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Abstract 
Reliable construction waste generation data is a prerequisite for any evidence-based waste 
management effort, but such data remains scarce in many developing economies owing to 
their rudimentary recording systems. By referring to several models proposed for estimating 
waste generation, this study aims to develop a reliable and accessible method for estimating 5 

construction waste generation based on limited publicly available data. The study has two 
objectives. Firstly, it aims to estimate construction waste generation by focusing on the 
Greater Bay Area (GBA) in China, one of the world’s most thriving regions in terms of 
construction activities. Secondly, it aims to compare the strengths and weaknesses of various 
waste quantification models. 43 sets of annual socio-economic, construction-related and 10 

C&D waste generation data ranging from 2005 to 2019 were collected from the local 
government authorities. By analyzing the data using four types of machine learning models, 
namely multiple linear regression, decision tree, grey models, and artificial neural network, it 
is found that all calibrated models, with their respective strengths and weaknesses, can 
produce acceptable results with the testing R2 ranging from 0.756 to 0.977. This study also 15 

reveals that the 11 cities in the GBA produced a total of about 364 million m3 of construction 
waste in 2018. The result can be used for monitoring the urban metabolism, quantifying 
carbon emission, developing a circular economy, valorizing recycled materials, and strategic 
planning of waste management facilities in the GBA. The research findings also contribute to 
the methodologies for estimating waste generation using limited data.  20 
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List of abbreviations: 
ANN = artificial neural network 
BIM = building information modeling 
CART = classification and regression tree 
C&D = construction and demolition 30 

CO = total construction output 
CP = construction productivity 
CSA = classification system accumulation 
CWDCS = construction waste disposal charging scheme 
CWM = construction waste management 35 

DT = decision tree 
DS = development stages of an economy 
FC = floor space completed 
FCO = floor space under construction 
FD = floor space of demolition 40 

FM = factor modeling 
FS = floor space of newly started buildings 
GBA = greater Bay Area 
GC = GDP per capita 
GDP = gross domestic product 45 

GM = grey models 
GMC = grey model with convolution integral 
GRA = grey relational analysis 
GRC = generation rate calculation 
KMO = Kaiser-Meyer-Olkin 50 

LA = lifetime analysis 
ML = machine learning 
MLR = multiple linear regression 
MSW = municipal solid waste 
PCA = principal component analysis 55 

PO = population 
R2 = coefficient of determination 
SD = standard deviation 
SV = site visit 
VIF = variance inflation factor 60 
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1. Introduction 63 

Construction waste, a term often used interchangeably with construction and demolition 64 

(C&D) waste, is the solid waste generated by construction, renovation, or demolition 65 

activities (HKEPD, 2015; USEPA, 2016). It comprises inert and non-inert materials including 66 

concrete, steel, slurry, wood, glass, etc. C&D waste contributes significantly to 67 

environmental degradation (Coelho & De Brito, 2012; Wang et al., 2010), consumes valuable 68 

landfill space (Poon et al., 2004), causes geologic hazards and other undesirable 69 

consequences (Lu, 2019; Perlez, 2016). Therefore, it needs to be carefully managed.  70 

 71 

Information about waste generation is a prerequisite for many waste management strategies, 72 

including planning landfill space, determining levies for polluters or subsidies for recyclers, 73 

and scheduling companies’ waste management policies. Since what cannot be measured 74 

cannot be improved, estimation of waste generation at both regional and project levels has 75 

begun to receive worldwide research attention. Wu et al. (2014), for instance, have reviewed 76 

57 studies in C&D waste quantification. Examples of regional studies include Cochran et al. 77 

(2007) exploring the accounting, generation, and composition of building-related C&D waste 78 

in Florida, and Lu et al. (2017) who estimate that approximately 1.13 billion tons of C&D 79 

materials were generated in China during 2014. This paper also has a regional focus.  80 

 81 

For regions where waste generation data is regularly collected and released by official 82 

recording systems, estimation is unnecessary (Lu et al., 2017). However, emerging regions 83 

often do not have such systems in place. There are a plethora of studies on solid waste 84 

quantification in the absence of direct data, where other statistics or signs such as population, 85 

economic growth, construction expenditure, urban decay, and waste recycling levels, are 86 

analyzed to inform waste generation. Such studies often adopt complicated algorithms to 87 

estimate waste generation, but may exhibit overfitting where models report closely or exactly 88 

fitting results in training datasets but poor results in testing datasets. In addition, few studies 89 

have gone beyond the factors that can predict C&D waste generation to understand how 90 

much each factor contributes to the prediction. 91 

 92 

This study has two purposes. Firstly, it is to estimate construction waste generation in the 93 

Greater Bay Area (GBA) of South China. The GBA is chosen for several reasons. It is among 94 

China’s most economically active areas, and one in which intense construction activity exists 95 

in conflict with the severe environmental degradation it causes. The GBA comprises 11 96 

regions including Hong Kong and Macau (both under the “one country, two systems” 97 

constitutional framework), Shenzhen, Guangzhou, and others. Among these 11 regions, 98 

economic development is imbalanced and recording systems vary in reliability. The second 99 

purpose of our study is to compare the strengths and weaknesses of waste estimation 100 

algorithms in terms of accuracy, scalability, and explanatory clarity, and also consider 101 

overfitting issues.  102 
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 103 

2. Estimating solid waste generation 104 

The amount of construction waste generated can be affected by an ocean of factors. Table 1 105 

summarizes the factors that have been used to predict C&D waste generation at a regional 106 

level. These factors are of two types: socio-economic or construction-related. Socio-107 

economic factors include gross domestic product (GDP), GDP per capita, population, and 108 

others acting as indicators of socio-economic development and providing the context for 109 

construction industry development. It has been proven that C&D waste generation ascends in 110 

parallel with population expansion, urbanization, and economic development (Kofoworola & 111 

