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ABSTRACT 

The inclusion of calcite precipitates (CaCO3) in soft soil can improve the mechanical properties. 

Understanding the variability in sand stiffness due to heterogeneous precipitates is crucial for 

stiffness evaluation and prediction. A novel Discrete Element-Monte Carlo (DE-MC) method 15 

was proposed to quantify the sand stiffness variability induced by stochastic distributions of 

calcite precipitates, specifically focusing on shear wave velocity (Vs) as an indicator of soil 

stiffness. A total of 1972 samples were constructed to simulate stochastic spatial distributions 

of calcite precipitates. Through joint stochastic analysis, the preferential paths formed by 

calcite clusters were identified as significant contributors to Vs variability. The normalized 20 

connectivity per unity distance contact weight (Cd,n) exhibited the most correlated relation with 

Vs. Two weight selection methods were applicable for using Cd,n to characterize and predict Vs. 

The results suggest that the DE-MC method has the potential to assess the variability in sand 

stiffness quantitatively. 
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1 Introduction 

Due to the demand for infrastructure and engineering construction, the need for various types 

of buildings and construction land has increased sharply. However, construction land resources 30 

are relatively limited, highlighting the significance of reinforcing and solidifying soft soil on 

the construction site [1, 2]. On the other hand, Sustainable Development Goal (SDG) 11, titled 

“Sustainable Cities and Communities”, advocates for an environmentally-friendly approach to 
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addressing existing soft ground soil, aiming to reach the target of carbon neutrality [3, 4]. 

 35 

The inclusion of calcite precipitates induced by either microbes or enzymes in a porous medium 

represents an innovative eco-friendly method for cementing and strengthening soft soil. This 

approach typically results in increases in stiffness and strength, as well as reductions in 

hydraulic conductivity [5-8]. The shear stiffness property of cemented soil can vary 

significantly in different affiliation forms between soil particles and calcite precipitates [9], 40 

which can be calculated by 

G0 = ρVs
2, (1) 

where G0 is the small strain shear modulus, ρ is the overall sample density, and Vs is the shear 

wave velocity. Uniform surface coating assumption of the calcite precipitates on coarse-grained 

soils prevails decades ago [10, 11]. Precipitations at particle contacts and pore filling are also 45 

considered alternative affiliation forms on coarse-grained soils [6, 12-15]. The effect of spatial 

variability on the evolution of Vs is further revealed through both column tests and 

microstructural experiments. Bate et al. [16] employed spectral-induced polarization (SIP) to 

quantify both the content and the size of calcite clusters. Scanning electron microscopy (SEM) 

and energy-dispersive X-ray spectroscopy (EDS) revealed the preferential precipitation of 50 

calcite at the particle contacting area [16-18], while the pore throat area and pore void were 

occupied by calcite, especially at high calcite content [6, 15]. In field applications, spatial 

variability prevails and still poses challenges for engineering applications [19-22]. Due to the 

natural spatial variability of calcite inclusion, quantification of the geotechnical properties has 

not been sufficiently investigated. 55 

 

Recently, the discrete element method (DEM) has gained popularity in predicting the 

geotechnical properties of soil enhanced using microbially induced carbonate precipitation 

(MICP) [12, 23-26]. With the advancement in the DEM technique, spatial variability of calcite 

inclusion was investigated. For example, Wu et al. [12] proposed a novel DEM modeling 60 

scheme to reproduce various precipitation patterns of calcite and quantitatively investigated the 

microstructural characteristics and their evolution upon external loading. They classified the 

initial interparticle bonds into effective, partially effective, surface coating, and pore filling. 

Sun et al. [23] demonstrated that the Vs increased with the connectivity of the calcite 

aggregation cluster. However, DEM simulation of the spatial variability of calcite inclusion is 65 

very limited but highly desired. 

 

The Monte Carlo method, known as random sampling or statistical testing method, unveils 

fundamental mechanisms via statistical analysis of the many instances or realizations of a 

stochastic process or state. By setting random numbers to simulate various physical processes, 70 

population properties can be inferred from samples. Zhou et al. [27] used the Monte Carlo 

method to address parameter uncertainty problems and produce a spatial slope failure 

probability distribution map. Saifuddin et al. [28] examined the applicability of the Markov-
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chain Monte Carlo method in inversions of surface-wave phase velocity, obtaining a variation 

of S-wave velocity profiles from the inversion. Ma et al. [29] combined the Monte Carlo 75 

method with the fictitious domain method to improve the accuracy of the hydrodynamic force 

acting on the particle in a viscous fluid. In this paper, we used a combined DEM and Monte 

Carlo method to randomize the spatial distribution of calcite precipitation based on the authors’ 

prior research [23].  

