b)(c) 3D illustration; decomposed motion in (d) x-axis; (e) 
y-axis; (f) z-axis; decomposed angle of main axis with (g) x-axis; (h) y-axis; (i) z-axis; 

 625 

4.4.2 Monitoring truck activity  

Fig. 9 illustrates the decomposed and angular motions of the flatbed truck on the horizontal xy 

plane. Fig. 9(a) shows that the flatbed truck initially moved along the x-axis from t = 63 

(01:01:04 a.m.) and ultimately departed the area of interest at t = 633 (01:20:04 a.m.). Prior to 

the departure, the flatbed truck moved about 7880 mm in the x-axis direction and turned 30° 630 

on the xy plane for a temporary parking place nearby.  

 

As shown in Fig. 10, the crane truck first entered at t = 715 (01:22:48 a.m.). Then, the crane 

truck changed its position from t = 1233 (01:40:04 a.m.) to install another tie-beam, as detected 

on both the x-axis and the y-axis in Figs. 9(a) and (b), respectively. Figs. 9(c) and (d) indicate 635 

that the crane truck maintained a stable 3D angle throughout the process because only minor 

angular changes were measured. 
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Fig. 9. Trajectory of flatbed truck:  decomposed motion in (a) x-axis; (b) y-axis; decomposed 

angle of main axis with (c) x-axis; (d) y-axis 
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4.4.3 Sensitivity analysis 

Table 4 shows two registration categories, i.e., DFO-based and coarse-to-fine registration, 640 

were first considered. Specifically, five other DFO registration algorithms and four coarse-to-

fine registration methods were examined. The results showed that the performance of the 

BOBYQA (reference case) algorithm was better than other DFO algorithms. It can also 

conclude that the selection of DFO algorithms had a minor impact on the accuracy but a 

significant influence on the computational time.  645 

 

For coarse-to-fine registration cases, the FGR-ICP had the best F1 accuracy and 

computational time performance than the other three cases. Compared with reference case 

Ref. BOBYQA, FGR-ICP significantly shortened the processing time (from 1.04s to 0.58s 

per frame) with a decrease of F1 value (from 99.97% to 99.68%).  650 
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Fig. 10. Trajectory of crane truck:  decomposed motion in (a) x-axis; (b) y-axis; decomposed 

angle of main axis with (c) x-axis; (d) y-axis 
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Table 4 Results for algorithm selection (default spatial-temporal parameters “ST8”; best in 

each category in bold) 

Category Algorithm* 
F1 accuracy (%)  Time per 

frame* (s) Beam 1 Beam 2 F-truck C-truck Avg* 

DFO 

Ref. BOBYQA 100.00 100.00 99.96 99.93 99.97 1.04 
NEWUOA_BND 100.00 100.00 99.96 99.93 99.97 1.12 
NELDERMEAD 100.00 100.00 99.96 99.93 99.97 3.30 

COBYLA 100.00 100.00 99.96 98.94 99.64 1.34 
DIRECT 100.00 100.00 99.63 99.12 99.69 4.21 
PRAXIS 100.00 100.00 99.96 98.83 99.83 3.47 

Coarse-
to-fine 

FGR-ICP 100.00 100.00 99.94 98.77 99.68 0.58 
RANSAC-ICP 100.00 66.46 99.94 99.35 91.44 11.65 

FGR-CPD 65.47 65.62 77.34 54.71 65.79 10.36 
RANSAC-CPD 58.73 55.15 76.38 54.34 61.15 36.51 

*: Best of the column in bold 

 655 

Regarding F1 and computing time, Ref. BOBYQA and FGR-ICP were the best cases for 

DFO-based and coarse-to-fine registration, respectively. Furthermore, Fig. 11 shows a bi-

objective comparison of the registration results between BOBYQA and FGR-ICP. The 

horizontal axis is the computing time per frame, and the vertical axis is error = 100% – F1. In 

engineering practice, more minor errors and shorter computing time are expected; the scatter 660 

points are closer to the coordinate origin in Fig. R1. As shown in Fig. 11, although the 

computing time of FGR-ICP is about half that of BOBYQA, the error of FGR-ICP is ten 

times that of BOBYQA. Therefore, we need to choose a method based on actual project 

requirements. If the computing time requirement is high, FGR-ICP will be preferred. If 

accuracy (less error) is the first consideration, BOBYQA is better than FGR-ICP. 665 
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Fig. 11 Bi-objective comparison of registration results between BOBYQA and FGR-ICP 
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In addition, as shown in Fig. 12, the values of registration RMSE for Ref. BOBYQA and 

