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Abstract

Although shear wave velocity (Vs) is a fundamental parameter for evaluating the small-strain

shear stiffness of materials, conventional discrete element method (DEM) simulations for
predicting Vs in cementation analysis are computationally intensive. While machine learning
(ML) provides a promising alternative for developing high-performance predictive models, the
inherent opacity of most ML models diminishes their credibility, limiting practical applications.
This paper introduces an approach that integrates automated machine learning (AutoML) with
interpretability analysis. This approach achieves high-accuracy Vs prediction (R* = 0.952) and
offers physically meaningful insights through integrated global-local interpretability. Analysis
of 1,972 DEM samples with 10 microscopic features, the approach confirms the significant
influence of features such as ShortestDistance and HertzNumber on Vs evolution. The
contribution of this paper is twofold. First, the improved AutoML model marks a breakthrough
by enabling more accurate Vs prediction in DEM cementation simulations while greatly
reducing computational costs. Second, the interpretability results improve usability by
unveiling transparent, physically grounded relationships between microscopic features and the
macroscopic property Vs. The developed approach can enhance practical reinforcement
applications with greater credibility, especially in quality control and process optimization.
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Highlights
Automated ML of discrete element method (DEM) achieves robust Vs prediction (R?
=0.952)
Interpretability pipeline (PDP, ALE, LIME, SHAP) resolves ML black-box concerns
Key microscopic features ShortestDistance, HertzNumber drive Vs evolution trends
Our approach outperforms Cd,n-based fitting with higher accuracy and generalization

Transparent model enables broader microscopic studies and practical applications

Nomenclature
Abbreviation Explanation
AEC Architecture, Engineering, and Construction
Al Artificial intelligence
ALE Accumulated Local Effects
AutoML Automated machine learning
Can The normalized connectivity per unit distance
DEM Discrete element method
Go Shear stiffness
ICE Individual Conditional Expectation
Ko Static lateral stress
LIME Local Interpretable Model-Agnostic Explanations
LLM Large language model
LPB Linear parallel bond
LSTM Long Short-Term Memory
MAE Mean Absolute Error
MC Monte-Carlo
ML Machine learning
MSE Mean Squared Error
NDT Non-destructive testing
PDP Partial Dependence Plot
R? Coefficient of determination
RMSE Root Mean Squared Error
RNN Recurrent neural networks
SHAP SHapley Additive exPlanations
Vs Shear wave velocity
XAl Explainable Al
p Sample density




1 Introduction

Recent advances in microscopic mechanical studies have promoted the widespread use of
material cementation reinforcement in the Architecture, Engineering, and Construction (AEC)
industry (Ashraf et al. 2017). Shear wave velocity (Vs) is essential because it directly relates
to the small-strain shear stiffness (Go), a key parameter for assessing the effect of cementation-
based reinforcement. While numerical simulations like the discrete element method (DEM)
can effectively solve static problems, dynamic simulations—especially those involving Vs
prediction during cementation—are computationally demanding and time-consuming (Sun et
al. 2025; Yang et al. 2017). As a result, understanding the microstructural influences on such
dynamic small-strain behaviors remains difficult (Bate et al. 2021). Therefore, the AEC
industry needs efficient solutions for predicting Vs and analyzing how microscopic features
affect dynamic small-strain behavior.

These requirements for precise small-strain analysis indicate the necessity of incorporating
machine learning (ML) into the AEC industry (Singh et al. 2021). ML can learn nonlinear
relationships from high-dimensional data, enabling valuable analysis and identification of
microscopic mechanical behavior (Zhang et al. 2024). Modern ML techniques, especially
supervised learning algorithms, have proven effective in solving inverse problems and
predicting mechanical properties without depending on physics-based models (Deka 2019;
Liang & Xue 2023). Successful solutions in this area often combine domain expertise,
experimental methods, and numerical simulations with advanced ML technologies (Saka et al.
2023; Sun et al. 2024). Furthermore, common optimization techniques such as data-level
approximate computing, precision scaling, and feature selection enhance ML models (Dalloo
& Humaidi 2024; Euldji et al. 2023). Recent research has adopted ML algorithms and hybrid
techniques for Vs prediction, indicating innovative integrations of physical research in the AEC
industry (Ghorbani et al. 2025; Hazbeh et al. 2024; Makarian et al. 2023; Rajabi et al. 2023).

