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Abstract 
Construction waste contains inert (e.g., construction debris, rubble, earth, bitumen, and 
concrete) and non-inert materials (e.g., bamboo, plastics, wood, paper, and vegetation), while 
it is often a combination of the two when it is generated at source. The bulk density of 
construction waste is the yardstick information for many subsequent waste management efforts. 
One feasible way to derive the bulk density information is to segregate the mixture of inert and 
non-inert substances and examine their compositions, but clearly, this is an onerous task. This 
paper reports a data-driven approach to obtain the bulk densities of inert and non-inert 
construction waste by analyzing a big dataset of 4.9 million loads of construction waste in 
Hong Kong in the years 2017 to 2019. It is discovered that the means of bulk density are 336 
kg/m3 for non-inert waste, 528 kg/m3 for mixed waste, and 991 kg/m3 for inert waste, and their 
coefficients of variation are 69%, 43%, and 29%, respectively. The research not only proved 
our heuristic rules concerning the bulk densities of the three generic types of construction waste, 
but also articulated, for the first time, their converged means and ranges. The findings can be 
used in adjusting the admission criteria as adopted in the governmental waste management 
facilities. Future research is recommended to further narrow down the bulk density ranges to 
provide more accurate references for construction waste management.  
 
Keywords: Construction waste management; inert waste; non-inert waste; bulk density; big 
data; data-driven approach  
 
1. Introduction 1 

Construction waste, sometimes also called construction and demolition (C&D) waste, is the 2 

solid waste arising from such construction activities as site clearance, excavation, new building, 3 

refurbishment, renovation, and demolition (HKEPD, 2019; Lu et al., 2019). In the U.S. or 4 

Europe, construction waste is usually classified into specific materials. For example, the U.S. 5 

Environmental Protection Agency (EPA, 2018) classifies construction waste into seven groups 6 

according to their composition: concrete, steel, wood products, gypsum wallboard and plaster, 7 
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brick and clay tile, asphalt shingles, and asphalt concrete. The European Waste Catalogue 8 

classifies construction waste in line with its compositions into eight categories, including 9 

concrete bricks, tiles, ceramics, wood, glass, and plastic (SEPA, 2015). In other economies like 10 

the U.K., Australia, or Hong Kong, construction waste is often categorized into two types: inert 11 

waste, comprising primarily debris, rubble, soil, bitumen, concrete, and so on; and non-inert 12 

waste, comprising bamboo, plastics, wood, paper, vegetation, and so forth (HKEPD, 2019). In 13 

any case, construction waste generated at source is usually in mixed material dumps without 14 

knowing their detailed compositions or densities.  15 

 16 

However, information on the detailed compositions or densities of a waste dump is of 17 

significant practical value. For example, the composition information is important for devising 18 

different technologies to sort them into different material groups for reusing or recycling 19 

(Clancy, 2019; Lu & Yuan, 2012). One also needs to understand the chemical and physical 20 

properties associated with specific materials for proper recycling strategies. For example, it 21 

needs to calculate their combustion value and emission (e.g., dioxin and furans) if using waste 22 

incineration (Eriksson & Finnveden, 2017; The World Bank, 1999), or examine their 23 

environmental degradation and nuisance production (e.g., carbon dioxide, methane, and 24 

leachate) if for landfilling  (Salem et al., 2008; Xu et al., 2019). The overall density of a bulk 25 

of waste is also of significant practical value. For example, the UK WRAP (Waste and 26 

Resources Action Programme) published a dedicated report to investigate the bulk densities of 27 

commonly collected materials (e.g., food waste, mixed paper, cards, or plastic bottles). The 28 

information helps “inform the assessment of waste and recycling options and the planning and 29 

delivery of collection and recycling services” (WRAP, 2010). Li et al. (2020a) reported a bulk 30 

density-based method for recognizing kitchen and dry waste in Beijing. Li et al. (2020b) further 31 

investigated the seasonal variation impact on the bulk-densities by applying the ‘intelligent 32 

supervision trashcan’ in various climate areas across China. Bowan & Tierobaar (2014) 33 

characterized the composition and bulk density of solid waste in Ghanaian Markets for devising 34 

solid waste management strategies and policies. In the construction waste sorting facilities 35 

operated by the Environment Protection Department of Hong Kong (HKEPD), whether a load 36 

of waste is admittable is dependent on whether the inert substances exceed 50% of the bulk by 37 

weight (HKEPD, 2019). The bulk density is the yardstick information underpinning the waste 38 

sorting system.  39 

 40 

A feasible way to obtain the bulk density information is to measure the weight and volume of 41 

a bulk of mixed waste materials and calculate its density. In fact, WRAP (2010) adopted similar 42 

approaches (e.g., self-reporting from contractors and researchers, and fieldwork) to measure 43 

the densities from containers, kerbsides, stillage vehicles, and so on. Ireland EPA (1996) also 44 

reported its approach to measure bulk densities of municipal solid waste, predominantly using 45 

weight and volume derived from fieldwork. Li et al. (2020a) collected and measured a sample 46 

of 270 bagged household solid waste and analyze their moisture content and bulk density. 47 
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Bowan & Tierobaar (2014) spent around two months collecting solid waste samples by placing 48 

many waste bins at determined sites, and then these samples were used for estimating the solid 49 

waste composition and bulk density. Apparently, these fieldworks are utterly onerous. Another 50 

concern is that the calculated results cannot be readily generalized to others with any 51 

confidence. Bulk density can be defined as the mass of many particles of the materials divided 52 

by the total volume. It is not an intrinsic property of a material. Rather, it depends on the 53 

compositional materials, voids, and porosities ( Lyon & Buckman, 1922; Mattox, 2010). The 54 

combinations of inert and non-inert waste in waste dumps could be infinitive in terms of 55 

compositions and volumes. So could be their bulk densities, which are collectively determined 56 

by their compositions and volumes. Researchers around the world have endeavored to search 57 

for more feasible approaches to obtain the bulk densities of waste materials. Data-driven 58 

approaches come to the radar under this background.  59 

 60 

Data-driven approaches are popularized in the era of big data. According to Mayer-61 

