
1 
 

Clarity in DEM cementation predictions: Integrating automated machine learning and 

interpretability analysis of shear wave velocity 
Meng Sun1; Dong Liang2; Jiajia Wang3; Bate Bate4; Fan Xue5* 

This is the peer-reviewed post-print version of the paper: 
Sun, M., Liang, D., Wang, J., Bate, B. & Xue, F. (2026). Clarity in DEM cementation 

predictions: Integrating automated machine learning and interpretability analysis of 

shear wave velocity. Advanced Engineering Informatics, 69 (D), 104060. Doi: 

10.1016/j.aei.2025.104060 
The final version of this paper is available at https://doi.org/10.1016/j.aei.2025.104060. The 

use of this file must follow the Creative Commons Attribution Non-

Commercial No Derivatives License, as required by Elsevier’s policy.  
 
Abstract 5 

Although shear wave velocity (Vs) is a fundamental parameter for evaluating the small-strain 

shear stiffness of materials, conventional discrete element method (DEM) simulations for 

predicting Vs in cementation analysis are computationally intensive. While machine learning 

(ML) provides a promising alternative for developing high-performance predictive models, the 

inherent opacity of most ML models diminishes their credibility, limiting practical applications. 10 

This paper introduces an approach that integrates automated machine learning (AutoML) with 

interpretability analysis. This approach achieves high-accuracy Vs prediction (R² = 0.952) and 

offers physically meaningful insights through integrated global-local interpretability. Analysis 

of 1,972 DEM samples with 10 microscopic features, the approach confirms the significant 

influence of features such as ShortestDistance and HertzNumber on Vs evolution. The 15 

contribution of this paper is twofold. First, the improved AutoML model marks a breakthrough 

by enabling more accurate Vs prediction in DEM cementation simulations while greatly 

reducing computational costs. Second, the interpretability results improve usability by 

unveiling transparent, physically grounded relationships between microscopic features and the 

macroscopic property Vs. The developed approach can enhance practical reinforcement 20 

applications with greater credibility, especially in quality control and process optimization.  
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Keywords 
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discrete element method (DEM); cementation simulation; shear wave velocity (Vs) 
 25 

Highlights 
 Automated ML of discrete element method (DEM) achieves robust Vs prediction (R² 

= 0.952) 
 Interpretability pipeline (PDP, ALE, LIME, SHAP) resolves ML black-box concerns 
 Key microscopic features ShortestDistance, HertzNumber drive Vs evolution trends 30 

 Our approach outperforms Cd,n-based fitting with higher accuracy and generalization 
 Transparent model enables broader microscopic studies and practical applications 

 
Nomenclature 

Abbreviation Explanation 
AEC Architecture, Engineering, and Construction 
AI Artificial intelligence  

ALE Accumulated Local Effects 
AutoML Automated machine learning 

Cd,n The normalized connectivity per unit distance 
DEM Discrete element method 

G₀ Shear stiffness 
ICE Individual Conditional Expectation 
K0 Static lateral stress 

LIME Local Interpretable Model-Agnostic Explanations 
LLM Large language model 
LPB Linear parallel bond 

LSTM Long Short-Term Memory 
MAE Mean Absolute Error 
MC Monte-Carlo 
ML Machine learning 

MSE Mean Squared Error 
NDT Non-destructive testing 
PDP Partial Dependence Plot 
R² Coefficient of determination 

RMSE Root Mean Squared Error 
RNN Recurrent neural networks 
SHAP SHapley Additive exPlanations 

Vs Shear wave velocity 
XAI Explainable AI 

ρ Sample density 
 35 
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1 Introduction 
Recent advances in microscopic mechanical studies have promoted the widespread use of 

material cementation reinforcement in the Architecture, Engineering, and Construction (AEC) 

industry (Ashraf et al. 2017). Shear wave velocity (Vs) is essential because it directly relates 40 

to the small-strain shear stiffness (G₀), a key parameter for assessing the effect of cementation-

based reinforcement. While numerical simulations like the discrete element method (DEM) 

can effectively solve static problems, dynamic simulations—especially those involving Vs 

prediction during cementation—are computationally demanding and time-consuming (Sun et 

al. 2025; Yang et al. 2017). As a result, understanding the microstructural influences on such 45 

dynamic small-strain behaviors remains difficult (Bate et al. 2021). Therefore, the AEC 

industry needs efficient solutions for predicting Vs and analyzing how microscopic features 

affect dynamic small-strain behavior. 
 
These requirements for precise small-strain analysis indicate the necessity of incorporating 50 

machine learning (ML) into the AEC industry (Singh et al. 2021). ML can learn nonlinear 

relationships from high-dimensional data, enabling valuable analysis and identification of 

microscopic mechanical behavior (Zhang et al. 2024). Modern ML techniques, especially 

supervised learning algorithms, have proven effective in solving inverse problems and 

predicting mechanical properties without depending on physics-based models (Deka 2019; 55 

Liang & Xue 2023). Successful solutions in this area often combine domain expertise, 

experimental methods, and numerical simulations with advanced ML technologies (Saka et al. 

2023; Sun et al. 2024). Furthermore, common optimization techniques such as data-level 

approximate computing, precision scaling, and feature selection enhance ML models (Dalloo 

& Humaidi 2024; Euldji et al. 2023). Recent research has adopted ML algorithms and hybrid 60 

techniques for Vs prediction, indicating innovative integrations of physical research in the AEC 

industry (Ghorbani et al. 2025; Hazbeh et al. 2024; Makarian et al. 2023; Rajabi et al. 2023). 
 
Automated ML (AutoML) has recently gained attention for solving complex prediction tasks 

in simulations. AutoML aims to automate all stages of ML, including data preprocessing, 65 

feature engineering, model selection, hyperparameter tuning, and deployment. Thus, non-

experts are enabled to develop high-performance models directly from provided datasets to 

solve the target tasks (Baratchi et al. 2024; Barbudo et al. 2023). However, AutoML still faces 

challenges due to the “black-box” nature of many ML models, hindering its widespread 

application. 70 

 
Interpretability analysis improves the transparency and credibility of complex models, which 

is significant in the era of “Artificial Intelligence (AI) for Science” (Zhang et al. 2023). The 

implementation of GDPR has introduced requirements for trustworthy data processing, making 

interpretability a key research area in AI and ML (Varshney 2016). Explainable Artificial 75 

Intelligence (XAI) is truly driving the development of AI technology towards greater 

transparency, credibility, and responsibility. Currently, interpretability methods examine 
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complex models through visualization, model simplification, feature-based interpretation, and 

rule-based interpretation (Bach et al. 2015; Barredo Arrieta et al. 2020). 
 80 

This paper presents the application of AutoML and interpretability analysis for predicting Vs 

in DEM cementation simulations to address the computational cost of conventional DEM and 

the lack of credibility in ML models. A dataset of 1,972 DEM samples with measured Vs values 

was analyzed. AutoML was employed to predict Vs based on physically induced microscopic 

features. Two global interpretability methods, i.e., PDP and ALE, and two local interpretability 85 

methods, i.e., LIME and SHAP, were used to provide reasonable microscopic interpretations 

at both global and local scales. The findings demonstrate substantial advances in prediction 

performance and offer effective interpretations of microscopic features. Section 2 reviews 

related research. Section 3 details the proposed research methods. Section 4 presents and 

analyzes the experimental results. Section 5 discusses the implications of the findings, and 90 

Section 6 concludes the paper. The contributions of this paper are twofold. First, the improved 

Vs prediction leads to higher accuracy in DEM cementation simulations while simultaneously 

reducing computational cost. Second, the interpretability analysis enhances prediction 

credibility and can provide valuable guidance for practical reinforcement applications. 
 95 

2 Related research 
2.1 Cementation content and Vs in soil reinforcement 
Cementation simulation is a widely adopted method (Ashraf et al. 2017; Zhao et al. 2022). This 

method effectively examines materials’ reinforcement processes within the AEC industry 

(DeJong et al. 2010; Kempfert & Gebreselassie 2006). Cementation reinforcement affects the 100 

stress-strain relationship of materials and improves their shear stiffness (Karol 2003). Various 

cementation methods are widely applied to enhance soil properties and address instability in 

soft soils (Bang et al. 2009; Martinez & DeJong 2009; Salifu et al. 2016). However, the 

uncontrollable nature of cementation processes often leads to non-uniform reinforcement, 

which creates engineering risks (Bate et al. 2021; Niu & Zhang 2018). This necessitates further 105 

investigation into the microscopic mechanisms involved. 
 