 80 

The following tasks were conducted to quantify the sand stiffness variability induced by 

stochastic distributions of calcite precipitates: (1) A total of 1972 DEM models were 

established to account for the spatial variability of the calcite precipitates based on a proposed 

Discrete Element-Monte Carlo (DE-MC) method. (2) Interval prediction and confidence 

interval estimation were performed for the estimator Vs, and statistical analysis was carried out. 85 

(3) The correlation analysis between several contact-related features and Vs was conducted. (4) 

A quantified formula between Cd,n and Vs was fitted based on the results of DE-MC simulation. 

2 The proposed Discrete Element-Monte Carlo (DE-MC) method 

2.1 Overview of the DE-MC method 

Given the variability in the spatial distribution of calcite cementation within the sand matrix, 90 

variations in shear wave velocity (Vs) are to be expected but have not been quantified. In this 

case, the Monte-Carlo method could be applied in the quantitative prediction and interval 

estimation of Vs. In this paper, a Discrete Element-Monte Carlo (DE-MC) method was 

proposed, which consists of DEM simulation, Monte-Carlo process, and joint stochastic 

analysis (Fig. 1). A total of 116 groups of randomized calcite distribution were established, with 95 

17 calcite content samples in each group. 

 

Establish the DEM model of cementing sand soil and define paramters

Start

Identify the design space: the distribution characteristic of calcite (CaCO3-
Ps and CaCO3-Cs) during cementation sample in different groups

② Gen erate  a set of n  sample groups, which is 116 in this stud y, with 
different random seeds (Xseed)

③ Solve Vs and Vs~<Xp, Xc>, as well as analyze mean and standard 
deviation of Vs statistically

Conduct stochastic analysis based on both DEM simulation and Monte-
Carlo method

① Define a random variable Xseed to represent the random distribution 
characteristic of CaCO3-Ps (Xp) and CaCO3-Cs (Xc) in each group
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Fig. 1 Procedures of Monte-Carlo simulation in this study [30, 31] 

2.2 DEM simulation 

2.2.1 Virtual entity of generated calcite in the DEM model 100 

In the EICP experiment, newly generated calcite cementing sand soil was transferred from a 

sample with a single uncemented contact model to a sand-calcite mixture [13, 16, 32]. The 

generated sand-calcite mixture sample, which contained two calcite precipitate forms: CaCO3-

P and CaCO3-C [23], had the following characteristics: a. the calcite appeared as a small non-

spherical entity; b. the formation space of calcite cementation was limited; c. the ratios of sand 105 

and calcite content were extremely uneven (Fig. 2a,b). Thus, an innovative DEM sample 

generation method, the virtual entity method, was adopted rather than traditional direct 

generation methods. In the DEM simulation, to be specific, Hertz-Mindlin model was used for 

sand-sand contacts due to the incompressible and unbonded nature of sand; linear parallel bond 

model (Linearpbond) was used to characterize the single calcite precipitate (CaCO3-P, Fig. 2c) 110 

and calcite aggregation (CaCO3-C, Fig. 2d), considering the model is appropriate for simulating 

finite-sized pieces of cement-like materials [33, 34]. The DEM model generated calcite by 

changing the original contact model between sand particles, and a toroidal model was used to 

calculate the mass and volume. Since sand particles were simulated as elastic spheres in the 

DEM, the toroidal model was applied with the cylindrical assumption of calcite precipitates at 115 

particle contacts (contact cementation association pattern) in prior research (Fig. 3, Eq. 2), 

which is elaborated by EDS image and theoretical calculation [13, 23, 35, 36]. The total volume 

of calcite precipitation at particle contacts was calculated using the toroidal assumption, as 

elaborated in a prior study [23] by 

 120 
Fig. 2 (a) EDS image: Si-green color and Ca-purple color, (b)SEM image: example of sand-calcite clusters, 

(c)(d) precipitate forms in DEM model, blue denotes pure sand, orange denotes sand-calcite clusters, black 

denotes Hertz-Mindlin contact and red denotes Linearpbond contact. 
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Fig. 3 Calculation of particle cementation volume. 125 

hi= 
di

2
ቀ1 - cos ቀarcsin

dc

di
ቁቁ, 

vcntct = dc ෍ hi  - ෍ ቌ
di

2

4
arcsin

dc

di
 - 

dc

2
൬
di

2
 - hi൰ቍ , (2) 

where hi = [h1, h2], which denotes the height of the toroidal area of each disk; di = [d1, d2], 

which denotes the diametral sizes of the two disks; dc is the cementation diameter; vcntct is total 

cementation volume. By changing the original contact model between sand particles, the virtual 130 

entity method is able to break through the limitation of basic physical properties of cementation 

such as mass, volume, and shape, so that it can be applied with high degrees of freedom in 

