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Abstract 
Timely and accurate recognition of construction waste (CW) composition can provide 
yardstick information for its subsequent management (e.g., segregation, determining proper 
disposal destination). Increasingly, smart technologies such as computer vision (CV), 
robotics, and artificial intelligence (AI) are deployed to automate waste composition 5 
recognition. Existing studies focus on individual waste objects in well-controlled 
environments, but do not consider the complexity of the real-life scenarios. This research 
takes the challenges of the mixture and clutter nature of CW as a departure point and attempts 
to automate CW composition recognition by using CV technologies. Firstly, meticulous data 
collection, cleansing, and annotation efforts are made to create a high-quality CW dataset 10 
comprising 5,366 images. Then, a state-of-the-art CV semantic segmentation technique, 
DeepLabv3+, is introduced to develop a CW segmentation model. Finally, several training 
hyperparameters are tested via orthogonal experiments to calibrate the model performance. 
The proposed approach achieved a mean Intersection over Union (mIoU) of 0.56 in 
segmenting nine types of materials with a time performance of 0.51s per image. The 15 
approach was found to be robust to variation of illumination and vehicle types. The study 
contributes to the important problem of material composition recognition, formalizing a deep 
learning-based semantic segmentation approach for CW composition recognition in complex 
environments. It paves the way for better CW management, particularly in engaging robotics, 
in the future. The trained models are hosted on GitHub, based on which researchers can 20 
further finetune for their specific applications. 
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1. Introduction 

The extensive construction activities in the past few decades have significantly improved our 
quality of life by materializing buildings and infrastructure. However, construction has also 
resulted in the skyrocketing amount of construction waste (CW), or referred to as construction 
and demolition (C&D) waste. In Europe, for example, the construction sector produces 820 30 
million tonnes of wastes annually, accounting for 46% of the total waste streams (Gálvez-Martos 
et al., 2018; Ku et al., 2020). In 2015, the United States generated 548 million tons of C&D 
debris, which is more than twice the amount of generated municipal solid waste (USEPA, 2018). 
In 2016, the United Kingdom generated 66.2 million tonnes of non-hazardous C&D waste, of 
which 91.0% was recovered (Defra, 2020). In 2019, the generation of CW in Hong Kong (HK) 35 
has doubled since 2008, hitting nearly 18 million tonnes per annum (HKEPD, 2020). The 
mountainous CW calls for better waste processing and management.  
 
Information on the composition of CW is a prerequisite for its proper processing and 
management (HKEPD, 2019; NSWEPA, 2020). On the one hand, it is of significant value for 40 
the operation of construction waste management (CWM) schemes. For example, in Hong 
Kong, CW is categorized as inert (e.g., concrete, bricks, and sand) or non-inert (e.g., bamboo, 
wood, and plastics), and the composition of a waste truckload determines which facility will 
accept it and the levy chargeable (Chen et al., 2021; Lu and Yuan, 2021). On the other hand, 
the composition information can also be used to enable automated waste segregation 45 
(Gundupalli et al., 2017b). With the ability to recognize specific material types, positions, and 
dimensions, it is viable to replace human workers with intelligent robots to sort CW materials 
automatically. Properly employed, robots can yield a higher throughput, reduce occupational 
hazards, and enable production of better-quality recycled materials (Toto, 2019).  
 50 
Many waste composition sensing technologies have been developed, among which computer 
vision (CV) stands out for its cost effectiveness, ease of maintenance, and applicability to a 
wide range of materials. Different waste materials have their unique physicochemical 
properties regarding absorbance, colors, etc. Such differences in photometric characteristics 
have determined the different appearance of various waste categories, making them 55 
distinguishable through visual recognition. For many years, CV has been explored for the 
recognition of municipal solid waste (MSW) composition. For example, support vector 
machines (SVM) (Paulraj et al., 2016), AlexNet (Mittal et al., 2016), and region-based 
convolutional neural network (R-CNN) (Nowakowski and Pamuła, 2020) have been used to 
recognize or detect MSW materials at source. At the waste sorting stage, extensive research 60 
efforts have been made to incorporate image classification/detection techniques so that 
robotic systems can automatically segregate waste materials (Mao et al., 2021; Vrancken et 
al., 2019; Yang and Thung, 2016; Zhang et al., 2021). 
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Despite the considerable progress achieved, existing studies have been limited to the 65 
recognition of MSW in a relatively structured environment. Transfer of such technologies to 
CWM scenarios in natural settings is difficult for several reasons. Firstly, CW usually 
comprises a mixture of intermingled bulky materials. The image classification/object 
detection techniques used in existing studies may not be able to provide composition 
information with sufficient granularity. Secondly, while MSW is usually processed in orderly 70 
indoor facilities, CW segregation is generally performed in complex outdoor environments 
with variant illumination and a cluttered background. Such complexities and the mixture 
nature of CW pose great challenges to the composition recognition. Existing studies tend to 
oversimplify the application environments, aiming only at classifying or detecting individual 
waste items appearing against a simple, unified background (Huang et al., 2020; Meng and 75 
Chu, 2020; Yang and Thung, 2016). Much remains unclear how CV performs in recognizing 
composition of CW mixtures in complex, cluttered real-life environments. 
 