Gheewala, 2009; Zhao et al., 2011). Construction-related factors include total construction 112 

output, floor space of newly started buildings, floor space completed, and so on (see Table 1). 113 

Although it is impossible to obtain the direct amount of C&D waste generation, these factors 114 

with reasonable data availability and proper analytics can yield a satisfactory estimate of 115 

C&D waste generation.  116 

 117 

Table 1 Factors impacting construction waste generation 118 

Reference Level Socio-economic factors Construction-related factors 
Hsiao et al. (2002) City  - FS, FD 
Kofoworola and Gheewala (2009) Country  PO FS, FCO 
Zhao et al. (2011) City  PO, GDP FCO, FD 
Song et al. (2015) City  - FC 
Tam and Lu (2016) Country  GDP, GC, DS CO, CP, FS 
Lu et al. (2017) Country  GDP CO, FCO, FC 
Song et al. (2017) Country  - FC 

Note: 119 

1. Socio-economic factors: DS – development stages of an economy; GC – GDP per capita; PO – population 120 

2. Construction-related factors: CO – total construction output; CP – construction productivity; FC – floor 121 

space completed; FCO – floor space under construction; FD – floor space of demolition; FS – floor space 122 

of newly started buildings 123 

 124 

With the potential factors known, numerous methods have been proposed for estimating 125 

construction waste generation. Wu et al. (2014) categorize these methods into six types: site 126 

visit (SV), generation rate calculation (GRC), lifetime analysis (LA), classification system 127 

accumulation (CSA), factor modeling (FM), and others (e.g., BIM-based automated 128 

estimation). The SV method requires the investigator to conduct surveys on site, including 129 

direct measurement by surveying the weight or volume (Hoang et al., 2020; Lau et al., 2008) 130 

and indirect measurement by adopting other easily accessible indicators, such as hauling 131 

tickets (Bakchan & Faust, 2019). For GRC method, the total waste volume can be calculated 132 

through multiplying the quantity of a specific unit by its corresponding generation rate, e.g., 133 

area-based calculation (Domingo & Batty, 2021; Hoang et al., 2021). The LA method 134 

assumes that all buildings must be dismantled after a certain period of lifetime and the C&D 135 

waste can be deduced from calculating the sum of the mass to be removed at expiration 136 
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(Huang et al., 2013). The CSA method combines the GRC method with a waste classification 137 

to quantify each specific material (Hu et al., 2021). The FM method designs prediction 138 

models based on accessible variables, such as linear regression models (Kern et al., 2018). 139 

Others are infrequent methods that do not fit into any of the above categories, such as BIM-140 

based automated estimation (Guerra et al., 2019). To summarize, the methods to estimate 141 

C&D waste generation have their own strengths and weaknesses.  142 

 143 

In this study, estimating waste generation in the GBA is a problem at a regional level. 144 

Previous studies have engaged FM methods, particularly in MSW or WEEE. This study 145 

therefore will deploy FM methods as well while keeping an eye on other methods as 146 

reviewed above. Table 2 provides a detailed analysis of previous studies examining locations, 147 

levels, methods, models, data, and estimate performance. It can be seen that the machine 148 

learning (ML) models, such as multiple linear regression (MLR), grey model (GM), artificial 149 

neural network (ANN), and decision tree (DT), are among the most frequently adopted FM 150 

methods. ML is a computer program that “optimize a performance criterion using example 151 

data or past experience” (Alpaydin, 2020). The ability to automatically learn from data and 152 

adapt to changes is the key to ML applications. ML algorithms may not learn everything from 153 

data, but can still identify some patterns or regularities which are presented to humans, either 154 

explicitly or implicitly. The ML models or algorithms as shown in Table 2, including the type 155 

and size of data and model performance, provide very useful references for this study. 156 

 157 



6 
 

Table 2 Machine learning models used to estimate the solid waste generation at a regional level 158 

Method Model Waste Type Region Region level Type of data No. of 
data 

Level of data 
collection 

Model input Model 
perform. (R2) 

Reference 

Linear 
regression 

MLR MSW Nigeria Country  Panel data 
(Monthly) 

166 Household  Household income, household size, 
educational background, social status, 
occupation, and season of the year 

0.88 Afon and Okewole 
(2007) 

MLR MSW Mexico City  Panel data 181 Household  Education, income per household, and number 
of residents 

0.51 Benítez et al. (2008) 

MLR MSW Iraq City  Cross-sectional data 150 Household  Hotel size, expenditure, area and number of 
staffs 

0.80 Abdulredha et al. 
(2018) 

MLR MSW China City  Panel data (Yearly) 10 City Population, total consumption expenditure 0.94 Yuan et al. (2012) 

MLR MSW Vietnam City  Cross-sectional data 100 City  Household size and household income 0.36 Thanh et al. (2010) 

MLR MSW India, Nepal, 
Pakistan, 
Bangladesh, Sri 
Lanka 

Country  Panel data (Yearly) 35 Country  Population, GDP per capita, illiteracy rate - Khajuria et al. 
(2010) 

MLR MSW Europe Country 
level, City 
level 

Panel data (Yearly) 86 Country level, 
City level 

GDP, population, infant mortality rate, 
household size, life expectancy at birth 

0.65 Beigl et al. (2004) 

Grey model GM(1,1) WEEE China Country  Panel data (Yearly) 13 Country  Quantity of household appliances - Zhao et al. (2016) 

GMC(1,n), 
NBGMC(1,n) 

WEEE USA City  Panel data (Yearly) 13 City  Population Density, Household income 0.99 Duman et al. (2019) 

GM (1, 1), GM (1, 
1)-α, GM (1, n) and 
GMC (1, n)) 

MSW Thailand Country  Panel data (Yearly) 13 Country  Household expenditure, household size, 
employment, population density, and 
urbanization 

- Intharathirat et al. 
(2015) 

GM(1,1), GIM(1), 
GPPM(1) and 
GLPM(1) 