Schönberger & Cukier (2013), big data has three defining characteristics, namely volume, 62 

variety, and velocity, or the three ‘Vs’. Volume means the quantities of data incoming as 63 

terabytes or zettabyes; velocity means the data is increasing at a very high speed in batch, near 64 

time, real-time, and streams; and variety means the data can be structured, unstructured, semi-65 

structured, and a combination thereof to indicate different aspects of a subject (Russom, 2011; 66 

Zaslavsky et al., 2013). Big data in the forms of records, transactions, tables, or files is 67 

relentlessly generated from such sources as weblogs, sensor networks, social networking, and 68 

streaming video and audio. Analytics have been developed to analyze big data to uncover 69 

hidden patterns, unknown correlations, and other useful information to guide better business 70 

predictions and decision-making that cannot be done in the small data contexts (Shen et al., 71 

2014).  72 

 73 

Data-driven approaches are exploratory to analyze big data to extract scientifically interesting 74 

insights (Kitchin, 2014). Unlike traditional theory-driven approaches to base the causal link 75 

between an intervention and its outcomes on an explicit theoretical model, data-driven 76 

approaches might not have an explicit theoretical model or causal link at the beginning. The 77 

stream of approaches relies on the big volume of data to inform a causation/pattern that might 78 

not be possible in the small data contexts. The major promises of data-driven approaches lie in 79 

patterns extracted from the analysis of large data sets, and insights derived from these patterns 80 

(Sivarajah et al., 2017). Data-driven approaches can find their theoretical root in probability 81 

theory, in particular, the law of large numbers (LLN)  (Bernoulli, 1713), which is a theorem 82 

asserting that the average of the results obtained from a large number of trials should be close 83 

to the expected value and more converged as more trials are performed. Construction waste 84 

materials generated from a region are not entirely random in terms of compositions; rather, 85 

they are determined by prevailing construction materials, technologies, and recycling levels. If 86 

one can obtain the big data of the weights and volumes of C&D waste dumps, he/she might be 87 
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able to derive a converged, reliable value or range of bulk densities regardless of the 88 

overwhelming combinations of the inert and non-inert substances.  89 

 90 

The primary aim of this research is to determine the bulk density of construction waste by 91 

analyzing a precious big dataset in Hong Kong. Hong Kong's eminent construction activities 92 

have built an astonishing skyline and world-class infrastructure. However, they also generated 93 

a massive amount of C&D waste per annum, which requires careful management and efficient 94 

public policies. The remainder of the paper is organized as follows. Subsequent to this 95 

introductory section is Section 2 to describe the big data set on C&D waste obtained from Hong 96 

Kong’s construction industry. Section 3 describes the methods by deploying both graphical and 97 

mathematical approaches. Section 4 reports the data analyses, results, and findings, followed 98 

by an in-depth discussion in Section 5. Conclusions are drawn in Section 6, which also proposes 99 

directions for future studies. 100 

 101 

2. The big data set 102 

The data was obtained from the HKEPD, which launched a Construction Waste Disposal 103 

Charging Scheme (CWDCS) in 2006, regulating that all solid waste generated from 104 

construction activities, unless being properly reused or recycled, must be disposed of at 105 

designated government waste disposal facilities such as landfills, public fills, or off-site sorting 106 

facilities. Prior to using the facilities, the responsible party (e.g., a main contractor if the 107 

contract worth is larger than HK$1 million, or an individual such as the owner or a small 108 

contractor of construction work under a contract with value less than HK$1 million) is 109 

mandated to open a billing account in the HKEPD. The billing account database thus retains 110 

basic information of all the projects, including the contract name, client, contract sum, site 111 

address, type of construction work, and so on. Responsible contractors or individuals who 112 

dispose of construction waste at the facilities will be charged a fee depending on the 113 

compositions of the waste (see Table 1). 114 

 115 

Table 1. Government construction waste disposal facilities and respective charge levels 116 

Government waste 
disposal facilities 

Type of construction waste 
accepted 

Charge per ton (HK$) 
Before 7 April 
2017 

After 7 April 
2017 

Public fill reception 
facilities 

Consisting entirely of inert 
construction waste 27 71 

Sorting facilities 
Containing more than 50% by 
weight of inert construction 
waste 

100 175 

Landfills 
Containing not more than 50% 
by weight of inert construction 
waste 

125 200 

Source: Adapted from the HKEPD (2020). https://www.epd.gov.hk/epd/misc/cdm/introduction.htm.  117 

Access on 9 October 2020 118 

 119 
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Driven by the CWDCS, construction waste management in Hong Kong is shaped into some 120 

common practices, as shown in Figure 1. Even after proper reduction, reuse, or recycling, 121 

construction waste is unavoidably generated on various sites. On-site waste segregation (Point 122 

A) is highly recommended to sort the mixed waste materials into inert and non-inert portions. 123 

Inert waste will be sent to public fills (Point D) for reclamation, site formation, production of 124 

recycled aggregates, or other uses. Non-inert waste will be transported to landfills (Point B). 125 