Shear wave velocity (Vs) is used to assess the effect of reinforcement because it is a reliable 

non-destructive testing (NDT) method used to measure shear stiffness—the material’s 

resistance to deformation under shear stress (Martinez et al. 2013; Hu & Wang 2024; Han et al. 110 

1986). The shear stiffness (G0) is calculated by the equation: 
G0 = ρVs

2, (1) 
where ρ is the sample density, and Vs is the shear wave velocity. Vs, as a dependable metric, 

assesses the reinforcement effects in cementation simulations, particularly for strengthening 

loose sandy soils. Vs exhibits a nonlinear positive correlation with added cement (cementation 115 

content). DeJong et al. (2010) compared the performance of various NDT methods, such as 

shear wave, compression wave, and resistivity, and showed the effectiveness of Vs in 

evaluation. The relationship between Vs and cementation content was also preliminarily 
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characterized (Martinez et al. 2013). Sun et al. (2022) performed a discrete element method 

(DEM) simulation using macro parameters and created a microscopic digital twin model of 120 

cemented samples to quantify the evolution of Vs; experiments in other studies verified this 

quantification process. Based on geotechnical engineering principles, these investigations 

reveal Vs evolution at elevated cementation levels and offer a microscopic interpretation of Vs. 
 
Various methods have been proposed to predict or estimate Vs, including empirical corrections, 125 

numerical simulations, and ML approaches (Hazbeh et al. 2024). Table 1 provides typical 

categories of these Vs prediction methods. 
 

Table 1 Summary of Vs prediction methods 
Method category Advantages Limitations Representative methods 

Empirical 

correlation 

Low computational cost, 

physical insights, and 

high interpretability  

Failing to represent 

complex nonlinear 

relationships, poor 

accuracy 

Vs-DCT relationship (Han et 

al. 1986), Vs-mn fitting (Bate 

et al. 2021), GM estimation 

(Makarian et al. 2023) 

Optimization-

based algorithms 

Strong theoretical 

foundation and high 

interpretability, handling 

uncertainty 

High computation cost, 

convergence issues, 

indirect prediction 

Cuckoo Optimization 

Algorithm (Anemangely et 

al. 2019), Monte-Carlo 

simulation (Sun et al. 2022) 

Classical 

machine learning 

methods 

End-to-end prediction, 

capturing complex 

nonlinear relationships, 

relatively low cost 

Strong dependence on 

data and feature 

quality, limited 

physical consistency 

SVM (Anemangely et al. 

2019), Random forest 

(Hazbeh et al. 2024)  

Deep learning 

methods 
End-to-end prediction, 

high accuracy 

Black-box nature, 

massive data, high 

computational cost 

DBN (Hazbeh et al. 2024), 

Hybrid CNN&LSTM 

(Ghorbani et al. 2025) 

DEM-

simulation-based 

methods 

Physical insights and 

high interpretability, real-

world simulation 

high computational 

cost, parameter 

calibration challenge 

Granular material simulation 

(Sadd et al. 2000), CaCO3 

cementation prediction (Sun 

et al. 2025) 
 130 

The measurement is costly and time-consuming, and ML methods offer alternative solutions 

but often lack interpretability. DEM simulation has become a key method for predicting Vs in 

cementation analysis. However, constructing a DEM model to simulate shear wave propagation 

is complex and challenging (Table 1) (Sun et al. 2022). This growing complexity arises from 

the increasing parameters, difficulties in timestep selection, the complex response to nonlinear 135 

material behavior, and complex dynamic processes. These challenges make small-strain 

analysis, like Vs prediction and microscopic feature effects, considerably more complex than 

constructing the initial sample.  
 
2.2 Preliminary applications of AutoML and interpretability 140 

AutoML enables users to benchmark and integrate various algorithms in rapidly developing 

high-performance ensemble models (Li et al. 2023). Compared with traditional ML, AutoML 

simplifies the workflow for feature engineering, model selection, and parameter tuning. 

Specifically, automated Bayesian optimization and model weight assignment relieve 

researchers of the burden imposed by redundant and complex parameter tuning (Barbudo et al. 145 
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2023). Moreover, AutoML allows non-experts to construct high-performance pipelines 

satisfying specific applications (De Bie et al. 2022). Auto-sklearn, an increasingly prominent 

AutoML toolkit, integrates a diverse set of algorithms, feature preprocessing methods, and data 

preprocessing methods. In contrast to traditional machine learning algorithms, AutoML 

reconfigures these processes as hyperparameters (Feurer et al. 2019; 2022). The efficiency of 150 

AutoML has captured the interest of researchers in the AEC industry. The failure mechanism 

of reinforced concrete shear walls can be effectively classified by input design parameters 

(Liang & Xue 2023), and high-performance non-destructive concrete strength prediction is also 

possible (Sun et al. 2023). 
 155 

Although machine learning algorithms perform well in numerous tasks, many engineers and 

practitioners remain hesitant to use them due to their black-box nature (Lundberg & Lee 2017; 

Zhao & Hastie 2021). Model trustworthiness and decision causality require interpretability for 

effective risk control. Interpretability refers to the degree to which the rationale behind a 

decision is understandable (Kim et al. 2016; Miller 2019; Molnar 2020). The black-box nature 160 

of algorithms used to train AutoML models verifies the importance of Explainable AI (XAI), 

particularly model-agnostic interpretability methods. Therefore, these methods warrant 

significant attention from researchers. 
 
Partial Dependence Plot (PDP) and Accumulated Local Effects (ALE) are two typical global 165 

interpretability methods (Apley & Zhu 2020; Friedman 2001), whereas Local Interpretable 

Model-Agnostic Explanations (LIME) and SHapley Additive exPlanations (SHAP) are two 

typical local methods (Lundberg & Lee 2017; Marcílio & Eler 2020; Ribeiro et al. 2016a; 2018). 

The summary of typical interpretability methods is presented in Table 2. In the AEC industry, 

researchers employed SHAP to interpret both global and local concrete strength predictions, 170 

using feature contribution visualizations to inform concrete mixing decisions (Sun et al. 2023). 

SHAP was also applied to quantify the contribution of particle size distribution to shear 

stiffness in DEM simulations (Liu et al. 2024). Zhang et al. (2025) used SHAP and PDP to 

analyze the influence of four factors in asphalt preparation on predicting dynamic modulus. 

However, alternative interpretability methods have limited applications within the AEC domain. 175 

This scarcity presents an opportunity for further exploration. 
 