MSW China  City  Panel data (Yearly) 14 City  GDP, population, size, total retail sales, 
consumption of gas, water and electricity, 
personal salary 

0.98 Liu and Yu (2007) 

GM(1,n) MSW China  City  Panel data (Yearly) 10 City  GDP, population, household expenditure, total 
sales of consumer goods 

0.68 Wang et al. (2012) 

GM(1,1), GM(1,n) MSW China  City  Panel data (Yearly) 9 City  GDP, population, retail sales, consumer 
spending  

0.95 Zhang (2013) 

Neural 
network 

ANN, ANFIS, 
DWT-ANN, DWT-
ANFIS, GA-ANN, 
GA-ANFIS 

MSW India City  Panel data (Yearly) 19 City  Previous waste generation 0.87 Soni et al. (2019) 

ANN, GM(1,1), 
MLR 

MSW China Country  Panel data (Yearly) 16 Country  GDP, population, urbanization, energy 
consumption 

0.93 Chhay et al. (2018) 

ANN, SVM, 
ANFIS, kNN 

MSW Australia City  Panel data 
(Monthly) 

216 City  Previous waste generation 0.98 Abbasi and El 
Hanandeh (2016) 

ANN, ANFIS, 
SVM, LSSVM, 
FSVM, MLR 

MSW Iran City  Cross-sectional data 105 Household  Hospital’s wards, staff, ownership type, 
inpatients 

0.92 Golbaz et al. (2019) 



7 
 

ANN WEEE USA Country  Panel data (Yearly) 9 Country  Previous waste generation - Milojkovic and 
Litovski (2008) 

ANN, PCA-MLR MSW Iran City  Panel data (Weekly) 158 City  Previous waste generation, number of waste 
truck 

- Noori et al. (2009) 

ANN MSW Serbia Country  Cross-sectional data 54 Country  Income, employment, age, education, housing 
condition 

0.96 Batinić et al. (2011) 

ANN MSW India City  Cross-sectional data 98 City  Population, previous waste generation, 
longitude, latitude, tax 

- Patel and Meka 
(2013) 

ANN MSW Iran City  Panel data (Weekly) 144 City  Previous waste generation, number of waste 
truck 

0.75 Jalali and Nouri 
(2008) 

Decision tree DT, ANN MSW Canada City  Cross-sectional data 1553 City   Population, income, employment, education, 
housing condition 

0.72 Kannangara et al. 
(2018) 

DT, SVM, RNN MSW Colombia City Panel data 
(Monthly) 

60 City   Population, socio-economic stratification, 
latitude and altitude 

- Meza et al. (2019) 

Other machine 
learning 
methods 

GM-SVR C&DW China Country  Panel data (Yearly) 30 Country  Total floor areas completed 0.99 Song et al. (2017) 

GBRT MSW USA City  Panel data (Weekly) 41412 Building  Building attributes, socio-economic and 
demographic feature, weather 

0.87 Kontokosta et al. 
(2018) 

System 
dynamics 

System dynamics 
model 

MSW USA City  Panel data 3 City  Population, income, household size, and 
employment 

0.99 Dyson and Chang 
(2005) 

Time series ARIMA C&DW China City  Panel data (Yearly) 9 City  Total floor areas completed - Song et al. (2015) 

Note: 159 

1. MSW – municipal solid waste; WEEE – waste electrical and electronic equipment; C&DW – C&D waste 160 

2. Panel data – data refers to multi-dimensional data frequently involving measurements over time; Cross-sectional data – data collected by observing many subjects at 161 

the same point of time or without regard to differences in time 162 

3. MLR – Multiple linear regression; GM – Grey model; GMC – Grey model with convolution integral; NBGMC – Nonlinear grey Bernoulli model with convolution 163 

integral; GIM – Grey index model; GPPM – Grey parabola power model; GLPM – Grey logarithm power model; ANN – Artificial neural network; ANFIS – 164 

Adaptive neuro-fuzzy inference system; DWT – Discrete wavelet theory; GA – Genetic algorithm; SVM – Support vector machine; kNN – k-nearest neighbors; 165 

SVR – Support Vector Regression; LSSVM – Least squares support vector regression; FSVM – Fuzzy logic support vector regression; PCA – Principal component 166 

analysis; DT – Decision tree; RNN – Recurrent neural network; GBRT – Gradient boosting regression tree; ARIMA – Autoregressive integrated moving average 167 

4. R2 is the best testing performance of all models if there is more than one model in the literature. If R2 wasn't given, it is calculated by the authors according to the 168 

prediction results in the literature. 169 

 170 
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3. The Greater Bay Area 
The GBA comprises the two SARs (special administration regions) Hong Kong and Macau 
and nine municipalities in China’s Guangdong province. In 2019, the GBA occupied a total 
area of about 56,000 km2 and had a GDP of USD 1,679.5 billion (CMAB, 2020). Although it 175 

occupies less than 1% of China’s land area, the GBA’s contribution to national GDP is up to 
12% (Cheung, 2019), making it one of the most economically vibrant regions in China. To 
accommodate its economic activities, massive construction activities have been undertaken or 
are underway to materialize the supporting infrastructure and building in the GBA. 
Meanwhile, huge amounts of C&D waste have been produced. For example, Hong Kong 180 

generated about 18.12 million tons of construction waste in 2018 (HKEPD, 2019). If not 
properly managed, such vast quantities of waste are bound to hinder the sustainable 
development of the GBA and cause harm to the inhabitants. In an extreme case, a 
construction waste landslide in 2015 in Shenzhen resulted in 73 deaths and ruined over 30 
buildings (Perlez, 2016).  185 

 
Having recognized the importance of proper construction waste management (CWM), some 
regions in the GBA have deployed response strategies. In 2006, Hong Kong launched its 
construction waste disposal charging scheme (CWDCS) under which contractors are charged 
HK$71 to $200 per ton for waste mandatorily disposed of at designated facilities (Bao et al., 190 