DEM simulation where only spherical particles can be generated. The validity of objective 

DEM modeling relies on the rationality of condition setting and parameter selection. SEM 

images from previous studies provide distribution and morphological characteristics of 135 

cementation [16, 23]; Bender element measurement provides data on Vs for calibrating 

microscopic parameters; SIP provides size information of cementation. These prerequisites 

enable cementation to exist as a virtual entity and yield nature-like experimental results. 

 

2.2.2 Sample preparation 140 

A 2D rectangular stripe (height × width = 0.3 m × 0.1 m) with rigid, frictionless walls was 

created in PFC2D, within which particles (expressed as disks) were then generated by a five-

step expansion method, reaching the two-dimensional porosity of 0.192 [23]. A vertical stress 

of 5 kPa under the plane strain condition was then applied using a rigid servo system. Following 

this, a high-damping boundary (α=1.0)  was set in this model to simulate the continuous 145 

medium, enabling the dynamic effect to conform to the actual propagation law [37]. The 

parameters used in the model are listed in Table 1. For the measurement of Vs, a pair of virtual 

“walls” with a coefficient of friction of 0.7, called the transmitter and the receiver, were set in 

the samples at a distance of 0.1m (Fig. 4) [38]. A sinusoidal velocity pulse ( v0 = 5(1.0 -

 cos ( 2πft)) m/s) with the excitation frequency (f) close to the natural frequency of the sample 150 

was applied to the transmitter in the y-direction, aiming to maximize the received vibration 

signal and to minimize the errors caused by noises and P-waves [39, 40]. The received vibration 
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at the receiver end was recorded for Vs calculation. 
Table 1 Parameters of the sample in the DEM model 

Parameter Sand CaCO3 Sample 

Diameter (mm) 2.12-3 - - 

Shear modulus (Pa) 6.5×1011 - - 

Poisson ratio 0.25 - - 

Density (kg/m3) 2650 2600 - 

Friction coefficient 0.5 0.5 - 

Tensile strength (Pa) - 5.0×109 - 

Cohesion - 2.0×1010 - 

Effective modulus (Pa) - 8.0×1010 - 

Viscous damping factor 0 - - 

Local damping factor 0.3 - - 

Relative density - - 0.85 

Porosity Lab - - 0.37 

Porosity 2D - - 0.192 

Confining pressure (kPa) - - 5 

Soil density (kg/m3) - - 1659 

 155 

 
Fig. 4 Shear wave measurement in the DEM model 

CaCO3-P (represents individual calcite precipitation) was assigned to contacts when calcite 

content was below 1%, beyond which CaCO3-C (represents calcite aggregation) was assigned. 

The quantity of CaCO3-P precipitation at particle contacts increases with calcite content 160 

increment, while CaCO3-C only forms when calcite content exceeds 1%. In this study, the 

formation of calcite precipitates was achieved by randomly adjusting the contact model at local 

contacts with the precipitates [23] (Fig. 5). Based on an experimental study, the simplified size 

of CaCO3-P and CaCO3-C in the DEM model are 1.06mm/1.33mm and 12mm respectively 

[23].  165 
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Fig. 5 Cemented sample (Blue denotes pure sand, orange denotes sand coated with CaCO3-C, and red denotes 

CaCO3 in the model figures) 

2.3 Monte Carlo algorithm process 

The detailed Monte-Carlo simulation process is as follows: 170 

 (1) Construct probability process. Unlike the single uncertain variable of most Monte-Carlo 

simulations, double variables in this study—the distribution characteristic of CaCO3-Ps (Xp) 

and CaCO3-Cs (Xc)—had a complex interrelation spatially and quantitatively under a certain 

calcite content [30, 41]. To address this challenge, a fundamental tool for Monte Carlo 

simulation, the random-seed variable (Xseed), was employed in the FISH Function to generate 175 

the Xp and Xc. The FISH Function is the only object that can be executed in the FISH (an 

embedded programming language within PFC) to manipulate DEM samples. In this way, the 

simple Xseed representing the overall random distribution of calcite cementation, can be 

executed instead of the Xp and Xc representing the random distribution characteristic of the two 

calcite forms in each sample group (Eq. 3). The methodology adopted in this study is outlined 180 

with reference to a prior study [23]. This redefinition simplified the generation of randomized 

116 sample groups.  