Table 2 Summary of typical model-agnostic interpretability methods (Apley & Zhu 2020; Friedman 2001; 

Lundberg & Lee 2017; Marcílio & Eler 2020; Ribeiro et al. 2018) 

Method Context Limitations 

PDP Global interpretation, visualizing the 

average marginal effect of a feature Feature independence assumption 

ALE Global interpretation, correlated features 

handling, unbiased estimation. 
Less intuitive than PDP, complex 

interpretation plot 

LIME Local interpretation, local fidelity Dependent on perturbation 

parameters, sensitive to kernel width 
SHAP both local and global interpretation High-cost computation 
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2.3 Cementation modeling via DEM 
DEM has become a key method in cementation simulations because of its capacity to model 

each material particle at the microscopic scale (Lin et al. 2016; Sun et al. 2022). This capability 

is vital, as it allows for detailed analysis of soil, structures, and reinforcement effects in 

infrastructure engineering. DEM can control the state of each particle via coating and pore 185 

filling to simulate the global cementation content (Niu et al. 2024; Xu et al. 2024). With 

advances in computational power, these simulation capabilities make DEM an effective 

alternative to in-situ practices and experimental observations (DeJong et al. 2010; Jiang 2019; 

Martinez et al. 2013). Chang et al. (2016) summarized biomineralization treatment methods 

for loose sand and proposed specific microscopic models. Yun and Evans (2011) used DEM to 190 

measure the static lateral stress (K0) and Vs of cemented sand. Yang et al. (2017) conducted a 

3D DEM analysis of reinforced sand under drainage triaxial compression. Feng et al. (2017) 

simulated macroscopic and microscopic responses before and after cementation. 
 
Sun et al. (2025) simulated numerous DEM samples with measured Vs to investigate the spatial 195 

variability of cementation distribution. In this paper, the DEM simulation of basic sand sample 

cementation proceeded as follows: particles represented the sand; Hertz contact modeled 

interactions between uncemented particles, and linear parallel bond (LPB) contact modeled 

interactions between cemented particles. The simulation began by applying the collected 

experimental macro parameters to calibrate the simulation parameters. Then, an uncemented 200 

DEM sample consisting only of Hertz contacts was generated to represent loose soft soil. Once 

this initial uncemented DEM sample was created, different DEM samples with specified 

cementation content were simulated by converting Hertz contacts to LPB contacts, based on 

the cementation content algorithm. This methodology enabled the simulation of shear wave 

propagation across diverse cementation contents to acquire Vs. Significantly, variations in 205 

cementation attributes—such as position, size, and clustering—produce differences in Vs. This 

occurs even when cementation content remains identical. 
 
Fig. 1 illustrates a typical sample and propagation process under 2.55% cementation content. 

In the DEM model, particles had the same properties, while the distribution of LPB contacts 210 

influenced wave propagation and Vs. Previous microscopic studies of these DEM samples 

indicated that the preferential path of shear wave propagation determines Vs. Nevertheless, two 

critical questions remain unanswered. First, a method for directly determining Vs for individual 

samples remains unclear. Second, the specific microscopic features influencing Vs along the 

propagation path need interpretation. 215 

 



8 
 

 
Fig. 1 (a) A typical sample under the cementation content of 2.55% (Blue denotes pure sands, orange 

denotes cemented clusters, and black lines denote the shear wave propagation path); (b) Wave propagation 

process (green indicates sands without vibration, red and blue indicate sands with vibration) (Sun et al. 220 

2022). 
 
To address these challenges, researchers need efficient methodologies to predict Vs and clarify 

microscopic features. Conventional DEM simulation relies on manual calibration and iterative 

processes, which are time-consuming and inefficient. Given that prior Vs measurements in 225 

cementation samples provide many microscopic features, AutoML-based end-to-end 

prediction represents a feasible and promising research direction (Sun et al. 2025). 

Interpretability analysis enables the investigation of dominant microscopic features. Therefore, 

the integration of AutoML and interpretability techniques in Vs prediction is promising, as this 

combination enhances both predictive accuracy and mechanistic insight. 230 

 
3 Research methods 
To conduct the Vs prediction and microscopic interpretation from the DEM model, we propose 

an approach that integrates AutoML with interpretability analysis. In this Section, Fig. 2 

presents the workflow, including the case dataset derived from DEM simulations, the AutoML 235 

regression pipeline for Vs prediction, and four interpretability methods. The pseudocode of this 

approach is presented in Algorithm S1 in Appendix D. 
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Fig. 2 The conceptual diagram for Vs prediction and microscopically interpretability analysis. 240 

 
3.1 Case dataset 
This paper uses a total of 1,972 DEM samples with measured Vs published by Sun et al. (2025) 

to construct a dataset of trusted synthetic data. The procedure for acquiring the sample data is 

provided in Appendix B of the supplementary material. The dataset spans a wide range of 245 

cementation content levels. On a microscopic scale, the propagation of shear waves results 

from the transfer of force between particles through contact. Vs is dominated by the preferential 

propagation path of shear waves (Bate et al. 2021; Santamarina et al. 2001; Sun et al. 2022). 

Ten typical physical features of the contact along the propagation path were extracted to 

quantify their detailed contributions to Vs. The definition and distribution of these features are 250 

illustrated in Table 3 and Fig. S1 (Appendix C). In the subsequent sections, this paper focuses 

on the relationship between the extracted microscopic features and Vs and leaves the 

macroscopic quantity of cementation content aside. 
Table 3 The definition of 10 microscopic features 

ID Features / Label Definition 
F1 

LPBPercent The proportion of the number of LPB contacts to all the contacts on the shortest 

path 
F2 ContactsNumber The quantity of all contacts on the shortest path 
F3 LPBConstantMax

Number 
The quantity of LPB contacts within the longest consecutive LPB contacts on the 

shortest path 
F4 

split0 The quantity of segments with LPB contacts split by Hertz contacts on the 

propagation preference path 
F5 

split1 The quantity of segments with more than one LPB contact split by Hertz 

contacts on the propagation preference path 
F6 LPBNumber The quantity of LPB contacts on the shortest path 
F7 HertzNumber The quantity of hertz contacts on the shortest path 
F8 

LPBconstantPrct The proportion of the number of LPB contacts within the longest consecutive 

LPB contacts to the total number of contacts on the shortest path 
F9 ShortestDistance Weighted shortest distance from the transmitter to the receiver 
F10 averageSplitLen The average length of split segments with LPB contacts 

 Vs Shear wave velocity 
 255 
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3.2 AutoML regression 
This paper applies Auto-sklearn to predict Vs based on DEM simulations. Fig. 3 shows the 

AutoML regression process. Microscopic features are extracted from the DEM simulation to 

construct the trusted synthetic dataset. Then, a 10-fold cross-validation procedure is employed 

to select models and mitigate bias. This is an iterative process in which nine folds are used for 260 

training, and one fold is designated for validation (hold-out set). To prevent data leakage, all 

DEM samples generated from the same initial spatial configuration are grouped together and 

assigned to the same fold. 
 

  265 
Fig. 3 Structural schematic and process details in the Auto-sklearn prediction. 

 
Within the Auto-sklearn system, hyperparameter tuning is automated to maximize the 

automation advantages of AutoML, except that configuration parameters must be preset. Prior 

to applying each individual model, meta-learning is employed to optimize hyperparameters by 270 

calculating the similarity between the training dataset and existing datasets (Feurer et al. 2015). 
 