Automated ML (AutoML) has recently gained attention for solving complex prediction tasks
in simulations. AutoML aims to automate all stages of ML, including data preprocessing,
feature engineering, model selection, hyperparameter tuning, and deployment. Thus, non-
experts are enabled to develop high-performance models directly from provided datasets to
solve the target tasks (Baratchi et al. 2024; Barbudo et al. 2023). However, AutoML still faces
challenges due to the “black-box” nature of many ML models, hindering its widespread
application.

Interpretability analysis improves the transparency and credibility of complex models, which
is significant in the era of “Artificial Intelligence (Al) for Science” (Zhang et al. 2023). The
implementation of GDPR has introduced requirements for trustworthy data processing, making
interpretability a key research area in AI and ML (Varshney 2016). Explainable Artificial
Intelligence (XAI) is truly driving the development of Al technology towards greater
transparency, credibility, and responsibility. Currently, interpretability methods examine
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complex models through visualization, model simplification, feature-based interpretation, and
rule-based interpretation (Bach et al. 2015; Barredo Arrieta et al. 2020).

This paper presents the application of AutoML and interpretability analysis for predicting Vs
in DEM cementation simulations to address the computational cost of conventional DEM and
the lack of credibility in ML models. A dataset of 1,972 DEM samples with measured Vs values
was analyzed. AutoML was employed to predict Vs based on physically induced microscopic
features. Two global interpretability methods, i.e., PDP and ALE, and two local interpretability
methods, i.e., LIME and SHAP, were used to provide reasonable microscopic interpretations
at both global and local scales. The findings demonstrate substantial advances in prediction
performance and offer effective interpretations of microscopic features. Section 2 reviews
related research. Section 3 details the proposed research methods. Section 4 presents and
analyzes the experimental results. Section 5 discusses the implications of the findings, and
Section 6 concludes the paper. The contributions of this paper are twofold. First, the improved
Vs prediction leads to higher accuracy in DEM cementation simulations while simultaneously
reducing computational cost. Second, the interpretability analysis enhances prediction

credibility and can provide valuable guidance for practical reinforcement applications.

2 Related research

2.1 Cementation content and Vs in soil reinforcement

Cementation simulation is a widely adopted method (Ashraf et al. 2017; Zhao et al. 2022). This
method effectively examines materials’ reinforcement processes within the AEC industry
(DeJong et al. 2010; Kempfert & Gebreselassie 2006). Cementation reinforcement affects the
stress-strain relationship of materials and improves their shear stiftness (Karol 2003). Various
cementation methods are widely applied to enhance soil properties and address instability in
soft soils (Bang et al. 2009; Martinez & DeJong 2009; Salifu et al. 2016). However, the
uncontrollable nature of cementation processes often leads to non-uniform reinforcement,
which creates engineering risks (Bate et al. 2021; Niu & Zhang 2018). This necessitates further
investigation into the microscopic mechanisms involved.

Shear wave velocity (Vs) is used to assess the effect of reinforcement because it is a reliable
non-destructive testing (NDT) method used to measure shear stiffness—the material’s
resistance to deformation under shear stress (Martinez et al. 2013; Hu & Wang 2024; Han et al.
1986). The shear stiffness (Go) is calculated by the equation:

Gy =pV:, Q)]
where p is the sample density, and Vs is the shear wave velocity. Vs, as a dependable metric,
assesses the reinforcement effects in cementation simulations, particularly for strengthening
loose sandy soils. Vs exhibits a nonlinear positive correlation with added cement (cementation
content). DeJong et al. (2010) compared the performance of various NDT methods, such as
shear wave, compression wave, and resistivity, and showed the effectiveness of Vs in
evaluation. The relationship between Vs and cementation content was also preliminarily
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characterized (Martinez et al. 2013). Sun et al. (2022) performed a discrete element method
(DEM) simulation using macro parameters and created a microscopic digital twin model of
cemented samples to quantify the evolution of Vs; experiments in other studies verified this
quantification process. Based on geotechnical engineering principles, these investigations
reveal Vs evolution at elevated cementation levels and offer a microscopic interpretation of Vs.