 

(2) Sample from a known probability distribution. Given that the calcite generation was evenly 

distributed within the region, Xp and Xc, represented by Xseed, also followed a uniform 185 

distribution. The sample matrix was set to represent the relationship among samples, variables, 

and estimators (Eq. 4). In Matrix 1, total m*n samples were generated, where the number of 

columns (n) represents the number of groups of samples, and the number of rows (m) represents 

the sample numbering in each group. Matrix 2 indicated mathematically that each sample was 

determined by two variables -- Xseed for n and CaCO3% for m. Through modeling each sample 190 

in Matrix 2, the Vs estimator matrix can be achieved as shown in Matrix 3. In this study, n=116 

and 116 Xseed were allocated to 116 DEM sample groups to simulate the Vs. 

 

(3) Solve and analyze estimators Vs. Vs was measured as the target estimator in the process, and 

the corresponding confidence interval was obtained. Statistically, the relationship between 195 

estimators Vs and uncertain variables (Xp, Xc), as well as the mean and standard deviation of Vs, 

ought to be analyzed. 

 
Table 2 Calcite contents and excitation frequencies of 116 groups 

m* CaCO3%  Frequency（kHz） m* CaCO3% Frequency（kHz） 

1 0  4 10 2.55 8 
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2 0.11  4 11 3.17 8 

3 0.23  5 12 4 10 

4 0.34  7 13 5 15 

5 0.45  8 14 6 20 

6 0.55  8 15 7 25 

7 0.66  8 16 8 25 

8 1.24  8 17 9 25 

9 1.88  8    

The m refers to the sample numbering. 

 

Sn-m=F(Xseedn
,CaCO3%)=F൫Xc,Xp൯=

ppXp, CaCO3%≤0.66%

pcXc, CaCO3%>0.66%
 , (3) 200 

Sn-m refers to the sample with sample number m in the nth group; Xp and Xc are the distribution 
characteristic of CaCO3-Ps and CaCO3-Cs, respectively; pp and pc are the variation coefficients 
of CaCO3-Ps and CaCO3-Cs, respectively. 

 

 205 

 

The particle packing of an uncemented sand matrix was selected for all 1972 samples to 

eliminate variations in Vs caused by contact arrangements. In addition, the post-processing and 

data calculation could be simplified by using the same initial particle packing in the preceding 

DEM simulation. Shear wave measurements were performed on these samples after reaching 210 

equilibrium. 

2.4 Joint stochastic-analysis 

In the joint stochastic analysis, the random distribution of macro-level Vs and the variation of 

micro-spatial cementation are described to estimate the evolution interval of Vs and interpret 

the relation between shear wave velocity and spatial variability. 215 

 

A Jarque-Bera test was used to test the normal goodness of fit for the Vs distribution, which 

was based on the sample skewness and kurtosis [42]. The test statistics were defined as: 

JB=
S2

6/n
+

(K-3)2

24/n
, (5) 

S=
μ3ෝ

σ3෡
=

1
n ∑ (xi-xത)3n

i=1

ቀ
1
n ∑ (xi-xത)2n

i=1 ቁ
3/2 , (6) 220 

⎝

⎜
⎜
⎜
⎛

S1-1 S2-1 ⋯ Sn-1

⋮ ⋮ ⋱ ⋮

S1-m S2-m ⋯ Sn-m

⋮ ⋮ ⋱ ⋮

S1-17 S2-17 ⋯ Sn-17⎠

⎟
⎟
⎟
⎞

 = 

⎝

⎜
⎜
⎜
⎛

F(Xseed1
,0) F(Xseed2

,0) ⋯ F(Xseedn
,0)

⋮ ⋮ ⋱ ⋮

F(Xseed1
,CaCO3%) F(Xseed2

,CaCO3%) ⋯ F(Xseedn
,CaCO3%)