During each model training, all samples in the dataset were normalized and encoded using 

either standard scaling or pass-through methods for the 10 input features (Fig. 3). Namely, two 

continuous features, ShortestDistance and averageSplitLen, were rescaled to the range [−1, 1] 275 

by subtracting the mean and scaling to unit variance. The remaining features were left 

untransformed. This encoding step is essential to prevent the adverse effects of varying data 

scale. After the encoding step, a collection of 11 feature preprocessing methods was used, 
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including polynomial features and feature agglomeration. Then, 17 regressors, including K 

Nearest Neighbors (Huang et al. 2019), Gaussian Processes (Rasmussen et al. 2004), and Extra 280 

Trees (Geurts et al. 2006), are selected to predict Vs both independently and collectively. 

Collective predictions are made using ensemble methods, including Ensemble Selection, 

Library Pruning, and SingleBest. The final prediction is evaluated using metrics such as MSE 

(Mean Squared Error), MAE (Mean Absolute Error), RMSE (Root Mean Squared Error), and 

R² (Coefficient of determination) to ensure the reliability and performance of the ensemble 285 

model. Examples of prediction outputs are listed in Table 4. 
 

Table 4 Examples of features and predicted values 
Instance Features for prediction  Vs (m/s) 

Id F1 F2 F3 … F10  predicted DEM 

measured 
1 0 41 0 … -0.753  195.42 195.44 
2 0.073 41 1 … -0.644  206.08 209.52 
3 0.262 42 1 … -0.644  241.87 232.09 
… … … … … …  … … 

1,972 0.950 40 38 … -1.597  2105.74 2090.84 

 
3.3 Interpretability methods 290 

3.3.1 Partial dependent plot (PDP) 
A Partial Dependence Plot (PDP) is a global method used to describe the marginal effect of 

each feature on the predicted outcome. PDP assumes that the first feature under study is 

unrelated to the second feature (if applicable). The result arises from observing changes in the 

predicted outcome after shuffling the values of the feature in question. This method quantifies 295 

the contribution of the feature to the prediction. PDP provides a causal interpretation that is 

intuitive and implementable (Zhao & Hastie 2021). 
 
The PDP analysis process is as follows (using the feature F1 as an example): 

a. Shuffle the F1 values within the dataset while fixing all other feature values. 300 

b. Calculate the average output for different values of F1 under Monte Carlo conditions. 
c. Plot the PDP result, showing the average curve. 

To supplement PDP, Individual Conditional Expectation (ICE) provides an individual sample 

perspective and enhances the understanding of the impact of features. The combined use of 

PDP, which gives an overall view of feature influence, and ICE, which provides individual 305 

sample insights, enables a deeper understanding of the model’s behavior and the role of features. 
 
3.3.2 Accumulated local effects (ALE) 
The Accumulated Local Effects (ALE) method is a distinct interpretable method that 

effectively addresses feature correlation issues. ALE calculates the variance, accumulation, and 310 

centralization of predicted values. Features are partitioned into multiple bins to ensure the 

points within each bin reflect the actual data points. For each instance within a bin, the 
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differences in predicted values result from substituting the feature with both the upper and 

lower bounds of the bin. These differences are subsequently accumulated and centered to form 

the ALE curve. 315 

 
3.3.3 Local Interpretable Model-agnostic Explanations (LIME) 
Local Interpretable Model-Agnostic Explanations (LIME) is a locally additive feature 

attribution method (Ribeiro et al. 2016b) commonly used in classification tasks. In the LIME 

process, a new dataset (local samples) is generated by perturbing the original data; the original 320 

predicted value serves as the reference. An interpretable model (e.g., linear model, decision 

tree) trains using the local samples. This interpretable model then provides a data representation 

with features and allows observation of the importance of each feature. This paper treats the 

regression task as a matrix to execute data perturbation through sampling and inverse 

operations. 325 

 
The detailed process is as follows (using feature F1 as an example). 

a. Train the uninterpretable AutoML model and select the feature F1 to interpret. 
b. Generate N perturbations of the data to generate local samples. 
c. Calculate the weight of the samples, which corresponds to the distance between the 330 

perturbed data and the feature to be interpreted. 
d. Fit a new interpretable model based on the new dataset. 
e. Interpret the contribution of feature F1 in the AutoML model using the interpretable 

model. 
 335 

3.3.4 SHapley Additive exPlanations (SHAP) 
SHapley Additive exPlanations (SHAP) is a method designed to interpret predictions of 

complex models in a unified framework (Lundberg & Lee 2017). As a local model-agnostic 

interpretable method, SHAP derives from game theory and quantifies the contribution of 

features to predictions for individual instances. The core of the SHAP method is the Shapley 340 

value, which provides an attribution value for each input feature. The Shapley value is additive 

and locally accurate. In this context, the predicted value can be interpreted as the sum of the 

Shapley values for all features and the global predicted average. The significance of SHAP lies 

in its ability to measure feature contributions consistently, which ensures a fair and consistent 

interpretation of each feature’s impact on the prediction. 345 

 
In summary, PDP intuitively interprets microscopic features and reveals interactions between 

features. ALE addresses the issue of feature correlation in global interpretations. LIME and 

SHAP focus on the interpretation of individual sample differences. LIME ensures local fidelity 

through ‘faithful approximations’, and SHAP, available globally and locally, offers further 350 

insight into the evolution of Vs for each sample. 
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4 Experiment results  
4.1 Experimental Settings 
The case dataset was used as the input for AutoML in Auto-sklearn (ver. 0.15). 10-fold cross-355 

validation was employed to select models and reduce bias, enhancing model generalization 

(Fushiki 2011; Liang & Xue 2023). The time limits for automated model search, single model 

fitting, and memory limit were set to 300 seconds, 30 seconds, and 3,072 MB, respectively. 
 
After training, the ensemble selection method automatically selected the best model from all 360 

the trained models and assigned weights based on performance. Additionally, the R² metric was 

used to evaluate the performance of the ensemble model. Four open-source tools—PDPbox 

(ver. 0.3), Scikit-Explain (ver. 0.1), Lime (ver. 0.2), and SHAP (ver. 0.44) —were selected to 

perform interpretability analysis for PDP, ALE, LIME, and SHAP, respectively. Based on 

fitting Vs versus the normalized connectivity per unit distance (Cd,n), two methods were 365 

selected as baseline (Sun et al. 2025). 
 
4.2 Results of AutoML’s Vs prediction 
The AutoML process trained 1,972 samples and employed 17 types of machine learning 

regressors (Fig. 3). These regressors were used in a total of 66 models applied during the 10-370 

fold training. The ensemble model was selected from these models, and its overall performance 

was outstanding, as shown in Table 5. 
 

Table 5 Ensemble model performance in each fold 

Fold Best Ensemble Model Accuracy (R2) 
Total Train Test 

1 0.34G1-1+0.28G1-2+0.34K1-1+0.04A1-1 0.952 0.952 0.948 
2 0.5G2-1+0.16G2-2+0.1R2-1+0.24K2-1 0.946 0.949 0.926 
3 0.32K3-1+0.14G3-1+0.12R3-1+0.2L3-1+0.16K3-2+0.06K3-3 0.942 0.942 0.936 
4 0.82G4-1+0.02R4-1+0.16K4-1 0.936 0.940 0.902 
5 0.5G5-1+0.14E5-1+0.14R5-1+0.12L5-1+0.08K5-1+0.02G5-2 0.944 0.944 0.943 
6 0.38G6-1+0.1K6-1+0.02E6-1+0.18D6-1+0.1L6-1+0.12K6-2+0.08E6-2+0.02D6-2 0.943 0.945 0.923 
7 0.52G7-1+0.1E7-1+0.14K7-1+0.02G7-2+0.2K7-2+0.02E7-2 0.941 0.942 0.937 
8 0.72G8-1+0.08L8-1+0.12G8-2+0.06E8-1+0.02G8-3 0.935 0.937 0.911 
9 0.46G9-1+0.28G9-2+0.1L9-1+0.16K9-1 0.937 0.939 0.923 

10 0.24G10-1+0.32G10-2+0.04K10-1+0.1L10-1+0.02K10-2+0.08K10-3+0.1K10-

4+0.02E10-1+0.02A10-1+0.06L10-2 0.941 0.949 0.881 

G: gaussian_process; K: k_nearest_neighbors; A: adaboost; R:random_forest; L: liblinear_svr; E: 

extra_trees; D: decision_tree 
 375 

Individual models should be investigated before applying the ensemble model. Fig. 4 

summarizes the regressors using different algorithms in 522 single-model training sessions of 

the 10-fold cross-validation.  
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Fig. 4 Regressor analysis during the AutoML (10-fold) process. 380 

 
The K-Nearest Neighbors and Liblinear_SVR were the top two regressors for the dataset, with 

more than 90% successful runs. In contrast, some regressors failed; this indicates their 

unsuitability for this Vs prediction task. Among the eight regressors that ran successfully, Fig. 