2020). Facing increased pressure after the tragedy in 2015 to better manage its construction 
waste, Shenzhen has closed all landfills so that contractors are forced to reduce, reuse and 
recycle construction waste (Bao & Lu, 2020). In some exemplar sites, zero waste is pursued 
(Lu, Bao, et al., 2021). In recognition of the imbalance in demand and supply among GBA 
regions, construction waste material sharing has been actively explored. In fact, since 2006 195 

Hong Kong has been sending its construction waste materials to Jiangmen through an official 
channel for land reclamation (Lu et al., 2020). However, such efforts are still too piecemeal 
and discrete. Integrated policies and measures are being sought, but reliable data is a 
prerequisite for their formulation. Hong Kong and Macau have a long-established recording 
system with detailed waste generation data, which enables better CWM practice. For 200 

example, Ahmed and Zhang (2021) developed a multi-stage network-based model to reduce 
the logistics cost for inert waste management and validated it using sufficient data from Hong 
Kong. However, other GBA regions may only possess broad socio-economic background 
data and lack accurate waste quantity and distribution (Ma et al., 2020). Nonetheless, based 
on previous studies (Li et al., 2020), it is possible to estimate construction waste generation 205 

by extrapolating from data-rich to data-scarce regions.  
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4. Research methods 
This study adopted a four-step research method, including (i) collecting relevant data, (ii) 210 

selecting alternative models, (iii) developing the selected models, and (iv) cross-validation of 
models.  
 
4.1 Data collection 
Factors that impact C&D waste generation were carefully selected from the literature, based 215 

on our own knowledge, and also depending on data availability. In the end, selected factors 
were (1) population (PO), (2) GDP per capita (GC), (3) total construction output (CO), (4) 
floor space of newly started buildings (FS), and (5) floor space of buildings completed (FC).  
 
Data relating to these five factors (i.e., the model input) was collected from statistical 220 

yearbooks of the National Bureau of Statistics of China. C&D waste generation data (i.e., 
model output) is quite limited compared to MSW data. However, with increasing C&D waste 
and city management system maturity, local governments have begun to pay more attention 
to effective C&D waste management. For example, the Guangzhou Bureau of Ecology and 
Environment started incorporating C&D waste generation data into its annual solid waste 225 

management report in 2016, while the Shenzhen Housing and Construction Bureau began to 
provide C&D waste generation data from 2014. Hong Kong and Macau’s C&D waste 
generation data has been available from the Hong Kong Environment Protection Department 
since 2005 and the Macau Environmental Protection Bureau since 2010, respectively. 
Shanghai has relatively good waste generation data and although not within the GBA is 230 

comparable with Shenzhen in terms of construction and waste management. Therefore, 
statistics from Shanghai were also collected for this study. 
 
In total, 43 sets of data were collected based on the availability of annual C&D waste 
generation data, as shown in the Supplementary Materials. Shanghai and Hong Kong measure 235 

C&D waste generation by weight (ton), while other cities measure by volume (cubic meter). 
For a better comparison, the weight unit was aligned to the volume unit by the bulk density of 
C&D waste. Lu, Yuan, et al. (2021) calculated the bulk density by analyzing 4.9 million 
truckloads of C&D waste. The results show that the 5% to 95% percentile interval of bulk 
density (𝜌𝜌[5%,95%]) is [0.266 tons/m3, 0.971 tons/m3], with the mean value (�̅�𝜌) of 0.528 240 

tons/m3 and the median value (𝜌𝜌0.5) of 0.476 tons/m3. In this study, the density of C&D waste 
for conversion took a value of 0.5 tons/m3.  
 
The descriptive statistics of the collected data and the Pearson correlation coefficient between 
the model inputs and outputs can be found in the Supplementary Materials. The correlation 245 

analysis can serve as a preliminary screening of factors for further modeling (Kannangara et 
al., 2018). The correlations can be considered negligible when the absolute value of the 
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Pearson correlation coefficient is less than 0.3 (Pallant, 2011). In this study, all such values 
are above 0.6, demonstrating that these factors can be adopted for modeling. The strength of 
the correlation is in order of PO, CO, FS, FC, and GC.  250 

 
4.2 Model selection 
In view of the strong ability to extract experience from the previous data, four ML models, 
namely MLR, DT, GM, and ANN were adopted in this study. MLR and DT have strong 
interpretability, so were selected to provide explanatory results. GM and ANN are good at 255 

fitting and GM in particular has been used extensively in small-sample prediction. These two 
models were chosen to provide accurate predictive results.  
 
4.3 Model development 
4.3.1 Multiple linear regression (MLR) 260 

The MLR model adopts a linear equation shown as Eq. (1): 

0
1

m

i i
i

Y B B x
=

= +∑                                                         (1) 

where Y is the output, i.e., the total C&D waste volume in this study; xi is the input factors; B0 
and Bi are the regression coefficient; m is the number of data points. The MLR model was 
built by fitting this linear equation to input data. The logarithmic transformation operation 265 

was applied to (i) improve data normality; and (ii) reduce the difference between data in the 
same dimension. There are of course significant differences in data of different-sized cities. 
For example, in 2019, C&D waste of Guangzhou is around 50 times that of Macau. When 
fitting an MLR model, a slight change in the regression coefficient (slope) can lead to large 
variances in the prediction values for smaller cities. Furthermore, negative predictive values 270 

might occur, which is obviously not reasonable. Therefore, this study takes [lg(xi)] as the 
inputs and [lg(Y)] as the output. In this way, the range of data in a specific dimension is 
reduced, and there are no negative prediction values.  
 
Before MLR modeling, a principal component analysis (PCA) was conducted to (i) identify 275 

the principal components for MLR; and (ii) eliminate the multicollinearity between the 
inputs, which might affect the outcome of MLR (Pallant, 2011). The variance inflation factor 
(VIF), shown as Eq. (2), can be used to evaluate multicollinearity. 