⋮ ⋮ ⋱ ⋮

F(Xseed1
,9%) F(Xseed2

,9%) ⋯ F(Xseedn
,9%) ⎠

⎟
⎟
⎟
⎞

 ~ 

⎝

⎜
⎜
⎜
⎛

Vs1-1 Vs2-1 ⋯ Vsn-1

⋮ ⋮ ⋱ ⋮

Vs1-m Vs2-m ⋯ Vsn-m

⋮ ⋮ ⋱ ⋮

Vs1-17 Vs2-17 ⋯ Vsn-17⎠

⎟
⎟
⎟
⎞

             (4) 

Matrix 1: sample number                   Matrix 2: model expression                           Matrix 3: the estimator 
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K=
μ4ෝ

σ4෡
=

1
n ∑ (xi-xത)4n

i=1

ቀ
1
n ∑ (xi-xത)2n

i=1 ቁ
4/2 , (7) 

 

where n is the number of samples, S is the sample skewness, and K is the sample kurtosis. The 

skewness and kurtosis of a standard normal distribution are 0 and 3, respectively. The 

hypothesis was that the Vs of different calcite content obeyed a normal distribution with 225 

unknown mean and variance, which were tested using the sample skewness and kurtosis. 

Moreover, the Vs results were considered not to follow a normal distribution if the random 

value of the 2-freedom chi-square distribution (P-value) for the test statistics was less than 5%. 

 

Quantifying spatial distribution variability in Vs typically requires thousands of Monte Carlo 230 

samples, which is computationally intensive, time-consuming and lacks theoretical background. 

An indicator, the normalized connectivity per unity distance(Cd,n), was introduced to represent 

the connectivity of the sample [23]. The DEM model can be seen as a weighted undirected 

graph by graph theory with weighting systems on Linearpbond contacts and Hertz contacts, in 

which vertexes and edges symbolize particles and contacts, respectively. The shortest path (also 235 

known as preferential propagation path in the DEM model) and weighted shortest distance 

(also known as shortest propagation distance in the DEM model) from the transmitter to the 

receiver can be calculated by Dijkstra's algorithm in reference to the prior study [23]. A 

preliminary indicator, Cd, was used to represent the weighted shortest propagation distance. 

However, Cd represents absolute distance, which cannot allow quantitative comparison of 240 

samples with different sizes. The Cd,n, normalizing the shortest propagation distance to 

represent the connectivity of all samples, was thereby introduced and defined as [23]: 

൞
ωh = 

1

C2/3

ωLPB = 
1

C

, (8) 

⎩
⎪
⎨

⎪
⎧

Cd = ω௛Nh+ ωLPBNLPB

Cd, n = 
Cd - ωLPB(

L
d50

 - 1)

ω௛(
L

d50
 - 1) - ωLPB(

L
d50

 - 1)

, (9) 

 245 

where C is the coordination number in the sample; ωh and ωLPB are weights of Hertz contacts 

and Linearpbond contacts; Nh and NLPB are the numbers of the Hertz contact model and the 

Linearpbond model, respectively; L is the distance between the transmitter and the receiver; Cd 

is the connectivity, represented as the weighted shortest path; Cd,n is the normalized 

connectivity per unity distance, represented as the normalized weighted shortest path. A lower 250 

value of Cd,n indicates a shorter preferential propagation path and greater connectivity.  
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3 Results 

3.1 Sensitivity analysis 

3.1.1 Peak-to-peak time determination 

Shear wave velocity (Vs) was determined by dividing the propagation distance (0.1m) by the 255 

time. A comparison between the peak-to-peak and first-arrival time methods (Fig. 6) revealed 

that the Vs calculated by both two methods were steady at low frequency (<8kHz). However, 

the determination of shear wave propagation time using the first arrival method is subjective 

due to the influence of near-field effects (i.e., compression waves and reflected shear waves) 

[43]. Although both the two methods exhibited some dispersion at high frequency (>16kHz), 260 

it was particularly pronounced in the first arrival method. Therefore, the peak-to-peak method 

was selected in the subsequent analysis.  