When a site is too congested to allow on-site segregation, one can transport the mixed waste to 126 

the off-site sorting facilities (Point C) if it contains more than 50% inert substance by weight. 127 

Motivated by saving the waste disposal charging fees, one would put efforts to sort the waste 128 

into inert or non-inert types. They would also possibly “cheat” at the facilities, e.g., by 129 

transporting unqualified non-inert waste to public fills or off-site sorting facilities instead of 130 

landfills. Under some circumstances, e.g., to save time or labor cost, one would not bother to 131 

sort the waste but just transport it to landfills by paying a higher fee. From the government 132 

facility operators’ perspective, it is important to make sure that qualified waste is accepted at 133 

proper facilities (see Table 1), e.g., by setting up technical gauges and conducting regular 134 

inspections.   135 

 136 

 137 

Figure 1. The common process of construction waste management in Hong Kong 138 

(Adapted from Lu & Tam [2013]) 139 

 140 

When construction waste is disposed of at the facilities, the HKEPD records information on 141 

every load of C&D waste, including the facility, date, vehicle number, net weight of the waste, 142 

the time when the vehicle enters and exits, and the billing account number the vehicle uses. 143 

The trucks delivering C&D waste must be registered at the HKEPD in a separate database, 144 

which contains the plate numbers and permitted gross vehicle weight (PGVW). An excerpt of 145 

the database can be perceived in Figure 2. Unintentionally, this practice generates a large 146 

secondary dataset, which makes it possible to probe into various aspects pertinent to 147 

construction waste management. The data covers the nine waste disposal facilities categorized 148 

into three types, namely landfills, public fills, and off-site sorting facilities, which receive 149 
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qualified C&D waste, as shown in Table 1. We collected nine years’ data ranging from 2011 150 

to 2019 from the HKEPD’s theme website, which publishes updated data every fortnight after 151 

made some necessary pseudonymization. The data contains more than 1 million highly 152 

structured records per annum, which means more than 1 million loads of waste are disposed of 153 

at the facilities yearly. The data covers various items, including facility names, vehicle plate 154 

numbers, PGVW, waste weight and depth, disposal date, times the lorries entering and leaving 155 

the facilities, and so on. The data is incoming more than 3,000 records per day. According to 156 

the 3Vs as elaborated above, clearly, the data is qualified as big data, although its volume is 157 

not as big as terra- or zetta-bytes. Unlike the fieldwork conducted by UK WRAP (2010) or 158 

Ireland EPA (1996) to manually measure the volumes and weights of municipal solid waste, 159 

the practice in Hong Kong generates a large set of secondary data for examining the bulk 160 

density of construction waste. 161 

 162 

 163 

Figure 2. The big dataset 164 

 165 

3. Methodology 166 

Bulk density is defined as the mass of many particles of the material divided by the total volume 167 

they occupy, and the total volume includes particle volume, inter-particle void volume, and 168 

internal pore volume (Lyon & Buckman, 1922; Mattox, 2010). Unlike the true density of 169 

materials, which refers to the actual mass of a solid substance per unit volume (e.g., m3) in an 170 

absolutely dense state, bulk density is not the intrinsic property of materials. It can change in 171 

line with the compositions of the materials and the voids. In either case, the density can thus 172 

be calculated by using Equation (1) below:  173 

 174 

𝜌𝜌 = 𝑊𝑊/𝑉𝑉 (1) 
 175 
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where ρ is the density, W is the weight of a particular dump of waste contents, and V is the 176 

volume.  177 

 178 

Table 2 shows the true densities of construction materials that are often seen in the C&D waste 179 

dumps. An observation is that, generally, inert construction materials are of higher densities 180 

than the non-inert counterparts. This is particularly true in view of the fact that alloy and steel 181 

materials are quickly salvaged on-site without going to disposal. Common sense is that the bulk 182 

density of a dump of materials should be smaller than the true density of the dominant solid 183 

substance (e.g., concrete, bitumen, timber, or wood). In Hong Kong’s practices, inert waste 184 

materials are disposed of at public fills (Point D in Figure 2); non-inert waste materials are 185 

disposed of at landfills (Point B); and the mixed materials at off-site sorting facilities (Point 186 

C), with some caveats of ignorance or disguising cases as mentioned in the above section. 187 

Drawing upon all these rationales, it would be legitimate to assume the following Inequation 188 

(2): 189 

 190 

�̅�𝜌𝐵𝐵𝐵𝐵−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 > �̅�𝜌𝐵𝐵𝐵𝐵−𝑚𝑚𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚 > �̅�𝜌𝐵𝐵𝐵𝐵−𝑖𝑖𝑛𝑛𝑖𝑖−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (2) 
 191 

which means the average bulk density of inert materials (�̅�𝜌𝐵𝐵𝐵𝐵−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) is larger than that of mixed 192 

materials (�̅�𝜌𝐵𝐵𝐵𝐵−𝑚𝑚𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚), and in turn, the average bulk density of mixed materials is larger than 193 

that of the non-inert materials (�̅�𝜌𝐵𝐵𝐵𝐵−𝑖𝑖𝑛𝑛𝑖𝑖−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖). It is also reasonable that the individual bulk 194 

densities could overlap with each other for two causes. One is the variable inter-particle voids 195 

between materials. Another is the true densities of different materials originally have overlap. 196 