2
1

1XVIF
R

=
−

                                                         (2) 

where R2 is the coefficient of determination for the input X. A VIF value of less than 10 is 280 

acceptable (Abdulredha et al., 2018). In this study, after PCA, the VIF values of all the 
extracted components were reduced to 1.0, i.e., the perfect VIF value, indicating that the 
multicollinearity was eliminated and the data was suitable for MLR. Five MLR models 
(identified by PCA-MLR-t, t = 1,2, …, 5) were built based on the first t component(s). The 
PCA results can be found in the Supplementary Materials. 285 
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4.3.2 Decision tree (DT) 
A decision tree has one root node, internal nodes, and leaf nodes (Tayefi et al., 2017). At the 
root or internal nodes, the division happens where the information gain reaches its maximum, 
and the purity of data contained in the sub-nodes increases. The data is divided into smaller 290 

groups recursively until certain criteria are met. The classification and regression tree 
(CART) algorithm was used in this study. The stop criterion for division was set by limiting 
the number of data points at each leaf node. CART is a binary tree built by greedy algorithm. 
This means the binary division only reaches the local optimum, without considering the best 
partition for all the nodes (Kannangara et al., 2018). In this case, the results might be local 295 

minima. To solve this problem, the CART algorithm was trained repeatedly with different 
initial training data. Its performance and errors were analyzed comprehensively. Moreover, 
since CART is prone to overfitting, some trivial branches were removed by post-pruning, 
increasing the generality of the CART model (Bramer, 2007). In this study, the cases where 
the minimum number of data points at leaf nodes (minimum leaf size) is 1, 2, 4, 6, 8, 10, 300 

respectively, were investigated. These models are identified by DT-t (t = 1, 2, 4, 6, 8, 10).  
 
4.3.3 Grey model (GM) 
Construction waste volume is interpreted by a great number of factors, requiring the 
multivariate grey model, GM(m,n). In GM(m,n), m denotes the order of differential 305 

equations, while n denotes the number of variables, including input variables and output 
variables (Duman et al., 2019). The first-order GM, GM(1,n), has been widely used in terms 
of prediction and proven to bear high accuracy. The grey model with convolution integral, 
GMC(1,n), one of the variants of GM, can achieve higher accuracy than GM(1,n) 
(Intharathirat et al., 2015). In this study, GM(1,n) and GMC(1,n) were used to predict C&D 310 

waste generation and are presented as differential equations, Eq. (3) and Eq. (4), respectively: 

(0) (1) (1)
1 1

2

( ) ( ) ( )
n

i i
i

x k az k b x k
=

+ = ∑                                                  (3) 

(0) (1) (1)
1 1

2

( ) ( ) ( )
n

i i
i

x k az k b x k u
=

+ = +∑                                             (4) 

where a, bi and u are model parameters; 𝑥𝑥𝑖𝑖
(0)(k), denotes kth element of the sequence of ith 

factors; 𝑥𝑥𝑖𝑖
(1)(k) denotes the kth accumulated generating operation (AGO) values of the 315 

sequence of ith factor; (1) (1) (1)
1 1 1( ) 0.5 ( ) 0.5 ( 1)z k x k x k= + − ; for output factor, i = 1, for input 

factors, i = 2,3,…n. 
 
Before constructing the GM, grey relational analysis (GRA) was carried out to rank the 
factors according to their grey relational grades. Each input factor was compared with the 320 

model output in regard to variation tendency in order to determine the grey relational grade 
(Hsu & Wang, 2009). According to the ranked factors for GRA, 10 GMs were trained, 
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including [GM(1,2) – GM(1,6)] and [GMC(1,2) – GMC(1,6)]. Each GM(1,n) or GMC(1,n) 
considered one model output factor and the first (n-1) input factor(s).  
 325 

4.3.4 Artificial neural network (ANN) 
An ANN consists of three kinds of layers: input, hidden, and output. The neurons of the input 
layer and output layer are equal to the number of inputs and outputs, respectively. There can 
be a single hidden layer or multiple hidden layers, and each hidden layer can have multiple 
neurons, leading to the diversiform ANN architectures.  330 

 
This study adopts a feed-forward neural network with a single hidden layer. This ANN 
architecture has been employed frequently and has performed well (Ojha et al., 2017). Given 
enough neurons in the single hidden layer, this ANN model can handle arbitrarily complex 
problems (Duka, 2014). In this study, the number of neurons in the hidden layers was taken 335 

as 3, 5, 10, 15, 30, and 50, respectively (identified by ANN-t, t = 3, 5, 10, 15, 30, 50). The 
sigmoid transfer function served as the activation function within ANN (Kannangara et al., 
2018). The network was trained with the Levenberg-Marquardt backpropagation algorithm 
(Yu & Wilamowski, 2011). Similar to MLR, to avoid negative prediction values, the 
logarithm of collected data was taken as the inputs and outputs of the ANN model. 340 

 
4.4 Cross validation 
To validate these models, the data set was randomly divided into a training set and a testing 
set by the ratio of 80:20 (Azadi & Karimi-Jashni, 2016). Different partitions of a dataset 
result in different models, and some are quite sensitive to training data (Cunningham et al., 345 

2000). These models might fall into the local minima, meaning the model is not the optimal 
solution, especially for DT and ANN. Therefore, 50 iterations of random partitions were 
performed for each model, and each model was trained 50 times. The 50 iterations were 
averaged for performance evaluation. The coefficients of determination (R2) were used to 
evaluate the training and testing performance. They can be calculated by Eq. (5): 350 
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where m is the number of data points; 𝑌𝑌𝚤𝚤�  is the forecast value of the total C&D waste volume; 
𝑌𝑌𝑖𝑖 is the actual value of the total C&D waste volume; 𝑌𝑌� is the average value of 𝑌𝑌𝑖𝑖. 
 