 
Fig. 6 Vs measured by two methods under four typical calcite content (0.66%, 3.17%, 6%, 8%) 

 265 

3.1.2 Damping coefficients 

In DEM simulation, damping contains two components, the viscous damping coefficient and 

local damping coefficient. The former is not applicable to dry, non-viscous materials, so it was 

set to 0 to avoid a reduction in output frequency. The range of the latter of [0.1, 0.7] was tested 

in DEM simulations (Fig. 7a). Using experimentally measured shear wave velocity (Vs,exp) from 270 

a prior study [16], an optimal damping coefficient was determined as follows. Compared with 

the experimentally measured arrival time (tar, calculated by Vs,exp), local damping coefficients 

exceeding 0.3 delayed wave arrival (Fig. 7a). However, high-frequency noise appeared at α<0.2 

(Fig. 7b). In view of the above results, the local damping factor (α) was set to 0.3, and the 

damping ratio was D =  α π⁄ =0.095 , which was within the small-strain damping ratios of 275 

cemented sands of [0.02, 0.15] (Fig. 8) [44, 45].  
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Fig. 7 Signals of the receiver under CaCO3% = 0.11% (a) and 0.66% (b) with local damping factors (α) of [0.1, 

0.7]; tar, L, Vs, exp are the wave propagation time, propagation distance and Vs from experiments [16]. 

 280 
Fig. 8 Damping ratio and cementation content relationships [44-46]   

3.1.3 Excitation frequency 

It was observed that Vs was greatly affected by different excitation frequencies in both 

experiments and simulations [47-49]. Sets of samples with four calcite contents were tested for 

sensitivity analysis of excitation frequency (Fig. 9). For samples of the same calcite content, 285 

varying excitation frequencies could cause differences in the calculated Vs, with a maximum 

variation of 358m/s at 8% CaCO3. This variation, attributed to wave dispersion, was 

particularly obvious when the cementation content was high, significantly impacting both 

experimental and simulation results. Therefore, characterizing the relationship properly 

between input and output frequencies is essential to accurately determine Vs [48, 50]. The input 290 

frequency should fall within the range of its linear relationship with the output frequency, and 

thus this threshold can be considered a reasonable input frequency [48]. For the same sample 

of four different calcite contents, it was found that the input and output frequencies could be 

well matched when the excitation frequencies of the samples were selected as 8kHz, 8kHz, 

20kHz, and 25kHz, and their frequencies fell within the reasonable threshold (Fig. 9), which 295 

meant that the cementation content is positively correlated with the inherent frequency of the 

sample. Excitation frequencies near the inherent frequencies of each calcite content group were 

used (Table 2). The propagation distance (L) and excitation frequency used in the shear wave 
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simulation ought to be both satisfied by λ/d50 < 10 and L/λ > 2, where λ is the wavelength 

and d50 is the median particle size [38, 48] 300 

 
Fig. 9 Excitation frequency characterization of samples with different calcium carbonate content 

3.2 Evidence from DE-MC 

3.2.1 Macro-level results of DE-MC: Typical Vs vs CaCO3% relationship 

The stochastic analysis results of Vs in the DE-MC are shown in Table 3, Fig. 10, and Fig. 11. 305 

The growth of shear wave velocity can be divided into four stages (Sun et al., 2022): (1) In 

Stage I (CaCO3 ≤ 0.66%, CaCO3-P only), the mean Vs increased monotonically with the calcite 

content at a rate of 308.98m/s, as evidenced by the slope. The Vs frequency histograms 

displayed a normal distribution with a variance of [9.76, 35.49]. Samples in Stage I 

demonstrated positive skewness, implying a higher dispersion above the mean Vs and 310 

aggregation in the low-speed region. (2) In Stage II (0.66%≤ CaCO3 ≤ 2.55%, CaCO3-C 

appeared), the Vs increased slower than Stage I, at a rate of 164.62m/s. The variance was [62.38, 

171.20]. The kurtosis exceeded twice that of the standard normal distribution, indicating a 

deviation from normality. It suggested that, despite the generation of cemented clusters, the 

spatial variability was slight, and Vs remained relatively unaffected. Furthermore, the 315 

histograms had a positive (left) skew distribution, suggesting that a small number of samples 

exhibited high-speed regions, likely due to the formation of calcite clusters that facilitated wave 

propagation. (3) In Stage III (2.55%≤ CaCO3 ≤ 6%), the increasing rate of Vs was 262.18m/s, 

which was the highest of the four stages. The Vs frequency histograms displayed a normal 

distribution with a variance of [220.15, 260.74]. (4) In Stage IV (6%≤ CaCO3 ≤ 9%), the 320 

increasing rate was reduced to 189.81m/s. The histograms displayed a normal distribution, and 

the variance was [137.91, 203.39]. Samples in Stage IV demonstrated negative skewness, 

implying a higher dispersion below the mean Vs and aggregation in the high-speed region. In 

summary, the actual Vs for calcium carbonate reinforcement tended to be lower than the 
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predicted velocity in Stages I and II, and slightly higher than that in Stage IV. 325 
Table 3 Vs distribution of samples with different calcite content 