FGR-ICP were consistently close from the beginning to the end of the test project.
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Fig. 12. Comparison of RMSE between BOBYQA and FGR-ICP (lower is better)  

As shown in Table 5, the impact of the time interval between key frames on the F1 accuracy 

was slight in the three test cases, i.e., ST0, Ref. BOBYQA (ST8), and ST16. However, a 

shorter interval led to longer computational time. The increment of computational time 

correctly reflected the frequency of time-consuming spatial semantic registration (global 675 

search) in Sect. 3.4. However, the savings in computational time came at the cost of 

registration accuracy. Overall, the parameter settings in the reference case were 

recommended as a ‘sweet spot’ for the trade-off between computational time and registration 

accuracy. 

Table 5 Results for sensitivity analysis of spatial-temporal settings (best in F1 and time in 680 

bold) 

Case code 
F1 accuracy (%)  Time per 

frame (s) Beam 1 Beam 2 F-truck C-truck Avg 
Ref. BOBYQA(ST8) 100.00 100.00 99.96 99.93 99.97 1.04 

ST0 100.00 100.00 99.96 99.98 99.99 2.21 
ST16 100.00 100.00 99.96 99.84 99.95 0.74 

 

Lastly, Table 6 compares the spatial-feature-relied registration pattern, i.e., spatial-only 

registration (S8), with the spatial-temporal registration pattern (ST8). The results showed that 

case S8 yielded considerably lower F1 values in comparison with the preferred spatial-685 

temporal registration pattern. Moreover, S8 required a longer computational time than their 

corresponding spatial-temporal pattern, i.e., S8. According to an in-depth analysis of the 

experimental results, the main barrier to the spatial-feature-relied registration method was the 

spatial noise in the 4DPC data, which was caused by laser occlusion, worker interferences 
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(e.g., guiding tie-beams with rope), contact between the ropes and the workers’ arms, and 690 

point-level geometric errors. 

Table 6 Results for sensitivity analysis of spatial-temporal settings (default algorithm 

“BOBYQA”; default time interval “8s”) 

Case code 
F1 accuracy (%)  Time per 

frame (s) Beam 1 Beam 2 F-truck C-truck Avg 
Ref. BOBYQA(ST8) 100.00 100.00 99.96 99.93 99.97 1.04 

S8 32.23 55.59 91.00 72.92 62.94 2.21 
 

In summary, the registration accuracy of the proposed method is proven sensitive to the 695 

choice of registration algorithm and the use of a spatial-temporal registration pattern. The 

time interval significantly impacts computational time more than registration accuracy. 

 

5 Discussion 
5.1 Pros and cons of the proposed method 700 

The advantages of the proposed method lie in three aspects. 

• The proposed spatial-temporal semantic registration method is the first of this kind for 

mapping the as-built BIM semantics to the 4DPC of construction activities. The 

resulting semantic poses and motions of the BIM objects enable digital twin site 

simulations, early alerts, and early interventions (Opoku et al. 2021). 705 

• The spatial-temporal registration pattern was proven considerably better than traditional 

3D spatial registration. The experimental results (the last row) in Table 5 listed 

significant improvement from the spatial-only patterns in terms of both accuracy and 

time cost. 

• The proposed method is robust in employing either global or local registration 710 

algorithms, including sophisticated DFO algorithms, in the workflow. The high 

accuracy in experiments confirmed the rationality and effectiveness of the proposed 

method. Researchers and practitioners have the freedom to change the registration 

algorithm to meet the project site scenario.  