5. Analyses, results and findings 355 

5.1 Multiple linear regression (MLR) 
The first t identified components were the inputs of PCA-MLR-t. Accordingly, five models 
were trained, and their average performance results are shown in Fig. 1. The PCA-MLR-1 
only employed Component 1 and obtained the training R2 of 0.765, meaning that 76.5% of 
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the variance can be explained by Component 1. As more components were added to the 360 

model, the training performance improved slightly. The testing R2 shows a similar trend to 
the training R2. The five components identified by PCA contain 100% information of the data 
set. When modeling, ignoring any one of them can result in information loss. That is the 
reason for the performance improvement as the number of components increases. The best-
performing model, PCA-MLR-5, has a training R2of 0.803 and a testing R2 of 0.777.  365 

 
The error area, i.e., the shaded area in Fig. 1, illustrates the stability of the model 
performance. The width of the error area is equal to twice the standard deviation (SD), with 
its center at the average value. Models with narrower error areas can deliver more reliable 
results. In Fig. 1, the widths of the testing error area are near twice those of the training error 370 

area. The widths of error areas change not too much for different MLR models, which 
demonstrates these MLR models have almost the same stability. 
 

 
Fig. 1 Average training and testing performance of MLR models 375 

 
The PCA-MLR-5 model was trained 50 times based on different data partitioning. Among 
these models, the one with the closest training and testing R2 to the average R2 occurred in the 
17th trial. This model has a training R2 of 0.791 and a testing R2 of 0.787, shown as Eq. (6): 
 380 

𝑌𝑌 =  3.510 + 0.028 ∗ PO − 0.176 ∗ GC + 0.434 ∗ CO + 0.079 ∗ FS − 0.050 ∗ FC    (6) 
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It is worth noting that the model inputs have been normalized to have the same average and 
variance values, so that the regression coefficients in this model are comparable. It is found 
that CO has the most significant positive influence, which may be due to the fact that CO 385 

directly reflects the level of construction activity. GC has a negative impact on C&D waste 
generation. In general, high GC means good living conditions for people, sound 
infrastructural facilities, and high levels of government management. Therefore, GC may 
contain information about the management level of C&D waste. A higher management level 
of C&D waste may result in less waste generation. PO, FS, and FC have relatively small 390 

coefficients. The regression coefficient of FC is negative, which is probably because the 
annual FC data fluctuate greatly for some cities.  
 
5.2 Decision Tree (DT) 
The complexity of DT was controlled by the minimum leaf size. In general, the bigger the 395 

leaf size, the simpler the model. The results under different minimum leaf sizes are presented 
in Fig. 2(a). The training R2 decreases as the minimum leaf size increases, while the testing 
R2 rises slightly first and then goes down significantly. The decrease in training R2 is because 
the DT model becomes so simple that it is not able to accurately define the rules existing in 
the data. The variations of testing R2 are closely related to the overfitting and underfitting 400 

problems. When the minimum leaf size is small, the model is too complicated to generalize 
the trained model to the testing data, and the problem is overfitting. When the minimum leaf 
size is too large, the model is simple and not fully developed, and the problem is under-
fitting. The optimal model is DT-2, i.e., with a minimum leaf size of 2. Its training and testing 
R2 are 0.853 and 0.756, respectively. When the model is simple, the SD is at a high level 405 

because the simple model cannot handle these data. The error area is narrowed with more 
complicated models. Largely, the SDs of DT models are similar to those of MLR models.  
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(a) Average training and testing performance of DT models 410 

 

 
(b) Regression decision tree 

Fig. 2 The performance of DT models and the selected decision tree 
 415 

For DT-2, the DT model with the closest training and testing R2 to the average training and 
testing R2 is selected among 50 trials, in order to explore the tree structure. The selected 
decision tree appeared on the 19th trial, shown in Fig. 2(b). It has a training R2 of 0.854 and a 
testing R2 of 0.764. Other DT-2 models that have similar R2 present the same tree structure 



16 
 

with only the regression value at the leaf nodes different. Thus, it is reasonable to perceive 420 

the regression process by this model.  
 
5.3 Grey model (GM) 
The GRA results show the FS (0.898), CO (0.865), and FC (0.863) have almost the same 
grey relational grades. PO (0.767) is the fourth input factor, followed by GC (0.590). 425 

 
With the ranked input factors from GRA, 10 grey models were built based on different input 
factors. The training and testing results are shown in Fig. 3. For GM(1,n), the best fitting 
model is GM(1,3), with a training R2 of 0.977 and a testing R2 of 0.959, involving FS and 
CO. With the number of factors increasing, the model performance is not stable. For 430 

GMC(1,n), the grey models perform more steadily as more input factors are fed into the 
models. The best GMC model is GMC(1,6), with a training R2 of 0.991 and a testing R2 of 
0.977. Moreover, the error area also contains important information. Most of the GM(1,n) 
models have high SDs, indicating these models are unstable. However, the case of GMC(1,n) 
is different. For GMC(1,5) and GMC(1,6), the widths of the training error area almost shorten 435 

to perfectly zero, and the testing SDs are also lowered to an acceptable level.  
 