As shown in Table 2, the true densities of plastic (non-inert) and bricks (inert) range from 913 197 

to 2,159 kg/m3 and from 1,500 to 1,800 kg/m3, respectively. Other than these heuristic rules, 198 

we do not know the average bulk densities with any precision. The void volumes are infinite 199 

for the C&D waste consisting of either only one or more materials. Nevertheless, according to 200 

the Law of Large Numbers (LLN) (Bernoulli, 1713), when the data of bulk density is big 201 

enough, it is possible to indicate a converged bulk density, or some significant patterns which 202 

may provide clues for estimating the bulk density. A graphic illustration of the rationale behind 203 

the methodology is illustrated in Figure 3.  204 

 205 

Table 2. The true density of common construction materials 206 

Inert construction 
material 

True density 
(kg/m3) 

Non-inert construction 
material 

True density 
(kg/m3) 

Masonry 650~2,100 Wood 160~1,310 
Asphalt 721 Paper 700~1,150 
Cement 1,440 Leather 860 
Bricks 1,500~1,800 Rubber 910~1,200 
Rocks 1,600~3,500 Plastics 913~2,159 
Sand 1,631 Bamboos 1,160 
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Lime mortar 1,760 Wool 1,314 
Soil 1,800~2,000 Textile 1,560 
Tiles 1,800~2,200 Aluminum alloy 2,640~2,810 
Bentonite 2,200~2,800 Titanium alloy 4,429~4,512 
Concrete 2,400~2,500 Steel 7,750~8,050 
Glass 2,400~2,800 Stainless steel 7,850~8,060 

Source: Adapted from the Engineering Toolbox. https://www.engineeringtoolbox.com/density-solids-207 

d_1265.html Access on 9 October 2020 208 

 209 

 210 

Figure 3. The rationale behind the methodology of this study 211 

 212 

Data-driven research uses exploratory approaches to analyze big data to extract scientifically 213 

interesting knowledge (Kitchin, 2014), such as patterns underneath the large data sets, and 214 

insights derived from these patterns. Researchers (Jagadish, 2015; Shmueli & Koppius, 2011) 215 

describe the research as an iteration of the following steps: (1) identifying research questions; 216 

(2) creating/obtaining sources of data; (3) cleansing, extracting, annotating data streams to 217 

prepare for analyses; (4) integrating, aggregating, and representing data; (5) analyzing and 218 

modeling data; and (6) interpreting the patterns to arrive at solutions and insights. The big data-219 

driven approach as adopted in this paper is developed by largely following these suggested 220 

steps.  221 

 222 

4. The data-driven approach 223 

Figure 4 presents the flow diagram of the data-driven approach. It includes five sections: 224 

Data sensing, cleansing, processing, analysing, and visualizing. They will be introduced in 225 

details. 226 

 227 

https://www.engineeringtoolbox.com/density-solids-d_1265.html
https://www.engineeringtoolbox.com/density-solids-d_1265.html
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 228 

Figure 4. The flow diagram of the data-driven approach 229 

 230 

4.1 Sensing the data 231 

We sourced the raw data of three years in 2017, 2018, and 2019. There are 4.9 million such 232 

records, including 1,178,427 from landfills, 468,961 from sorting facilities, and 3,280,550 from 233 

public fills, respectively, meaning that every year there around 1.64 million loads of C&D 234 

waste were disposed of at the various governmental waste management facilities. It is noticed 235 

that in the data set (see Figure 5), the landfills and off-site sorting facilities recorded the ‘net 236 

weight’ and the ‘height’ of each waste load. The net weight in the database means the net 237 

weight of a load of C&D waste that has been dumped in a waste disposal facility. It is calculated 238 

by weighing the vehicles at the in-weigh and out-weigh bridges and subtracting the two (see 239 

Figure 5b). The waste depth is determined by a method, as shown in Figure 5a. A set of sensors 240 

are installed above the in-weigh bridges to capture and calculate the waste depth.  241 

 242 

The net weight is captured in all three types of facilities, as it is used for calculating the charges 243 

and preventing overloading. According to the CWDCS, if the total weight of a truck at the in-244 

weigh bridges exceeds its PGVW by less than 5%, the truck can still be allowed in but will 245 

receive an overloading notice. For unknown reasons, the ‘waste depth’ is only captured in the 246 

off-site sorting facilities and landfills but not the public fills. If the missing data can be made 247 

up in a reasonable way, it is possible to covert the ‘waste depth’ into the ‘volume’ of a waste 248 

load by considering the bottom area of the truck’s loading bucket, and calculate the bulk density 249 

of each waste load using Equation (3) below:  250 

 251 

𝜌𝜌𝐵𝐵𝐵𝐵 =
𝑊𝑊
𝑉𝑉

=
𝑊𝑊

𝐻𝐻 × 𝐴𝐴
 

 

(3) 

where 𝜌𝜌𝐵𝐵𝐵𝐵 is the bulk density of a waste dump, W is the net weight of the waste load, H is 
the height of the waste load, and A is the bottom area of the loading bucket.  
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Figure 5. An illustration of the methodology to capture the net weight and waste depth 252 

 253 

The 4.9 million trip loads of waste were delivered by various types of waste hauling trucks, 254 

each with a PGVW ranging from merely 2.8 to 38 tons. Figure 6 illustrates the numbers of trip 255 

loads undertaken by each type of trucks with distinct PGVWs. It can be seen from Figure 6 that 256 

there are 21 types of trucks with different PGVWs in operation. The majority (96.4%) of the 257 

trip loads are delivered by five types of trucks with PGVWs of 9-ton, 16-ton, 24-ton, 30-ton, 258 

and 38-ton. We will, therefore, focus on these types of trucks and their transported C&D waste 259 

in the following analyses.  260 

 261 

 262 

Figure 6. The C&D waste hauling trips conducted by various types of trucks (from 2017 to 263 