Semantic segmentation, as a specific CV technique, is promising to the recognition of CW 
composition. Compared with image classification or object detection, semantic segmentation 80 
delivers finer granularity by performing classification in a pixelwise manner (Mansouri, 
2019). It can not only detect and identify objects of interest from a relatively unstructured and 
complex background, but also provide detailed information about the geometry and 
boundaries of the objects. However, little research attention, if any, has been paid to the 
application of semantic segmentation in recognizing CW composition. Having been used 85 
primarily for objects with explicit structures, it is unclear whether the semantic segmentation 
technique can recognize CW composition due to the mixed state of CW materials and, if it 
can, what methodologies should be used to prepare the corresponding dataset and train and 
calibrate the model.   
 90 
To fill in the knowledge gap, our study aims to provide a semantic segmentation approach for 
the recognition of CW mixture in complex and cluttered real-life environments. Through 
meticulous model training and calibration, and empirical analysis, our study demonstrates for 
the first time the viability of a deep learning-enabled CV model for segmenting highly 
unstructured CW in complex environments. The proposed method lays the foundation for 95 
future applications such as robotic waste segregation. 

2. Literature review 
2.1 Computer vision in waste management 

Studies have been ongoing for many decades to apply CV in waste management (Gundupalli 
et al., 2017b). By recognizing waste materials via visual sensors such as cameras, robots can 100 
be deployed to automatically segregate desired items from waste streams transported by 
conveyor belts. Such ideas can be traced back to early 2000s or even before, when Faibish et 
al. (1997) presented a robotic system with stereo vision to recycle waste paper and Mattone et 
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al. (2000) proposed a solution for waste packaging classification based on optical sensors. In 
its early days, visual recognition of waste material relied heavily on hand-engineered features 105 
fed to machine learning models such as multilayer perceptron (MLP) (Koyanaka and 
Kobayashi, 2011), SVM (Wang et al., 2019b), and nearest neighbor (Gundupalli et al., 2018) 
to reduce problem complexity. However, performance of these models was in general not 
robust enough to adapt to real-life waste material variations. 
 110 
The situation has improved since 2012 with the success of end-to-end deep learning 
techniques (Krizhevsky et al., 2012) made possible by drastically improved computing power 
and big data. Yang and Thung (2016) applied AlexNet, a deep convolutional neural network 
(CNN), for the classification of MSW such as paper, glass, and cardboard. Based on their 
TrashNet dataset (Thung and Yang, 2019), a series of studies have been carried out to 115 
significantly improve classification performance from the initial accuracy of below 70% 
(Yang and Thung, 2016) to over 90%. For example, Mao et al. (2021) improved 
DenseNet121’s classification accuracy on TrashNet by the application of a genetic algorithm 
for hyperparameter optimization. Zhang et al. (2021) proposed a residual network with a self-
monitoring module for recyclable waste classification on the same dataset. Researchers have 120 
also tried to locate and detect multiple types of waste material in images. Awe et al. (2017) 
trained a Fast R-CNN model on TrashNet, achieving a mean average precision of 0.683. 
Mittal et al. (2016) developed an Android application based on AlexNet that can 
automatically detect and localize garbage in photographs.  
 125 
In the construction industry, the potential of CV is receiving increasing attention in CWM. 
Xiao et al. (2020) compared the performance of extreme learning machine and CNN in 
classifying typical CW including wood, rubber, bricks and concrete. Lau et al. (2020) 
developed a (near) real-time image recognition approach based on CNN for the determination 
of recycled aggregate composition. Ku et al. (2020) proposed a deep learning-based grasping 130 
detection method able to decide the optimal grasping pose for robots sorting detected CW 
materials. Wang et al. (2020; 2019a) presented deep learning models based on Faster R-CNN 
and Mask R-CNN to detect and segment nails and screws on construction sites. Lukka et al. 
(2014) and Kujala et al. (2015) presented robotic systems for the segregation and sorting of 
CW using CV to tackle the issues of material classification and object grasping. 135 