 
(a) GM(1,n) 
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 440 

(b) GMC(1,n) 
Fig. 3 Average training and testing performance of grey models 

 
Among 50 trials of GMC(1,6), the model with the closest training and testing R2 to the 
aforementioned average R2 was found in the 18th trial, with a training R2 of 0.993 and a 445 

testing R2 of 0.967. In Eq. (4), the model parameter is identified: 𝑎𝑎 = −0.0694, 𝑏𝑏 =
[−0.0461,−0.3489, 0.4774,−0.1028, 17.6166], 𝑢𝑢 = −2079.5973. With these model 
parameters, the selected model is determined. This model has great fitting ability but poor 
interpretive ability.  
 450 

5.4 Artificial neural network (ANN) 
ANN modeling needs a dataset for validation, which can be regarded as a training process. In 
each training epoch, the validation data measures the model’s generalization ability. The 
training process is terminated when the generalization no longer improves. The previous 80% 
of data was divided into 70% for training and 10% for validation. Six ANN models were 455 

trained, and the results are shown in Fig. 4. The training R2 goes up with the number of 
neurons in the hidden layer growing. As shown in Fig. 4, the testing R2 first increases and 
then decreases. The increase in testing R2 is due to the enhanced fitting ability as the under-
fitting model becomes more complicated. The decrease in the testing R2 means poor 
generalization to test data and unreliable predictive performance.  460 
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Fig. 4 Average training and testing performance of ANN models 

 465 

In this study, the best-performing model is ANN-15, with 15 neurons in the hidden layer. It 
has a training R2 of 0.930 and a testing R2 of 0.914. Both underfitting and overfitting models 
have larger SDs. The best-performing model is relatively stable in terms of prediction 
performance. Among 50 trials of ANN-15, the model with the closest training and testing R2 
to the aforementioned average R2 occurred in the 35th trial. This model has a training R2 of 470 

0.925 and a testing R2 of 0.918. However, this model has many nested sub-structures, making 
it difficult to trace the influence of each input factor. The meaning of each parameter in 
neurons is elusive due to the high complexity of the model architecture.  
 
5.5 Summary of models 475 

The best-performing models for each modeling method are PCA-MLR-5, DT-2, GMC(1,6), 
and ANN-15. The predicted results are shown in Fig. 5, with all the points evenly distributed 
on both sides of the 45-degree line. The GMC(1,6) has the best performance with the highest 
training and testing R2, followed by ANN-15. These two models are well known for their 
strong fitting ability. The DT-2 and PCA-MLR-5 models rank third and fourth, respectively. 480 

Both of these two models have strong interpretability. The MLR model can tell the major 
predictors. However, an MLR model can only depict the linear part of a system, which is why 
it cannot achieve high accuracy. The DT model presents clear logical rules in a tree-based 
manner, understandable to a person without knowledge of mathematics and statistics. To 
some extent, the MLR and DT models sacrifice their ability to fit but gain stronger 485 

interpretability as compensation. The four best-performing models were also adopted to 
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forecast C&D waste generation in GBA cities in 2018. The forecast results show that 11 
cities in the GBA produced about 364 million m3 of C&D waste in 2018. The details about 
the predicted and forecast results of the four best-performing models can be found in the 
Supplementary Materials.  490 

 

 
Fig. 5 The predicted results of the four best-performing models 

 
6. Discussion 495 

6.1 Methodological contributions 
Numerous algorithms and models are emerging for estimating waste generation. In this study, 
four popular and representative ML models, namely MLR, GM, ANN, and DT, were selected 
and built to estimate C&D waste generation in the GBA, China. Compared with the relevant 
studies summarized in Table 2, all models in this study are able to deliver acceptable results, 500 

implying that the selected factors can explain most variations in C&D waste generation in a 
region. GM has the highest R2. GM is a series of differential equations by nature. The 
meanings of parameters in such equations are sometimes overly abstruse. Existing studies 
tend to report its applications in forecasting solid waste and emphasize its high accuracy. 
Little literature has explained the meaning of the parameters. Likewise, the results recorded 505 

in this study do not provide much explanative information other than accurate predictive 
value.  
 
ANN, as a powerful ML technique, has also been widely adopted in estimating solid waste 
generation. ANN is capable of modeling arbitrarily complex nonlinear relations between 510 
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inputs and outputs, as long as there are enough neurons in the hidden layer. More neurons in 
the hidden layer make the model entail more model parameters and lead to a huge and 
complex architecture. These complicated models can also fall into the overfitting trap. In this 
study, the best-performing ANN models had almost equal performance. Therefore, 
overfitting is less an issue in this study. Nevertheless, there is no guarantee that this model 515 

will perform well on other data sets. Moreover, it is hard to decipher the mechanism behind 
the models to transfer inputs to outputs. Like GM, the results from ANN are just the 
predictive value of C&D waste generation without explaining why these values are obtained. 
 
Compared with nonlinear models as mentioned above, an apparent benefit of linear models is 520 

that the model parameters have their practical meanings. In this study, the MLR model 
illustrates that factors having a great impact include CO and GC, which may demonstrate the 
level of construction activity and construction waste management, respectively.  
 
DT provides R2 results of more than 0.75 for both training and testing, which is within the 525 

acceptable range. Two factors, namely PO and GC, were used in building the decision tree. 
Although there is no denying that these two factors do matter, some of the information (e.g., 
different levels of construction activity) may be neglected. The DT model only produces six 
predictive values, which may have discrepancies with reality. Nevertheless, it still can give a 
rough but reliable estimation for reference.  530 

 
Some of the ML models can achieve high accuracy by developing very intricate models with 
strong fitting ability. Such models do have significance in research, but may experience the 
problems of overfitting in practice. One solution is to train the model with more data. It is 
obviously not feasible in forecasting C&D waste generation in regions with poor statistics in 535 

presence. However, encouragingly, some well-managed cities have started collecting data 
about C&D waste generation in recent years. Another solution is to avoid complex models. 
When it is impossible to incorporate all influencing factors to produce a deterministic model, 
there is a wisdom to “think less”, especially in the case of insufficient data. A simple model 
may be more robust, reliable and interpretative. Therefore, this study calls for paying the 540 

same attention to simple and indicative models as complex and accurate models.  
 
To summarize, each ML model has its own strength and weakness (see Table 3). Among 
those considered, GM and ANN results are more accurate, while MLR and DT contain more 
understandable information. The better solution is to look at them more comprehensively. It 545 

is vital to not only try those models with high accuracy, but also employ interpretative models 
when estimating C&D waste generation.  
 