However, this paper also had limitations: 715 

• The environment, including the ground and facades, was removed semi-automatically 

using an algorithm RANSAC. An automatic method can be developed to remove the 

environment from 4DPC by extracting the key feature points and planes.  
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• The proposed method is reliant on an optimization process of as-designed BIM objects. 

Therefore, construction objects excluded in the as-designed BIM cannot be detected. 720 

Examples are site workers, temporary scaffoldings, and ropes to correct load positions. 

Future research could explore advanced computer vision-based technologies to achieve 

a BIM-free semantic enrichment. 

• The experiment was conducted in only one type of project. More types of projects and 

4DPC data regarding mobile-crane activities are recommended to validate the proposed 725 

method in the future. 

 

5.2 Potential applications 

Several promising applications in construction safety and productivity management are 

recommended to apply the presented 4DPC-based spatial-temporal semantic registration 730 

method based on the identified pros and cons. Examples are: 

• Load monitoring and collision alert. The accurate tempo-spatial positioning of loads 

measures the deviation and potential collisions during crane operations. Early warnings 

of deviations and potential collisions mitigate such risks and subsequent losses.  

• Worker safety. The proposed method for mobile cranes can facilitate worker safety 735 

management on-site. First, the 4D trajectories of all major equipment and construction 

objects narrow down and predict hazardous situations for workers. One example is that 

a worker who enters a restricted zone under a hoisting load’s 10-second trajectory can 

be alerted by a smart helmet. 

• Component logistics management. The outcomes of the method, such as the tracked 740 

movements of beams and components before hoisting, can facilitate just-in-time 

logistics from delivery to installation. 

• Productivity monitoring and optimization. The near-real-time analysis of registration 

results in Sects. 4.4.2 and 4.4.3 quantitatively measures and monitors the movement 

and handling of components and equipment. The accumulated analysis can facilitate 745 

the site manager’s identification of bottlenecks of construction processes eventually. 

• Progress monitoring and quality control. The monitored object-level registration 

results reflect 3D project progress in near real-time to enable multiple progress 

monitoring and quality control applications such as compliance checking.  



34 
 
 

Overall, the proposed 4DPC-based optimization-based semantic registration method promises 750 

to fill the technical gap of the semantic enrichment of the 4DPC to supplement construction 

safety and productivity management.  

 

6 Conclusions 
In the construction industry, there is a pressing need for high-definition and construction 755 

context-aware monitoring for mobile cranes due to their high mobility and flexibility. However, 

conventional technologies such as CCTV cameras and IoT devices are limited in monitoring 

mobile crane-related activities, while new and promising data sources such as 4DPC are 

emerging. This paper proposes a 4DPC-based spatial-temporal semantic registration method 

for monitoring mobile crane-related activities. Intuitive visualizations and key state detection 760 

are designed for safety and productivity monitoring based on the results of the proposed method. 

From experimental results, one-hour 4DPC data showed a highly accurate semantic registration 

of two tie-beams and two trucks at F1 = 99.95% on average, while the average processing time 

for a frame (2s) can be shortened to 1.04s. The load and truck activities were qualitatively 

measured and visualized for site managers’ informed decision-making. In summary, this paper 765 

addresses a critical issue in high-definition and construction context-aware monitoring and 

opens up new avenues for research and applications in construction safety and productivity 

management. 

 

This paper offers a two-fold contribution. First, the spatial-temporal semantic registration 770 

method is proposed and proved effective for tracking objects in the crane workspace. It 

outperformed those traditional spatial-information-relied registration methods in sparse 4DPC 

with noise and occlusion. Secondly, the comprehensive analysis based on the method’s results 

offers high-definition and construction context-aware tools for construction practitioners to 

monitor mobile crane-related activities. Nevertheless, this paper is limited to semi-automatic 775 

environment data removal, reliance on as-designed BIM objects, and limited experimentation.  

 

Future research directions for 4DPC construction activities are recommended in automatic 

4DPC preprocessing for environment removal, BIM-free semantic enrichment processes such 

as deep learning algorithms, and diversified project types for validation and evaluation. 780 

Researchers also could explore cross-referencing 4DPC and other site sensing technologies.  
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