2.2 Strengths and weaknesses 

Despite their impressive progress, existing studies may have oversimplified the working 
conditions of their models. For example, TrashNet, the widely used dataset in the research 
community (Huang et al., 2020; Meng and Chu, 2020), contains only photos of individual 
items of MSW against a simple background. However, real-life contexts are more 140 
complicated, as the waste materials are always randomly mixed, the illumination is constantly 
changing, and the background can be cluttered. This is especially true for CW, which is a 
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mixture of different materials, and is usually processed in the complex outdoor environments 
(Lu and Yuan, 2012).  
 145 
In addition, little attention has been paid to the problem of waste segmentation. Compared 
with classification or detection, semantic segmentation can provide spatial geometry of waste 
materials at a higher level of granularity, enabling better solutions for composition 
measurement and robotic sorting. However, while some studies have touched on the waste 
segmentation problem, they either relied on hand-engineered features (and thus have low 150 
robustness and generalizability) (Gundupalli et al., 2017a, 2018), or required input of 
additional data modality such as depth information and X-ray imagery (Lukka et al., 2014; 
Zhu et al., 2018), or only focused on small, separate waste items (Sun et al., 2019; Wang et 
al., 2020).       
 155 
Semantic segmentation provides opportunities to address the challenges of CW composition 
recognition. In 2015, Long et al. (2015) introduced CNN to the problem of semantic 
segmentation by implementing pixelwise classification. Since then, numerous model 
structures have emerged including U-Net (Ronneberger et al., 2015), FC-DenseNet (Jégou et 
al., 2017), DeepLab (Chen et al., 2017a; 2017b; 2018), and Mask R-CNN (He et al., 2017). 160 
Among them, the DeepLab series is reputable and widely accepted for its solid performance 
and relatively simple rationale (Li, 2020). The model series proposed groundbreaking 
techniques such as atrous convolution, and atrous spatial pyramid pooling (ASPP), and have 
incorporated emerging algorithms such as multi-scale input and encoder-decoder structure to 
improve accuracy. In 2018, the DeepLabv3+ achieved the state of the art on the PASCAL 165 
VOC 2012 dataset. 
 
DeepLab has been applied in diverse domains, including structural condition assessment (Wu 
et al., 2019; Xu et al., 2020), medical image analysis (Xiao et al., 2018), and autonomous 
vehicles (Capellier et al., 2018). However, most of these applications have focused on the 170 
extraction of individual objects with relatively explicit and clear structures, or “things” (Lin 
et al., 2014), rather than the segmentation of materials, or “stuff”. It remains unclear whether 
existing algorithms such as DeepLab can be customized and re-calibrated to segment a highly 
unstructured, cluttered mixture of different materials, where the structure or distribution is not 
always clear or cannot even be explicitly represented, from complex environments. Our 175 
research fills this gap by formalizing an approach based on DeepLab for effective CW 
semantic segmentation.  
 

3. Methodology 
3.1. Preparing a big dataset of construction waste images 180 

For deep learning, data preparation is far from a trivial task. If the data is not big enough, 



21 

 

interesting for future research to examine if the issue can be further mitigated by IoU-based 
loss functions such as dice coefficient (Milletari et al., 2016), which has demonstrated its 
strength in handling imbalanced datasets (Li et al., 2019). 
 
Fourth, compared with other state-of-the-art segmentation techniques (Chen et al., 2019) that 580 
can process around 30 image frames per second, the efficiency of the construction waste 
segmentation model is relatively low. Although the lag-behind time performance can be 
partially attributed to the differences of the used hardware and input resolution, future 
research is suggested to refine the model structure for potential efficiency improvement. 

 585 
Fig. 8. Examples that show inconsistency between the predicted segmentation boundaries and 
the ground-truth. 

6. Conclusions 

Information on construction waste composition is of paramount importance for better 
construction waste management. The potential of computer vision for recognizing 590 
construction waste composition has long been acknowledged. However, existing studies have 
mainly focused on classification or detection of municipal solid waste in simplified 
environments. This paper presents an approach to tackling the problem of recognizing 
construction waste composition with high-level granularity in complex environments by 
leveraging semantic segmentation techniques. Firstly, a big dataset of 5,366 construction 595 
waste images capturing a wide range of materials (e.g., rock, gravel, wood and packaging) in 
varied, real-life outdoor environments was collected, preprocessed and annotated 
meticulously. Based on the state-of-the-art DeepLabv3+ structure, a construction waste 
segmentation model was then developed. Finally, the model was trained and calibrated on the 
construction waste image dataset via orthogonal experimental design.  600 
 
It was found that smaller output stride, larger image resolution, and pretraining on a material 
dataset such as MINC can potentially lead to higher segmentation accuracy. Compared with 
ResNet, an Xception backbone is preferable. Our optimal model achieved an overall mIoU of 
0.56 in segmenting nine types of materials/objects, which demonstrates the efficacy of the 605 
semantic segmentation approach to recognizing mixtures of bulky construction waste 
materials in complex environments. The findings pave the way for automated construction 
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waste segregation by deploying robots in the future. The trained models have been made 
publicly available in the hope that they can help researchers to train their own material 
recognition models.  610 
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