 
 550 
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Table 3 The strength and weakness of prediction models in this study 
Prediction model Strength Weakness 
Multiple linear 
regression (MLR) 

Strong interpretability;  
Simple implementation with lower time 
complexity. 

Inability to describe the nonlinear part of 
datasets. 

Decision tree 
(DT) 

Strong interpretability;  
Ability to model the nonlinear relationship. 

Prone to fall into the local optima;  
Prone to overfitting. 

Grey model (GM) Possible to produce accurate prediction 
results;  
Only require small datasets. 

Poor interpretability. 

Artificial neural 
network (ANN) 

Strong prediction performance;  
Ability to modeling various complex 
nonlinear relationships. 

Poor interpretability;  
Prone to fall into the local optima;  
Prone to overfitting. 

 
6.2 Practical implications 
The findings of this study mainly have several practical implications for researchers, 
policymakers, or environmental protection groups. Firstly, the information, e.g., the estimated 555 

C&D waste generation in a region, can be used for examining urban metabolism with a view 
to developing a circular economy. Urban metabolism is widely applied to describe how 
material, food, energy, and water consumed by urban as an eco-system to support its growth 
and reproduce, and consequently generate products and by-products (e.g., GHG, pollutants, 
and waste) (Kennedy et al., 2007; Wolman, 1965). The amount of C&D waste generation is 560 

an indispensable parameter to understand the urban, in particular industrial eco-system 
metabolism (Zhang et al., 2018). It is also a useful indicator to understand the efficiency of a 
circular economy system (MacArthur, 2013), which aims to turn some of the waste materials 
into more circular uses.  
 565 

Secondly, the estimated C&D waste generation amount can be used for a series of evidence-
based policy-making. For example, it can be used for planning the waste management 
capacity in a region, e.g., the landfill space, the existing and expected 3R capacities. Planners 
often face the problem of a lack of data when performing this practice. Based on the 
magnitude of the problem and waste management capacity, policymakers can further make 570 

proper arrangements on incentives for recyclers and penalties for polluters. The incentives, 
including subsidies, tax deduction, and low-cost land usage, have been adopted previously to 
help recyclers bolster profitability (Bao et al., 2019). Penalties, such as CWDCS in Hong 
Kong, could impel polluters to minimize C&D waste generation (Lu & Tam, 2013). The 
information can also be used for inter-regional coordination. For example, the boundary of an 575 

urban metabolism system is extended to several regions owing to the globalization of 
construction resources. Under this circumstance, policymakers are exploring extended 
producer responsibility (Xu et al., 2021) or cross-jurisdiction waste material sharing (Lu et 
al., 2020). The reliable estimation of waste generation in this study will provide one of the 
most important information pieces for these policy-making efforts.  580 
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Last but not least, the amount of waste generation can be used for a series of public 
engagement activities. For example, by presenting the capacity of recycling and landfill and 
the generation of C&D waste, the urgency of the problem can be better sensed by the general 
public. As a result, it may better urge stakeholders to avoid the Not-In-My-Back-Yard 585 

mindset (Bao et al., 2021), and to more consciously engage in pursuing a circular economy 
(Ruiz et al., 2020). Performed periodically, this estimate will provide a longitudinal data set, 
which shows the trend of the CWM performance, hopefully, will allow people to achieve a 
virtual circle between built environment development and natural environment protection.  
 590 

7. Conclusion 
Data on waste generation at a regional level is of paramount importance to devising proper 
waste management strategies, but many regions, in particular emerging ones, lack reliable 
data of this kind. Focusing on the Greater Bay Area (GBA) in China, one of the most 
economically dynamic areas in the world, this study estimates construction waste generation 595 

using limited, publicly available data and proper data analytics. The five factors of 
population, GDP per capita, total construction output, floor space of newly started buildings, 
and floor space of buildings completed were adopted. The data analysis results show that 
these factors can explain most of the variations of C&D waste generation and the coefficients 
of determination (R2) reach the level of 0.75 or above. Construction waste generation in 600 

individual regions of the GBA can be estimated. These are useful data for developing waste 
management strategies, for example, monitoring the urban metabolism of input (e.g., 
materials, energy) and output (e.g., waste), quantifying carbon emission and impacts on 
climate changes, planning waste management facilities (e.g., recycling plants or landfills), 
promoting cross-jurisdictional waste material sharing, and so on. This method of estimating 605 

construction waste is a useful reference for other regions considering their own dilemma over 
development and environment. 
 
This study also contributes to the methodology for estimating waste generation. Four types of 
popular and powerful ML models, namely multiple linear regression (MLR), decision tree 610 

(DT), Grey models (GM), and artificial neural network (ANN) were selected and compared 
by their strengths and weaknesses. The four models all achieved high accurate predictions of 
waste generation, as evidenced in the high R2. Amongst them, GM and ANN have higher 
prediction accuracy but are more like “black boxes”, not readily accessible to readers. One 
should also avoid overfitting issues when using the models. In contrast, MLR and DT have 615 

slightly lower prediction accuracy but allow more information understandable to readers 
about the predicting mechanism.  
 
This study has its share of limitations. Firstly, it is based on limited data points, regardless of 
the best efforts paid to data collection. More model calibration works are expected in the 620 
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future using other methodological approaches (e.g., Geographic Information System) when 
more data is available. Secondly, although it is legitimate to use data-rich regions to 
extrapolate data-scarce ones, individual features of each region (e.g., Hong Kong’s long 
leading role in waste management; Shenzhen’s ambitious zero waste initiative) are yet to be 
considered in the estimation. Thirdly, estimating future waste generation based on present 625 

data is inherently inaccurate. Hence, researchers should adopt a dynamic perspective, monitor 
the modeling effects, and adjust if necessary. Finally, the biggest motivation of such 
estimation works is to apply the results in real life. Future studies are encouraged to 
implement this study in the GBA and receive further verification.  
 630 
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