Various methods have been proposed to predict or estimate Vs, including empirical corrections,
numerical simulations, and ML approaches (Hazbeh et al. 2024). Table 1 provides typical

categories of these Vs prediction methods.

Table 1 Summary of Vs prediction methods

Method category Advantages Limitations Representative methods
. Failing to represent Vs-DCT relationship (Han et
.. Low computational cost, . -
Empirical Lo complex nonlinear al. 1986), Vs-m, fitting (Bate
. physical insights, and . . .o
correlation hish interbretabilit relationships, poor et al. 2021), GM estimation
& P y accuracy (Makarian et al. 2023)
Strong theoretical Hich computation cost Cuckoo Optimization
Optimization- foundation and high & P > Algorithm (Anemangely et

based algorithms

Classical
machine learning
methods

Deep learning
methods

DEM-
simulation-based
methods

interpretability, handling

uncertainty

End-to-end prediction,
capturing complex
nonlinear relationships,
relatively low cost

End-to-end prediction,
high accuracy

Physical insights and

high interpretability, real-

world simulation

convergence issues,
indirect prediction

Strong dependence on
data and feature
quality, limited
physical consistency
Black-box nature,
massive data, high
computational cost

high computational
cost, parameter
calibration challenge

al. 2019), Monte-Carlo
simulation (Sun et al. 2022)

SVM (Anemangely et al.
2019), Random forest
(Hazbeh et al. 2024)

DBN (Hazbeh et al. 2024),
Hybrid CNN&LSTM
(Ghorbani et al. 2025)
Granular material simulation
(Sadd et al. 2000), CaCO3
cementation prediction (Sun
et al. 2025)

The measurement is costly and time-consuming, and ML methods offer alternative solutions
but often lack interpretability. DEM simulation has become a key method for predicting Vs in
cementation analysis. However, constructing a DEM model to simulate shear wave propagation
is complex and challenging (Table 1) (Sun et al. 2022). This growing complexity arises from
the increasing parameters, difficulties in timestep selection, the complex response to nonlinear
material behavior, and complex dynamic processes. These challenges make small-strain
analysis, like Vs prediction and microscopic feature effects, considerably more complex than
constructing the initial sample.

2.2 Preliminary applications of AutoML and interpretability

AutoML enables users to benchmark and integrate various algorithms in rapidly developing
high-performance ensemble models (Li et al. 2023). Compared with traditional ML, AutoML
simplifies the workflow for feature engineering, model selection, and parameter tuning.
Specifically, automated Bayesian optimization and model weight assignment relieve
researchers of the burden imposed by redundant and complex parameter tuning (Barbudo et al.
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2023). Moreover, AutoML allows non-experts to construct high-performance pipelines
satisfying specific applications (De Bie et al. 2022). Auto-sklearn, an increasingly prominent
AutoML toolkit, integrates a diverse set of algorithms, feature preprocessing methods, and data
preprocessing methods. In contrast to traditional machine learning algorithms, AutoML
reconfigures these processes as hyperparameters (Feurer et al. 2019; 2022). The efficiency of
AutoML has captured the interest of researchers in the AEC industry. The failure mechanism
of reinforced concrete shear walls can be effectively classified by input design parameters
(Liang & Xue 2023), and high-performance non-destructive concrete strength prediction is also
possible (Sun et al. 2023).

Although machine learning algorithms perform well in numerous tasks, many engineers and
practitioners remain hesitant to use them due to their black-box nature (Lundberg & Lee 2017;
Zhao & Hastie 2021). Model trustworthiness and decision causality require interpretability for
effective risk control. Interpretability refers to the degree to which the rationale behind a
decision is understandable (Kim et al. 2016; Miller 2019; Molnar 2020). The black-box nature
of algorithms used to train AutoML models verifies the importance of Explainable Al (XAlI),
particularly model-agnostic interpretability methods. Therefore, these methods warrant

significant attention from researchers.