2019) 264 
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 265 

4.2 Data cleansing 266 

It is noticed that some of the data is apparently unreasonable. For example, some of the net 267 

weights are as high as 12 tons in the case of 𝐻𝐻 being 0.1 m in a 16-ton truck. It means that the 268 

bulk density reaches approximately 10,900 kg/m3, which even exceeds the maximum true 269 

density of stainless steel (8,060 kg/m3). Proper data cleansing is thus conducted before 270 

processing it any further. Two primary steps are adopted. The first is to delete the invalid data 271 

by examining the following five criteria: (1) missing waste depth; (2) missing net weight; (3) 272 

missing PGVW; (4) net weight smaller than 0 ton; and (5) waste depth smaller than 0 m. The 273 

second step is to remove outliers in the waste depth and waste net weight data resulting from 274 

measurement errors, sloppy operations (e.g., the staff may simply input a 9,999 kg), or other 275 

unknown reasons. Whether a data point being outlier should be made based on the combination 276 

of waste depth and net weight, although some depth or net weight value separately are 277 

considered reasonable.  278 

 279 

The input data of outlier removal is a two-dimension matrix consisting of waste depth and net 280 

weight. A total of 15 sub-datasets, including three waste types multiplying by five PGVW 281 

quotas, were treated as input data for outlier removal. This research adopted the Density-Based 282 

Spatial Clustering of Applications with Noise (DBSCAN) model developed by Ester et al. 283 

(1996), which is a popular method for two-dimension dataset outlier removing, to detect and 284 

remove outliers. Epsilon Neighborhood (EN), which is specified as a numeric scalar that 285 

defines a neighborhood search radius around a core point, and Minimum Number of Neighbors 286 

Required for Core Point (MNNRCP) are the two critical parameters of DBSCAN model. The 287 

constraint relationship between the two parameters is that the EN of a core point in a cluster 288 

must contain at least MNNRCP neighbors. Figure 7 shows an example of removing outliers 289 

from a sub-dataset of non-inert C&D waste transported by 9-ton trucks. To select a suitable 290 

value for MNNRCP, it is required that the selected value should not be lower than the 291 

dimension number of the input dataset (𝑛𝑛) plus one (i.e., 𝑛𝑛 + 1). Using the two-dimension 292 

matrixes as input data, the least alternative MNNRCP value is three in this research. However, 293 

taking the computer calculation load into consideration, this research selected 50 as the 294 

MNNRCP value. One recommended strategy for estimating a value for EN is to generate a 𝑘𝑘-295 

distance graph for the input dataset. For each point in the dataset, to find the distance to the 𝑘𝑘th 296 

nearest point and plot sorted points against this distance, a 𝑘𝑘-distance graph that contains a 297 

knee interval can be obtained, as shown in Figure 7 (a). The knee interval [P1, P2] is an 298 

estimated region where data points start tailing off into outlier territory. In other words, the 299 

border of normal points and outlier points is an interval rather than a unique value. The 300 

longitudinal coordinate value 𝐷𝐷𝑖𝑖  of Figure 7 (a) that corresponds to the knee interval is 301 

generally a good choice for the EN value. In the shown example, EN can be any value that 302 

belongs to the 50th nearest distances interval [D1, D2]. If D1=0.12 is selected as the EN value, 303 

it means 11,719 of 12,454 data points are normal points, and the rest 735 are outliers. The 304 
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outlier border will be increasingly loosened when the EN moves from D1 to D2 as 305 

demonstrated in Figure 7 (b). To make the bulk density interval more convergent, this research 306 

uniformly selected D1 as the EN value. 307 

 308 

 309 

Figure 7. Removing outliers from the non-inert C&D waste data of 9-ton trucks 310 

 311 

The approach has also been implemented to other 14 sub-datasets in removing outliers. Owing 312 

to the page limit, they are not elaborated here. This step removed 26,281, 6,987, and 66,781 313 

outlier points from non-inert, mixed, and inert waste materials, respectively.  314 

 315 

4.3 Calculating the volume of each waste load 316 

According to Equation (3), the bulk density is calculated by using the recorded waste weight 317 

(W) and volume (V). The latter is further calculated by multiplying waste depth (H) and the 318 

bottom area (A). However, in current practice, only at landfills and off-site sorting facilities, 319 

they record waste depth; in public fills, no waste depth information is recorded altogether. In 320 

any case, there is no bottom area of the buckets recorded. We have assumed that the bottom 321 

areas are uniform across different types of trucks with different PGVW. However, we 322 

discovered that they are not uniform because of different styles, as presented in Table 3. Even 323 

within the same PGVW trucks, their bottom areas are different. Hence, we searched the official 324 

websites of several representative truck manufacturers (e.g., FUSO, ISUZU, and HINO) 325 

serving Hong Kong to obtain the vehicle dimensions. We also spent a significant amount of 326 

effort to collect the data from various truck owners, contractors, and service providers. Some 327 

of the details can be seen from Table 3. In the end, it is assumed that the bucket bottom area 328 

(A) will range in the intervals, as shown in the last column of Table 3. 329 

 330 

Table 3. The bucket bottom area of several typical trucks 331 
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Truck 
types by 
PGVW 

Truck styles Length×width (mm) 
Bucket bottom area 
(m2) 
[min, max] 

38t 

 

5200×2300 
5200×2480 
6380×2480 

[11.960, 15.822] 

30t 

 

6095×2255 
6095×2440 
4800×2300 

[11.040, 14.874] 

24t 

5480×2255 
5480×2440 
6095×2255 
4800×2250 
5180×2440 

[10.800, 13.744] 

16t 

4880×2440 
5480×2255 
4570×1980 
4880×2255 

[9.049, 12.357] 

9t 

 
 