Stage CaCO3% sV (m/s) 
Standard 

deviation(m/s) 
Skewness Kurtosis 

Normal 

distribution 

Ⅰ 

0.11 210.40 9.76 -0.13 2.77 ○ 

0.23 227.78 14.22 0.16 4.15 ○ 

0.34 248.97 18.29 0.67 3.93 ○ 

0.45 282.13 22.98 0.91 6.49 ○ 

0.55 322.39 24.89 0.68 3.75 ○ 

0.66 380.34 35.49 0.38 3.24 ○ 

Ⅱ 

1.24 447.77 62.38 1.77 11.97 × 

1.88 525.58 92.21 1.48 6.36 × 

2.55 640.11 124.69 1.20 5.68 × 

3.17 765.48 171.20 1.44 6.75 × 

Ⅲ 

4.00 958.21 220.15 0.64 3.09 ○ 

5.00 1211.31 260.74 0.36 2.60 ○ 

6.00 1482.56 238.12 -0.15 2.49 ○ 

Ⅳ 

7.00 1756.64 203.39 -0.19 3.11 ○ 

8.00 1974.69 154.59 -0.34 2.89 ○ 

9.00 2136.25 137.91 -0.70 3.47 ○ 

 
Fig. 10 Variation range of Vs [16, 51] 
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Fig. 11 Vs frequency histogram with different calcium carbonate content. The red line is the normal distribution 330 

fitting curve 

3.2.2 Micro-scope spatial distribution of calcite-sand clusters 

A close look at the shear wave propagation path could reveal influencing factors at the particle 

contact level. Three samples at 5% calcite content showed three preferential paths through 

which the shear wave arrived at the receiving end first (Fig. 10, Fig. 12). The optimal path of 335 

Sample 1 passed through the most calcite clusters and had the longest consecutive Linearpbond 

contact length, with the measured Vs of 1700m/s; although the optimal path of Sample 2 passed 

through most calcite clusters, there was a node remained uncemented, resulting in a continuous 

Linearpbond contact length shorter than that of Sample 1, with the measured Vs of 1255m/s; 

the optimal path of Sample 3 passes through the least number of calcite clusters, and there were 340 

four nodes remained uncemented, resulting in the shortest continuous Linearpbond contact 

length, with the measured Vs of 838m/s. Through the comparison of the above three paths, it 

can be seen that the larger the proportion of calcite clusters (Linearpbond contact) and the 

continuous Linearpbond contact length, the faster the transmission of the shear wave.  
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 345 
Fig. 12 Distribution of calcite-sand clusters in Samples 1, 2, and 3 at 5% calcite content. Black lines indicate the 

optimal wave propagation paths; red arrows indicate uncemented particles; Cd,n refers to the normalized 

coordination number along the shear wave propagation path [23]. 

4 Discussion 

4.1 Significance and implications 350 

The Monte-Carlo application verified the rationality of the DEM simulation of calcite-

cemented samples. Plenty of sample data also revealed evidence at the macro and micro levels. 

Based on the constructed sample dataset and valid sample generation method, features of 

quantifying spatial variability of calcite precipitates and relations between macro-level Vs and 

micro-level Cd,n can be further discussed. 355 

4.2 Feature correlation analysis 

The validity of Cd,n characterizing Vs can be evaluated based on the dataset constructed from 

1972 samples. The lists of transmitters and receivers of 1972 samples were traversed, and 

Dijkstra’s algorithm was used to calculate the optimal path of each sample. A Pearson 

correlation analysis was carried out of the eight contact-related features and the target value Vs 360 

(Fig. 13). The features pertaining to the Linearpbond contact were all strongly positively 

correlated with Vs (>0.8), with QLLC exhibiting the highest correlation. This indicates that 

continuous cementation contributed more to the increase in Vs than dispersed cementation. 

However, it is worth noting that QLLC was an absolute variable and may not be applicable 

when parameters such as wave propagation distance and particle size change. Therefore, 365 

characterization indicators should be chosen from relative variables, including LP, PLLC and 

Cd,n, rather than absolute features. Among these relative values, Cd,n exhibited the strongest 

correlation with Vs, suggesting that the contact weight, based on physical significance, is a 
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reasonable means of characterizing Vs. 