4bcd shows the best performer for each regressor in each fold. This figure also presents test 385 

scores, rankings, runtime, and inter-fold errors analyses. 
 
The Gaussian process achieved the highest score and ranked first in terms of test performance. 

However, it had a significantly longer execution time than the other regressors, with a total 

time nearly three times that of the others. Extra Trees also performed well in predictions, but 390 

its performance varied greatly across folds; this indicates poor robustness. 
 
These regressors had distinct advantages and disadvantages, suggesting that an ensemble 

model would improve performance. Table 5 shows that the ensemble model for each fold was 

determined through post-hoc ensembling (Feurer et al. 2022). The evaluation metric R² was 395 

greater than 0.88 for all 10 folds in the test set. The ensemble size ranged from 3 to 10, and the 

Gaussian process formed the primary component in all 10 folds. 
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Fig. 5 presents the prediction performance metrics of the AutoML model compared to prior 

baseline methods. Both Cd,n-Coord and Cd,n-Monte-Carlo (MC) depended on connectivity 400 

among the preferential paths, discussed in prior studies (Sun et al. 2022; Sun et al. 2025). The 

AutoML prediction (RMSE = 143.472m/s) showed smaller errors compared to Cd,n-Coord 

(RMSE = 208.218 m/s) and Cd,n-MC methods (RMSE = 343.835 m/s). Within the 20% error 

interval, the AutoML approach achieved a higher percentage of predicted results (90.16%) than 

Cd,n-Coord (78.50%) and Cd,n-MC (44.27%) methods. Extreme outliers in the predictions of 405 

the Cd,n-related methods indicate incorrect predictions in some cases (dashed boxes in Fig. 5). 

In contrast, the AutoML predictions showed no excessive deviation; this demonstrated its 

robustness. 
 

  410 
Fig. 5 Scatter plot of prediction results by the presented AutoML, Cd,n-Coord, and Cd,n-MC approaches, 

where the light color areas are 20% error intervals and dashed boxes highlight extreme outliers in 

predictions. 
 
The AutoML approach reduced computational cost substantially compared to DEM-based 415 

simulations (Fig. 6). For a single Vs prediction task, repeated trial calibrations were 

indispensable in the DEM simulation, which was quite time-consuming. Plus, the Simulation 

Process 1 (843s) must be included in the prediction preparation. In contrast, the training process 

of AutoML only required 3048s. For each prediction in the task, the AutoML approach only 

costs 0.193s while the DEM-based simulation costs 337s. 420 
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Fig. 6 The computation time contrast between the DEM-based simulation and the AutoML approach in one 

Vs prediction task 
 425 

4.3 Results of interpretability analysis 
4.3.1 PDP & ICE 
As a global interpretable method, Fig. 7 shows the thick blue PDP curves of the trained AutoML 

model, regarding the relationship between Vs (y-axis) and all 10 features (x-axis). Additionally, 

light blue lines represent all individual conditional expectations (ICE).  430 

 
Fig. 7 PDP curves of 10 features regarding the trained AutoML model. 
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ShortestDistance is the most influential among all 10 features, as its maximum effect on Vs 

can be 750m/s. Given that this feature has attributes of contact types, propagation distance, and 435 

coordination number, the significance of ShortestDistance to Vs is understandable. The 

interpretability analysis result echoed prior studies that the preferential propagation dominates 

Vs (Bate et al., 2021; M. Sun et al., 2022). Additionally, the monotonically positive contribution 

of LPBNumber (170 m/s) and the negative contribution of HertzNumber (300 m/s) 

corroborated the microscopic analysis (Sun et al. 2022). This analysis stated that LPB contacts 440 

representing cemented particles provide strong interaction, and more LPB contacts/fewer Hertz 

contacts result in higher Vs.  
 
However, due to the correlation between features, the accuracy of the interpretation was 

potentially limited, and the 2D PDP was used to indicate how the interaction of 2 related 445 

features influenced the prediction (Molnar, 2020). In this way, the inaccuracy caused by the 

feature independence assumption was addressed. All the interactions between feature pairs 

were visualized (Molnar, 2020). Using this method, features that have a significant impact on 

Vs were verified. The 2D PDP is plotted in Fig. 8. 
 450 

 
Fig. 8 2D PDP between bi-variate features, where red arrows represent the increasing direction of Vs and 

values represent the normalized contribution ratio of features (Fvertical/Fhorizontal). 
 
The 2D PDP between bi-variate features in Fig. 8 indicates the evolution of contributions of 455 

two features to Vs by quantifying the normal direction of the steep contour. In Fig. 8, though 

both ContactsNumber and ShortestDistance had a monotonic negative impact on predicted Vs, 

the interaction between the two features showed that the variation of ContactsNumber hardly 

affects the contribution of ShortestDistance to Vs, as the normalized contribution ratio was 

22.09 (Arrow #1). HertzNumber and LPBNumber were negatively correlated and played 460 

similar importance generally (−4.51 in Arrow #2); this was also verified in Fig. 8.  
 
Yet, when LPBNumber was low and HertzNumber was high, reverse contributions occurred 

(Arrows #3, #4). While HertzNumber was low, the increase of LPBNumber contributed less 

and less to Vs with a ratio from 0.86 to 6.37 in Arrows #5, #6, and #7. LPBNumber and 465 

LPBconstantPrct were other feature pairs indicating the different evolutions. Vs kept 

increasing as LPBNumber and LPBconstantPrct increased, and LPBNumber contributed more 

when Vs was below 870 m/s (0.18 in Arrow #8). When Vs was high (>870 m/s) with 
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LPBNumber>31 and LPBconstantPrct>0.77, the increase of LPBNumber contributed little to 

the Vs increase and probably caused the opposite effect (5.66 and −1.61 in Arrows #9, #10). 470 

The result was interpreted as a high value of LPBNumber, indicating a long propagation 

distance; this resulted in a low Vs (Bate et al. 2021). Under these conditions, LPBconstantPrct 

had a greater influence on the increase in high Vs as the normalized contribution ratio was from 

5.66 to -1.61. 
 475 

4.3.2 ALE 
Fig. 9 shows the ALE curves (Red line) of the trained AutoML model; the feature distribution 

is also presented. As mentioned above, ALE plots are a more unbiased alternative to PDP, 

especially when the features are not independent. LPBPercent had a significant and lasting 

positive impact on Vs with centered ALE from -134 to 343, while HertzNumber (centered ALE 480 

from 326 to -177) and ShortestDistance (centered ALE from 461 to -236) had the steepest 

negative cumulative effect. Analysis of LPBconstantPrct was also relevant as the feature’s 

centered ALE echoed the role of cementation in different stages of Vs evolution (Sun et al. 