3960×1970 
3960×2130 
3660×2130 

[7.796, 8.435] 
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 332 

4.4 Finding the missing depths of waste load in public fills 333 

As mentioned above, the depth of the inert C&D waste received at the public fills has not been 334 

measured, which makes the volume information absent for calculating their bulk densities. 335 

However, their bulk densities should not be ignored, as the 3.1 million loads of waste received 336 

there occupied 63% of the total 4.9 million waste loads. Neither it is possible to re-measure the 337 

depth of the 3.1 million loads of C&D waste dumped. In the face of the difficulties, a hypothesis 338 

is made that the trucks will deliver similar depth of waste to what they do in the other two types 339 

of facilities, namely landfills and off-site sorting facilities. In real life, it is a matter of truck 340 

drivers’ ‘rule of thumb’ to determine the depth of waste allowed to their trucks to avoid 341 

overloading or underloading.  342 

 343 

We plot the frequencies of various waste depths in the two types of facilities. Figure 8 indicates 344 

surprisingly that both non-inert and mixed C&D waste present the same highest frequency in 345 

the depth interval ranging from 1.1 m to 1.2 m. This is the biggest serendipity of this data-346 

driven approach. According to this result, it is confident to estimate the highest probability 347 

interval waste depth as 𝐻𝐻𝑝𝑝  = [1.1, 1.2] m for inert waste as received at public fills. The 348 

estimated waste depth interval will be used to calculate the highest probability bulk density of 349 

inert C&D waste as received in the facilities.  350 

 351 
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 352 

* The cut-off value of 1.6m in (b) is owing to the fact that only waste loads with 353 

a waste depth <1.6m will be accepted 354 

Figure 8. The waste depth frequency distribution histogram 355 

 356 

4.5 Data analyses and visualization for calculating the bulk density 357 

After the above efforts on data processing, a new dataset for the bulk density calculation of 358 

three types of C&D waste is established as presented in Figure 9. 359 

 360 
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 361 

Figure 9. The established C&D waste dataset towards bulk density calculation 362 

 363 

As for non-inert C&D waste, each data point has a unique waste depth value and waste net 364 

weight value, but the bucket area is an interval. Under this case, we first calculated the upper 365 

limit interval of bulk density (𝜌𝜌𝑢𝑢𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖) when the trucks’ bucket bottom areas are the minimum 366 

recorded in Table 3 (𝐴𝐴𝑚𝑚𝑖𝑖𝑖𝑖) according to Equation (4):  367 

 368 

𝜌𝜌𝑢𝑢𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖,   𝑖𝑖 = 𝑊𝑊𝑖𝑖/(𝐻𝐻𝑖𝑖 × 𝐴𝐴𝑚𝑚𝑖𝑖𝑖𝑖,   𝑖𝑖) (4) 
 369 

where 𝑊𝑊𝑖𝑖 is the net weight of each waste load; 𝐻𝐻𝑖𝑖 is the waste depth; 𝑖𝑖 is the number of non-370 

inert C&D waste trip loads added by us for differentiation. 371 

 372 

Then, the lower limit interval of bulk density (𝜌𝜌𝑙𝑙𝑛𝑛𝑙𝑙𝑖𝑖𝑖𝑖) when the trucks’ bucket bottom areas 373 

being the maximum (𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚) was calculated according to Equation (5): 374 

 375 

𝜌𝜌𝑙𝑙𝑛𝑛𝑙𝑙𝑖𝑖𝑖𝑖,   𝑖𝑖 = 𝑊𝑊𝑖𝑖/(𝐻𝐻𝑖𝑖 × 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚,   𝑖𝑖) (5) 
 376 

After obtaining the two bulk density intervals 𝜌𝜌𝑢𝑢𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖  and 𝜌𝜌𝑙𝑙𝑛𝑛𝑙𝑙𝑖𝑖𝑖𝑖 , we used Merge Sort 377 

algorithm (Mehlhorn, 2013) to merge them. Based on the merged bulk density interval (𝜌𝜌𝑚𝑚𝑚𝑚), 378 

the mean value (�̅�𝜌), median value (𝜌𝜌0.5), 1% to 99% percentile interval (𝜌𝜌[1%,99%]), 5% to 95% 379 

percentile interval (𝜌𝜌[5%,95%]), and 10% to 90% percentile interval (𝜌𝜌[10%,90%]) of the bulk 380 

density were calculated. The bulk densities of mixed C&D waste can also be calculated by 381 

repeating the above procedures.  382 

 383 

As for inert C&D waste, even though both the waste depth and the bucket area are intervals, 384 

the calculation method is the same as the other two types. We first calculated the upper limit 385 
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interval of bulk density when both the bucket area and the waste depth are minimum values 386 

and then calculated the lower limit interval of bulk density when both the bucket area and the 387 

waste depth are maximum values. The other statistical values such as �̅�𝜌, 𝜌𝜌0.5, 𝜌𝜌[1%,99%] can also 388 

be obtained after merging the two bulk density intervals.  389 

 390 

Table 4 lists the different statistical values of the bulk density of different C&D waste obtained 391 

by using the data-driven approach. As shown in the table, the bulk densities of non-inert C&D 392 

waste, mixed C&D waste, and inert C&D waste respectively range from 39 kg/m3to 2,434 393 

kg/m3 , 146 kg/m3  to 2,787 kg/m3 , and 207 kg/m3  to 2,435 kg/m3 . This result shows 394 

surprisingly that the upper limit of bulk densities of three types of waste are rather close and 395 

comparable. It implies some loose waste disposal practices. Some contractors or waste haulers 396 

just dump waste in landfills, although the waste can be dumped at public fills or off-site waste 397 

sorting facilities to save levies. The result also illustrates that three types of C&D waste’s bulk 398 

densities have a lot of overlap with each other. The inert and non-inert substances can be better 399 

separated for final disposal. The bulk density mean value presents a significant increasing trend 400 

from non-inert C&D waste (336 kg/m3) to mixed C&D waste (528 kg/m3), and in turn, to inert 401 