 370 
Fig. 13 Correlation analysis between features and Vs. (a) Correlation matrix; (b) An example sample shortest 

propagation path; (c) The feature definitions and examples 

4.3 Quantitative characterization of Cd,n-Vs 

Since Cd,n represented the characteristic of the shortest distance in the microscopic scope, the 

empirical relationship of Cd,n-Vs can quantify the contribution of calcite cementation, predict 375 

Vs, and analyze sample variability. 

 

The first step to calculate Cd,n was selecting the weights of contacts. The above weights result 

was calculated by the coordination number, which was based on physical meaning (Eq. 8). 

More samples provided statistics information to select weights based on the Monte-Carlo 380 

method. The optimal values and appropriate intervals for the contact model weight can be 

calculated using the Monte-Carlo method, and the Cd,n-Vs correlation was found to be the most 

negative when the weight ratio is 0.83 (Fig. 14). 

 

 The quantified Cd,n relationships based on physical meanings and the Monte-Carlo method 385 

were compared in Table 4. Both methods could characterize Vs without considering calcite 

content, but each had advantages and disadvantages. Weight selection based on physical 

meanings resulted in greater aggregation of wave velocity points, less error with the fitted curve, 

and more accurate Vs predictions, but the weights need to be recalculated in different 

simulations. The weights selected based on the Monte-Carlo method can be applied as 390 

constants, but the Vs of different samples were more discrete and less accurately predicted. 

Both weight selection results are applicable for using Cd,n to characterize Vs, and making 

reasonable predictions. 
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Fig. 14 The degree of correction between Cd,n and Vs under different ωLPB/ωh 395 

 
Table 4 Comparison of two methods of weight selection for contact model 

 Based on Physical meanings Based on Monte-Carlo method 

ωh 0.475 1 

ωLPB 0.328 0.83 

Cd,n range [0.145, 1.303] [0.318, 1.643] 

Vs-Cd,n fitting equation Vs=623Cd,n
-1.01-338 Vs=1415Cd,n

-1.06-725 

Vs-Cd,n fitting figure 

  

5 Limitations and future work 

Though the DE-MC method provides significant evidence for studying sand stiffness 

variability induced by stochastic distributions of calcite precipitates, it also has several 400 

limitations in quantitative analysis. Firstly, all samples were kept in the same K0 stress state 

(i.e., the stress state was not considered); other microscopic features such as contact force, 

coordination number change, and force chain distribution were neglected. A recommended 

future direction was to expand the quantification of indicators like Cd,n to consider different 

stress states and incorporate the aforementioned microstructural features. Secondly, the sizes 405 

of samples and particles were fixed and the diversity was not enough. Therefore, the 

generalization ability of the Cd,n-Vs derived formula needs further verification. Further study 

can focus on building a more complete physical-informed database based on existing 

simulation methods, to solve the huge computational problem of traditional numerical methods. 
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6 Conclusions 410 

In this study, an innovative Discrete Element-Monte Carlo (DE-MC) method was applied in 

samples of calcite-cemented soil to quantify the sand stiffness variability induced by stochastic 

distributions of calcite precipitates. During the Monte Carlo process, a random variable Xseed 

represented the random distribution characteristic of CaCO3-Ps (Xp) and CaCO3-Cs (Xc) in 

different samples. A total of 1972 DEM samples were established. Cementation spatial 415 

distribution and Vs in the simulation were presented, and microscopic features were further 

constructed and analyzed. The following conclusions are drawn: 

(1) The Vs frequency histograms and 95% confidence intervals revealed the difference of Vs 

in different samples, which was attributed to the preferential paths caused by calcite-sand 

clusters. Typically, the spatial distribution variability of calcite-sand clusters started to 420 

stand out in Stage II, and was the most obvious in Stage III, thereby leading to the 

significant distribution difference of Vs.  

(2) Contact-related features of the sample dominated preferential paths, which can predict Vs. 

The correlation between eight selected contact-related features and Vs was calculated. The 

normalized connectivity per unity distance contact weight Cd,n was the most correlated 425 

among relative variables. 

(3) The availability of Cd,n was evaluated by weighting contacts to quantify the cementation 

contribution. A lower Cd,n value indicated greater connectivity and higher Vs. Two methods 

of weight selection, physical meanings and Monte-Carlo, were provided and compared, 

both showing advantages in practical prediction. The fitted formulas are Vs=623Cd,n
-1.01-338 430 

and Vs=1415Cd,n
-1.06-725, respectively. 
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