2022). When the cementation content was low (LPBconstantPrct < 80%), the continuous 

contact was relatively dispersed; this resulted in the difficulty of searching for a faster 485 

propagation path for shear waves. With the percentage of continuous LPB contacts increased 

to over 80%, the centered ALE started rising from 6 to 97; this echoed that the high content of 

continuous LPB contacts greatly contributed to the Vs prediction (Sun et al. 2025).  
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 490 
Fig. 9 ALE curves of 10 features regarding the trained AutoML model. 

 
4.3.3 LIME 
Fig. 10 shows a local feature explanation of a set of instances ordered by cementation content 

in LIME. With the increase in cementation content, these features showed similar trends in 495 

contribution to Vs; ShortestDistance emerged as the most influential feature, with the negative 

contribution exceeding 300 m/s. Additionally, the averageSplitLen and HertzNumber of this 

sample also had a negative contribution greater than 100 m/s; this confirmed the importance of 

the number of different contact types and continuous particle cementation, respectively (Cheng 

et al. 2013; Yun & Evans 2011). Unlike other features, the lower value of split1, which 500 

represented the dispersion of cementation, positively contributed to Vs when Vs was lower 
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than 273 m/s; this indicates that too-dispersed cementation under low cementation content 

could only lead to a slight stiffness increase in uncemented sand samples, echoing the findings 

in Stage Ⅰ in M. Sun et al. (2022). 
 505 

 
Fig. 10 The local feature explanation of 4 instances ordered by cementation content in LIME. 

 
As shown in Fig. 11, Vs varied in the three instances, though the cementation content was the 

same (5%, Stage Ⅲ). Instance No. 523 exhibited a notably higher Vs due to its superior 510 

ShortestDistance as described in the above interpretability analysis (Fig. 11b). On the other 

hand, the low Vs of the other two instances were attributed to the following reasons.  
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Fig. 11 Comparison of three instances under the same cementation content (5%, Stage Ⅲ) by LIME. (a) 515 

The variation range of Vs adapted from M. Sun et al., 2025; LIME explanation of Instance 423 (b), 642 

(c), and 540 (d). 
 
As shown in Fig. 11c, in Instance No. 642, the high ShortestDistance value was the primary 

cause of the low Vs; this reflected the primary importance of this feature (Sun et al. 2025). The 520 

high value of averageSplitLen and the low value of HertzNumber replaced the 

ShortestDistance as the dominant features. The result echoed the evidence showing that in the 

absence of direct linear distance as the shortest path, the shear wave preferred to choose a path 

with long-distance cementation and fewer Hertz contacts to speed up Vs (Sun et al. 2025). 
 525 

As shown in Fig. 11d, the ShortestDistance of Instance No. 540 still functions as a significant 

feature, but the incoherence of cementation in the path seriously reduces Vs. This is reflected 

in that split1, LPBConstantMaxNumber, and split0, which represent the incoherence of 

cementation, negatively affect Vs. Among them, the large negative effect of split1 echoes that 

incoherent continuous cementation can significantly affect Vs (Sun et al. 2022). 530 

 
To sum up, the comparison analysis of these three instances was consistent with prior studies 

(Sun et al. 2022; Sun et al. 2025). The cementation variability led to diverse Vs under the same 

cementation content, and the difference between the three instances was properly interpreted 

within the microscopic scope; this interpretation focused on the influence of cementation on 535 

the propagation path. This LIME method compensated for the lack of experience in the end-

to-end black-box AutoML prediction; it provided a reasonable interpretability analysis of the 

Vs difference between the three instances. 
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4.3.4 SHAP 540 

Fig. 12 shows the global importance of features by SHAP. The wide SHAP value range of 

ShortestDistance showed a significant impact on predicted Vs (Fig. 12a), consistent with the 

above analysis result. Low values of ShortestDistance, HertzNumber, split0, and 

ContactsNumber made a positive contribution generally, while the others (except split1) had 

the opposite effect. Fig. 12b specifically shows the predicted Vs evolution under different 545 

features. Although the predicted Vs was generally monotonically related to the increase of the 

selected feature, the evolution by LPBConstantMaxNumber, LPBNumber, split0, and split1 

had extreme values. The extreme values under LPBConstantMaxNumber = 42 and LPBNumber 

= 42 corresponded to the contact count in the shortest path. In addition, lower split0 and split1 

values generally correlated with higher Vs (Sun et al. 2025). However, the extremal condition 550 

(split0 = 1, split1 = 1) specifically identified uncemented samples (i.e., split0 = 0, split1 = 0). 
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 555 

Fig. 12 Global summary of features in all samples. (a) Global feature beeswarm plot; (b) Force plot of 

predicted Vs versus feature values ranked by the selected feature. 
 
Fig. 13 shows that SHAP also allowed for the contribution analysis of the above microscopic 

features on the variability of Vs in local instances, when the cementation content was 5%. In 560 

Fig. 13a, the high SHAP value range of ShortestDistance indicates that it was the main cause 

of Vs variability. On the other hand, LPBNumber, split0, split1, and LPBconstantPrct were not 

responsible for the variability of Vs, as these SHAP values had a small variation range. In Fig. 

13b, the smooth evolution by HertzNumber, averageSplitLen, LPBNumber, split0, 

ContactsNumber, and split1 indicates that the predicted Vs caused by changes in these features 565 

are continuous and gradual, which have a stable influence; the zigzag evolution by 

ShortestDistance and LPBPercent indicates these features would affect the prediction by 

interacting with other features; the more zigzag of LPBConstantMaxNumber and 

LPBconstantPrct indicate their complex relationship with predicted values when the 

cementation content was 5%. 570 
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Fig. 13 Local summary of features when cementation content was 5%. (a) feature beeswarm plot; (b) Force 575 

plot of predicted Vs versus feature values ranked by the selected feature 
 
Fig. 14 compares the local analysis by SHAP between the above three instances presented in 

Fig. 11a. In Instance No. 523, ShortestDistance = -1.208 (+328.54m/s) contributed the most to 

predicted Vs (1952.31m/s), followed by LPBConstantMaxNumber = 43 (+210.11m/s); this was 580 

consistent with the explanation of that by LIME (Fig. 11b). In Instance No. 642, the positive 

contribution of LPBConstantMaxNumber = 17 (+1.38m/s) and ShortestDistance = -0.878 

(+153.68m/s) to the predicted Vs was significantly reduced; this was the main reason for the 

low Vs (1302.06m/s). In Instance No. 540, the contributions of all features decreased 

significantly; this led to the lowest predicted Vs (906.90m/s) compared with the other two 585 
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instances. ShortestDistance, the most important feature in the global analysis, had essentially 

no positive contribution (+8.74m/s). Different from the LIME explanation, the difference of 

LPBConstantMaxNumber contributions varied significantly (+210.11m/s in Instance No. 523, 

+1.38m/s in Instance No. 642, and -19.01m/s in Instance No. 540); this increased the Vs gap 

between the three instances. 590 

 

 
Fig. 14 Feature contribution comparison of 3 instances under the same cementation content (5%) by SHAP 
 
4.4 Sensitivity analysis and feature ablation 595 

Two analyses, namely sensitivity and ablation, were employed to further assess the feature 

importance. Sensitivity analysis indicates how perturbations in features affected the predicted 

Vs, and the ablation experiment reflects feature importance by removing features. These 

approaches provide quantitative evidence to support post-hoc interpretations. 
 600 

The ICE curves in Fig. 7 for individual instances (light blue curves) show the overall predicted 

Vs changes and indicate the model sensitivity to feature perturbations. It is noted that predicted 

Vs is highly sensitive to ShortestDistance and HertzNumber in individual samples, with 

average changes of 750 m/s and 300 m/s, respectively. The evidence of high sensitivity and 

consistent patterns across samples strongly confirms their roles as key features influencing the 605 

effectiveness of cementation reinforcement. 
 