C&D waste (991 kg/m3). This result verifies the proposition as shown in Inequation (2).  402 

 403 

Table 4. The different statistics of bulk densities of three types of C&D waste 404 

Bulk density 
Non-inert C&D waste 
(kg/m3) 

Mixed C&D waste 
(kg/m3) 

Inert C&D waste 
(kg/m3) 

𝜌𝜌𝑙𝑙𝑛𝑛𝑙𝑙𝑖𝑖𝑖𝑖 [39, 1,656] [146, 2,107] [207, 1,807] 
𝜌𝜌𝑢𝑢𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 [45, 2,434] [158, 2,787] [259, 2,435] 
𝜌𝜌𝑚𝑚𝑚𝑚 [39, 2,434] [146, 2,787] [207, 2,435] 
�̅�𝜌 336 528 991 
𝜌𝜌0.5 287 476 949 
𝜌𝜌[1%,99%] [63, 1,280] [220, 1,296] [414, 1,536] 
𝜌𝜌[5%,95%] [98, 717] [266, 971] [564, 1,438] 
𝜌𝜌[10%,90%] [124, 571] [297, 826] [676, 1,414] 
SD 231 227 286 
CV 69% 43% 29% 

 405 

A similar trend can also be observed in the median values of three bulk densities. To analyze 406 

the bulk densities further, three percentile intervals were introduced. Taking non-inert C&D 407 

waste as an example, its bulk density interval of 1% to 99% percentile is between 63 kg/m3 408 

and 1,280 kg/m3. It represents that approximately 1% non-inert C&D waste’s bulk densities 409 

do not exceed 57 kg/m3, and approximately 99% non-inert C&D waste's bulk densities do not 410 

exceed 1341 kg/m3. The 1% to 99% percentile intervals of mixed C&D waste and inert C&D 411 

waste are from 220 kg/m3 to 1,296 kg/m3 and from 414 kg/m3 to 1,536 kg/m3 respectively. 412 
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For more details, the bulk density intervals between 5% and 95% percentile interval and 413 

between 10% and 90% percentile interval were also given in Table 4. 414 

 415 

Table 4 also lists the standard deviation (SD) of three types of waste's bulk densities. It is 231 416 

kg/m3 for non-inert C&D waste, 227 kg/m3 for mixed C&D waste, and 286 kg/m3 for inert 417 

C&D waste. The coefficient of variation (CV), also known as relative standard deviation, is a 418 

criterion for measuring and comparing the dispersion degree of a probability distribution or 419 

frequency distribution. With a CV of 69%, the bulk density dispersion degree of non-inert C&D 420 

waste is larger than mixed C&D waste counterparts (43%), and in turn, the bulk density of 421 

mixed C&D waste is more dispersed than the bulk density of inert C&D waste, which has a 422 

CV of 29%.  423 

 424 

Referring back to Table 2, the true density of inert construction materials approximately ranges 425 

from 650 kg/ m3  (masonry) to 3,500 kg/ m3  (rocks), and the true density of non-inert 426 

construction materials approximately ranges from 160 kg/m3 (wood) to 8,060 kg/m3 (stainless 427 

steel). It can be theoretically derived that the true density of mixed construction materials is 428 

between 160 kg/m3 and 8,060 kg/m3. Figure 10 presents the bulk density intervals of three 429 

types of C&D waste and the true density range of common construction materials. It can be 430 

found that the bulk densities of three types of C&D waste comply with the heuristic rule. The 431 

results of bulk densities using a big-data approach are reasonable and acceptable.  432 

 433 

 434 

Figure 10. The bulk density of C&D waste and the true density of common construction 435 

materials 436 

 437 

Discussions 438 
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Unlike previous studies concerning waste bulk density, this research presents a totally different 439 

approach that is motivated by the availability of a large set of secondary data. The big data-440 

driven approach demonstrates a novel and powerful tool for scientific investigation. The 441 

research contributes to the following aspects concerning big data analytics and waste 442 

management.  443 

 444 

Firstly, the power of big data lies in its volume, velocity, and variety, which can instigate value 445 

(e.g., patterns, insights, and knowledge) that may not be achieved in a small data context. For 446 

example, it plays an indispensable role in ruling out the outliers, finding the missing waste 447 

depth of construction waste loads, and finally, informing the reliable intervals of bulk densities 448 

of different types of C&D waste. The big data indicated the dominant types of waste hauling 449 

trucks to allow us to better use our research efforts in identifying the bucket bottom area. By 450 

discovering no statistically significant difference of waste depth as recorded in either landfills 451 

or off-site sorting facilities, the big data analytics proved our assumption that waste haulers 452 

based mainly on their experiences in determining the depth of a truckload. The range of [1.1, 453 

1.2] m derived from the two types of facilities are readily transferred to make up the missing 454 

information in the third type of facilities. As Anderson (2008) put it, "with enough data, the 455 

numbers speak for themselves". This study shows that the big data allows useful patterns to 456 

come up even with the use of some simple analytics and visualization only. 457 

 458 

Secondly, the case vividly illustrates the Law of Large Numbers (Bernoulli, 1713) in 459 

probability theories. The first glance of the waste bulk density problem seems to be an 460 

impossible mission as any waste, be it curbside solid waste (EPA, 1996; WRAP, 2010), kitchen 461 

waste (Li et al., 2020a), or construction waste (Lu & Yuan, 2011), is a heterogeneous mixture 462 

that is not formed by uniformed compositions in an absolutely dense state. Nevertheless, the 463 

heuristic rule is that waste is not generated randomly but conformed to certain conditions such 464 

as prevailing food structure, living habits, construction materials, or construction technologies. 465 