A feature ablation analysis was also performed to further quantify the importance of each 

feature. This involved sequentially removing each feature, retraining the AutoML model, and 

recording the drop in the evaluation (ΔR²). Consistent with the results of the interpretability 610 

analysis, the drop of ShortestDistance led to the greatest performance drop (ΔR² = -0.006), 

followed by HertzNumber (ΔR² = -0.004) and LPBConstantMaxNumber (ΔR² = -0.004). In 

contrast, removing other features had little impact on performance (|ΔR²| < 0.002). The ablation 

confirms that the model relies heavily on ShortestDistance and HertzNumber to make accurate 
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predictions. 615 

 
5 Discussion 
5.1 AutoML-enhanced DEM simulation 
The findings in this paper show that AutoML enhanced Vs prediction using the DEM simulated 

dataset. Due to the high costs of laboratory experiments and DEM simulations, coupled with 620 

the limitations of Cd,n-based methods in capturing sample instance variability, AutoML offered 

a necessary solution for efficient and accurate characterization. The proposed AutoML method 

achieved higher accuracy than Cd,n-based methods (Sun et al. 2025); it incorporated more 

microscopic features and nonlinear regression models to predict stiffness in static samples (Fig. 

5). Plus, the automation of AutoML offered a convenient tool for geotechnical professionals 625 

and researchers. The open-source method can be readily extended to other relevant experiments 

and DEM simulations. 
 
The evaluation of prediction uncertainty is valuable in guiding engineering practice. The 

proposed AutoML approach, with 90.16% of predictions falling within a 20% error interval, 630 

achieved a substantially higher percentage than Cd,n-Coord (78.50%) and Cd,n-MC (44.27%) 

methods. However, a small proportion of outliers (9.84%) reflects the inherent uncertainty 

associated with complex geotechnical systems. Therefore, in engineering practice, excessive 

outliers from the expected range should be treated with caution, and additional site-specific 

verification should be conducted if necessary. 635 

 
5.2 Comparisons between the four interpretability methods 
This paper used four model-agnostic methods to analyze AutoML’s prediction results from 

different perspectives. Generally, the feature interpretations of the predicted Vs (Section 4.3) 

aligned with prior experimental observations, simulations, and shear wave propagation 640 

principles (Bate et al. 2021; Sun et al. 2025). Furthermore, the quantitative analysis provides 

researchers with critical information on key features for experiments and simulation designs. 
 
Two global interpretability methods, PDP and ALE, presented similar feature importance 

rankings and complemented each other. While PDP reduced the persuasiveness of global 645 

interpretability due to the feature independence assumption, it uniquely revealed the interaction 

between two features. The alternative global method, ALE, addressed feature correlation and 

identified ShortestDistance and HertzNumber as the most significant features. These two 

features were consistent with the PDP results, and this consistency can be validated through 

DEM analysis (Sun et al. 2025). 650 

 
Both LIME and SHAP, as local model-agnostic methods, focus on interpreting the differences 

between samples. Consistent with prior studies, ShortestDistance was the dominant factor in 

the differences between samples. However, cementation continuity in Stages I and III of 

cementation content also greatly affected shear wave propagation. Continuous cementation 655 
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allows for faster shear wave propagation than discontinuous cementation at the same 

ShortestDistance value in Stage III. The feature ranking in LIME interpretation (e.g., Fig. 10) 

varied for each instance. This variation indicates that LIME’s local fidelity ensures a faithful 

local approximation but may not provide a good global approximation. SHAP addressed this 

limitation through dual global-local interpretability. 660 

 
In summary, although each interpretability method offered a distinct yet limited perspective, 

their interpretations were not in conflict but were highly complementary instead. The advantage 

of ALE in handling correlated features complements the feature independence assumption of 

PDP. While LIME provided local fidelity, it was sensitive to kernel width and failed to provide 665 

a global interpretation of the models. SHAP addressed this limitation through combined global-

local interpretability based on a game-theoretical framework. These complementary methods 

provided a robust predicted Vs interpretation, aligning with domain knowledge. Integrating 

these four methods allowed for a more trustworthy interpretation than any single method could 

offer. 670 

 
5.3 Research significance 
The AutoML prediction and interpretability analysis offer valuable feedback and guidance for 

experiments and DEM simulations (Zhou & Xue 2025). This analysis highlights features that 

warrant global attention in engineering practice and reinforcement research, such as 675 

ShortestDistance in Stages I and III. Specifically, these features have practical implications in 

the reinforcement process. For instance, the reinforcement process should maximize the total 

cementation content and achieve a continuous spatial distribution of cementation as suggested 

by the interpretation. Additionally, local interpretability methods allow for the analysis of 

sample-specific variability, which helps explain performance differences in individual field 680 

samples. 
 
The significance of this research is summarized below: 

1. This paper provides an end-to-end AutoML prediction approach that enhances 

computational efficiency in small-strain simulation, exceeding existing Vs 685 

quantification methods (e.g., Cd,n-based predictions) that only capture basic 

evolutionary trends. This efficient approach can be adopted in practical engineering to 

rapidly predict Vs without the need for costly simulations. 
2. This paper quantifies the significance of each microscopic feature on the macroscopic 

Vs evolution by interpretability analysis. Four model-agnostic methods verify the 690 

consistency of the feature interpretations with expertise in experimental theory and 

DEM simulation. This quantification provides practitioners with prior features to 

monitor and control during the reinforcement process. 
 
5.4 Limitations and future directions 695 

Although the AutoML prediction and interpretability analysis contribute to the study of 
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cementation reinforcement mechanisms, the following limitations also exist: 
1. Omission of the temporal dimension: The disordered time-series samples hinder the 

interpretation of the dynamic reinforcement process due to the loss of sample 

connections. 700 

2. Deficiency in stage-wise analysis: Although global and instance-specific feature 

importance were analyzed, stage-based characteristics remained unclear; this limited 

the understanding of temporal evolutionary patterns in the reinforcement process (Sun 

et al. 2022). 
3. Macroscopic parameter gap: The significance of macroscopic parameters for Vs was 705 

not investigated. 
 
Future research directions can therefore be suggested based on the limitations above and 

general technological prospects: 
1. Within the experiment and DEM simulation, the reinforcement process was a 710 

temporally injected solution that can be treated as a time-series dataset (Bate et al. 

2021). These time-sequenced microscopic spatial features can be imported into 

recurrent neural networks (RNNs) or Long Short-Term Memory (LSTM) models to 

capture evolutionary patterns (Ghorbani et al. 2025; Wang et al. 2023; Rajabi et al. 

2023; Hazbeh et al. 2024). Combining these temporal models with the current AutoML 715 

framework could create a multi-stage predictive model that accounts for both temporal 

and spatial variability. The proposed approach would provide a whole view of the 

entire time-dependent reinforcement process. 
2. Stage-wise feature importance analysis should be emphasized as the significance of 

microscopic features differs between stages. Future work should include stage-by-720 

stage sample analysis to better guide the reinforcement process. More multi-scale 

datasets should also be established to optimize the model. 
3. Direct macro-to-micro prediction should be further studied. While this paper analyzed 

the effect of microscopic features on shear stiffness, advances in AI enable the direct 

utilization of easily accessible macroscopic features as inputs. It is promising to 725 

address the challenge of micro-parameter calibration and infer microscopic properties 

through multi-scale modeling approaches. 
 
Emerging digital twin and large language model (LLM)-based technology can advance the 

research on cementation reinforcement (Luo et al. 2023; Zhao et al. 2025). Integrating 730 

numerical simulation and experimental sensing can reconstruct scenarios depicting material 

states across sections, and LLM-based agents can automate calibration and sample generation 

tasks. These technological applications hold significant promise. 
 
6 Conclusions 735 

The conventional discrete element method (DEM) simulations are computationally expensive 

for shear wave velocity (Vs) prediction in cementation analysis, while machine learning (ML) 
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is long challenged by interpretability in applying to DEM. This paper proposes an integrated 

approach that combines end-to-end AutoML prediction with interpretability analysis using 

DEM simulation, demonstrating its applicability in other relevant potential microscopic studies. 740 

The new approach resolves the computational complexity associated with Vs prediction and 

the dynamic small-strain analysis of microscopic feature effects in the DEM simulation. 
 
The test dataset included 1,972 DEM samples with 10 key microscopic features. Compared to 

the Cd,n-based fitting approach, the adopted AutoML improved both the generalization analysis 745 

and prediction accuracy for Vs. Four interpretability methods—PDP, ALE, LIME, and 

SHAP—were used to provide both global and local microscopic interpretations; these methods 

address concerns about AutoML’s black-box nature. These model-agnostic methods identified 

the most influential microscopic features (e.g., ShortestDistance) and clarified their functional 

relationships with the predicted Vs, thereby validating the impact of cementation on Vs. 750 

 
The following conclusions are drawn from the findings: 

1. The algorithmic integration of AutoML with DEM-generated datasets 

outperformed the traditional Cd,n-based fitting approach, and achieved a high R2 of 

0.952 with strong robustness. 755 

2. The unified interpretability pipeline combining PDP, ALE, LIME, and SHAP 

methods verified that ShortestDistance and HertzNumber are two dominant 

microscopic features for predicting Vs, with cementation continuity 

(averageSplitLen and LPBConstantMaxNumber) affecting shear waves in Stages Ⅰ 

and Ⅲ of cementation. 760 

3. The interpretable AutoML approach provided transparent and model-agnostic 

feedback that can be further applied to other potential microscopic studies. 
 
The interpretable AutoML approach presented in this paper establishes a robust foundation for 

future research. Promising research directions can be extended, including incorporating a time-765 

dependent reinforcement process, stage-wise feature importance analysis, and integrating 

additional macroscopic features. 
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Appendix A: Pseudocode of integrating automated machine learning and interpretability 

analysis 
 1020 

Algorithm S1 Pseudocode for integrating automated machine learning and interpretability analysis 
Input: DEM simulation features (Fi), Number of samples N  
Output: Trained ensemble model (M), Vs predictions (Vŝ), Feature interpretation 
 
# Phase 1: Data Generation   1025 

for i=1 to N do  
    Run DEM simulation with cementation parameters CaCO3%, Xseed  
    Extract microscopic feature vectors Fi and measured Vs  
end for  
Construct dataset D={( Fi, Vs)}i=1

N    1030 

Standardize each feature in D   
  
# Phase 2: AutoML Modeling & Validation  
Split D into k folds for cross-validation  
for each fold (Dtrain, Dtest) do  1035 

    Initialize Auto-sklearn regressor  
    Fit model on Dtrain // Automated pipeline incl. feature preprocessing, model selection, and 

hyperparameter tuning  
    Predict Vŝ on Dtest) 
    Evaluate performance (R²)  1040 

end for  
Construct the final ensemble model M from all trained models 
  
# Phase 3: Interpretability Analysis  
for each interpretability method {PDP, ALE, LIME, SHAP} do  1045 

    Conduct interpretation for model M using dataset D  
end for  
return M, Vŝ, feature interpretation 
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Appendix B: Sample data 1050 

 
The sample data distribution matrix of these 1,972 samples is as follows (Sun et al., 2025): 

 
In Matrix 1, a total of 17 × 116 samples were generated, where the number of columns 

(116) represents the sample group, and the number of rows (17) represents the sample 1055 

numbering in each group. Matrix 2 demonstrates mathematically that each sample was 

determined by two variables: Xseed, the random-seed variable in the DEM simulation 

(representing the spatial distribution of cementation), ranging from 1 to 116; and CaCO3%, the 

calcite content in the DEM simulation (Error! Not a valid bookmark self-reference.). 

Through modeling each sample in Matrix 2, the Vs estimator matrix can be obtained, as shown 1060 

in Matrix 3. All 1,972 DEM samples conformed to physical laws, therefore ensuring the 

representativeness in the context of shear wave velocity prediction. 
 

Table S1 Calcite contents of 116 groups 
m*  CaCO3%  m* CaCO3% 
1 0  10 2.55 
2 0.11  11 3.17 
3 0.23  12 4 
4 0.34  13 5 
5 0.45  14 6 
6 0.55  15 7 
7 0.66  16 8 
8 1.24  17 9 
9 1.88    

The m refers to the CaCO3% numbering. 
 1065 
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⋮ ⋮ ⋱ ⋮
S1-17 S2-17 ⋯ S116-17)

 
  = 

(

  
 

F(Xseed1
,CaCO3%

1
) F(Xseed2

,CaCO3%
1
) ⋯ F(Xseed116

,CaCO3%
1
)

F(Xseed1
,CaCO3%

2
) F(Xseed2

,CaCO3%
2
) ⋯ F(Xseed116

,CaCO3%
2
)

F(Xseed1
,CaCO3%

3
) F(Xseed2

,CaCO3%
3
) ⋯ F(Xseed116

,CaCO3%
3
)

⋮ ⋮ ⋱ ⋮
F(Xseed1

,CaCO3%
17

) F(Xseed2
,CaCO3%

17
) ⋯ F(Xseed116

,CaCO3%
17

))

  
 

 ~ 

(

 
 

Vs1-1 Vs2-1 ⋯ Vs116-1

Vs1-2 Vs2-2 ⋯ Vs116-2

Vs1-3 Vs2-3 ⋯ Vs116-3

⋮ ⋮ ⋱ ⋮
Vs1-17 Vs2-17 ⋯ Vs116-17)

 
 
. 

Matrix 1: sample number                        Matrix 2: model expression                              Matrix 3: the estimator Vs 
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Appendix C: Distributions of the ten microscopic features 
 

 
Fig. S1 Distributions of the ten microscopic features. 1070 

 
 
Appendix D: Summary of the optimal hyperparameter values in the ensemble model 

Table S2 Summary of the optimal hyperparameter values in the ensemble model 

Model Weigh

t  Parameter Value 

Gaussian_process 0.34 

 alpha 0.0560 

 Kernel RBF(length_scale = [1, 1, 1, 1, 1, 1, 1, 1, 1, 

1]) 

 n_restarts_optimize

r 10 

 normalize_y True 
 random_state 1 

Gaussian_process 0.28 

 alpha 0.429 

 Kernel RBF(length_scale = [1, 1, 1, 1, 1, 1, 1, 1, 1, 

1]) 

 n_restarts_optimize

r 10 

 normalize_y True 
 random_state 1 

K_nearest_neighbor

s 0.34  n_neighbors 20 
 weights distance 

Adaboost 0.34 

 base_estimator DecisionTreeRegressor(max_depth = 10) 
 learning_rate 0.678 
 n_estimators 175 
 random_state 1 
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