Therefore, the waste bulk density problem should follow the Law of Large Numbers and show 466 

some conformity. The big data is almost a full coverage of waste loads received at various 467 

facilities. It is able to paint a fuller picture of the subject matter to allow the insights of interest 468 

to surface. 469 

 470 

Thirdly, although there are some generic steps of a big data-driven approach, such as data 471 

collection, extraction, cleansing, analysis, and interpretation; it should be pointed out that there 472 

is no one-size-fit-for-all approach for big data analytics. There is no advanced, fascinating 473 

analytics such as pattern finding algorithms, attended or unattended machining learning, or the 474 

like involved in this study. Lu et al., (2018) argued it would constitute a form of 475 

misunderstanding to assume that big data analytics only counts sophisticated data mining 476 

techniques without considering traditional functional applied statistics (Leek, 2014). That said, 477 

future studies are encouraged to mobilize powerful data analytics such as machine learning or 478 
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the like to exploit the power of big data. In any case, having domain knowledge and asking the 479 

right questions is critical to harness the power of big data. Visualization, as shown in this study, 480 

is a powerful approach in parallel with data analytics. 481 

 482 

One may argue, which is true, that the big data and its analytics are confined in Hong Kong 483 

only, and therefore, the research cannot be readily generalized to other settings with different 484 

economies or construction characteristics. Nevertheless, this research illustrates an example 485 

that some big datasets leftover unintentionally when businesses are done (Ekbia et al., 2015) 486 

are like buried treasure, which can be exploited to derive useful insights. This research provides 487 

an example to encourage researchers to explore big data in their respective domains 488 

consciously.   489 

 490 

The converged ranges of bulk densities of C&D waste derived from the big data analytics, 491 

albeit confined to Hong Kong’s construction context, are of important referential uses. For 492 

example, the average bulk density of organic construction waste (i.e., 336 kg/ m3 ) is 493 

comparable with the average bulk density of food and garden waste (i.e., 338 kg/m3) as 494 

reported by WRAP (2010). By examining some sample waste dumps and referring to the 495 

prevailing construction materials, it is possible to associate the bulk density range with main 496 

waste materials so as to estimate the compositions of such C&D waste. The estimated result 497 

can serve for the following waste sorting works, such as sorting the plastic, paper, and timber 498 

out from the mixed construction waste bulk. Currently, the segregation of inert and non-inert 499 

waste when it is generated on construction sites is highly recommendable. The large overlaps 500 

of the three ranges of bulk densities mean better segregation, e.g., more separated inert and 501 

non-insert waste, can be done, although in reality, one will also consider the labor cost, time 502 

constraints, and other factors. Lastly, the bulk densities of inert and non-inert construction 503 

waste present a significant difference, which can be used to develop more effective admission 504 

criteria as adopted in the licensed waste management facilities.  505 

 506 

Conclusions 507 

Construction waste, when it is generated at source, usually contains inert materials, non-inert 508 

materials, or a mixture of the two. Owing to the infinite combinations of the materials and their 509 

voids, the bulk density of construction waste, albeit important and meaningful, has never been 510 

calculated with any precision. Using a series of data-driven approaches, this research, for the 511 

first time, articulated that the average bulk density is 991 kg/m3 for inert construction waste, 512 

336 kg/m3 for non-inert construction waste, and 528 kg/m3 for mixed construction waste, all in 513 

Hong Kong’s context. This research also reported a range of minimum and maximum bulk 514 

density of [564, 1,438] kg/m3 for inert, [98, 717] kg/m3 for non-inert, and [266, 971] kg/m3 for 515 

mixed construction waste, all with a 5% to 95% percentile interval. The findings proved the 516 

heuristic rules that inert construction waste materials, in general, are denser than their non-inert 517 

counterparts owing to the main substances they contained, and mixed materials situated in the 518 
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middle of the bulk density spectrum. The bulk densities can be used in gauging whether a truck 519 

load of C&D waste is qualified and admittable in Hong Kong’s off-site construction waste 520 

sorting facilities. Segregation at source is a highly recommendable strategy for waste recycling. 521 

The large overlaps between the different groups of waste imply that there is room for clearer 522 

sorting of inert and non-inert materials from the dumps.  523 

 524 

The big data-driven approach showed its power for scientific research. The approach is found 525 

indispensable in informing almost every key subject matter in this research, e.g., outliers, 526 

dominant types of trucks in operation, missing waste depth, and, ultimately, bulk density of 527 

C&D waste. The big data is able to portray a fuller picture of the subject matter to allow a 528 

stronger claim to the objective truth. In addition, the big data speaks for itself. By following 529 

the Law of Large Numbers in probability theory, the big data, with proper analytics and 530 

visualization, allows interesting patterns or insights to surface. There are some generic steps 531 

for big data-driven approaches. However, there is no one-size-fit-for-all approach to exploit 532 

big data in different domains. No fascinating big data analytics have been adopted in this study. 533 

However, future studies by using advanced algorithms such as machine learning, and 534 

supervised or unsupervised learning, are highly recommended to make use of the C&D waste 535 

big data. It is also important to ask the right questions to harness the power of big data.  536 

 537 
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