Partial Dependence Plot (PDP) and Accumulated Local Effects (ALE) are two typical global
interpretability methods (Apley & Zhu 2020; Friedman 2001), whereas Local Interpretable
Model-Agnostic Explanations (LIME) and SHapley Additive exPlanations (SHAP) are two
typical local methods (Lundberg & Lee 2017; Marcilio & Eler 2020; Ribeiro et al. 2016a; 2018).
The summary of typical interpretability methods is presented in Table 2. In the AEC industry,
researchers employed SHAP to interpret both global and local concrete strength predictions,
using feature contribution visualizations to inform concrete mixing decisions (Sun et al. 2023).
SHAP was also applied to quantify the contribution of particle size distribution to shear
stiffness in DEM simulations (Liu et al. 2024). Zhang et al. (2025) used SHAP and PDP to
analyze the influence of four factors in asphalt preparation on predicting dynamic modulus.
However, alternative interpretability methods have limited applications within the AEC domain.
This scarcity presents an opportunity for further exploration.

Table 2 Summary of typical model-agnostic interpretability methods (Apley & Zhu 2020; Friedman 2001;
Lundberg & Lee 2017; Marcilio & Eler 2020; Ribeiro et al. 2018)

Method Context Limitations
Global interpretation, visualizing the

PDP average marginal effect of a feature Feature independence assumption
ALE Global interpretation, correlated features Less intuitive than PDP, complex
handling, unbiased estimation. interpretation plot
. . . Dependent on perturbation
LIME Local interpretation, local fidelity parameters, sensitive to kernel width
SHAP both local and global interpretation High-cost computation

6



2.3 Cementation modeling via DEM

DEM has become a key method in cementation simulations because of its capacity to model
each material particle at the microscopic scale (Lin et al. 2016; Sun et al. 2022). This capability
is vital, as it allows for detailed analysis of soil, structures, and reinforcement effects in
infrastructure engineering. DEM can control the state of each particle via coating and pore
filling to simulate the global cementation content (Niu et al. 2024; Xu et al. 2024). With
advances in computational power, these simulation capabilities make DEM an effective
alternative to in-situ practices and experimental observations (DeJong et al. 2010; Jiang 2019;
Martinez et al. 2013). Chang et al. (2016) summarized biomineralization treatment methods
for loose sand and proposed specific microscopic models. Yun and Evans (2011) used DEM to
measure the static lateral stress (Ko) and Vs of cemented sand. Yang et al. (2017) conducted a
3D DEM analysis of reinforced sand under drainage triaxial compression. Feng et al. (2017)
simulated macroscopic and microscopic responses before and after cementation.

Sun et al. (2025) simulated numerous DEM samples with measured Vs to investigate the spatial
variability of cementation distribution. In this paper, the DEM simulation of basic sand sample
cementation proceeded as follows: particles represented the sand; Hertz contact modeled
interactions between uncemented particles, and linear parallel bond (LPB) contact modeled
interactions between cemented particles. The simulation began by applying the collected
experimental macro parameters to calibrate the simulation parameters. Then, an uncemented
DEM sample consisting only of Hertz contacts was generated to represent loose soft soil. Once
this initial uncemented DEM sample was created, different DEM samples with specified
cementation content were simulated by converting Hertz contacts to LPB contacts, based on
the cementation content algorithm. This methodology enabled the simulation of shear wave
propagation across diverse cementation contents to acquire Vs. Significantly, variations in
cementation attributes—such as position, size, and clustering—produce differences in Vs. This

occurs even when cementation content remains identical.

Fig. 1 illustrates a typical sample and propagation process under 2.55% cementation content.
In the DEM model, particles had the same properties, while the distribution of LPB contacts
influenced wave propagation and Vs. Previous microscopic studies of these DEM samples
indicated that the preferential path of shear wave propagation determines Vs. Nevertheless, two
critical questions remain unanswered. First, a method for directly determining Vs for individual
samples remains unclear. Second, the specific microscopic features influencing Vs along the
propagation path need interpretation.
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Fig. 1 (a) A typical sample under the cementation content of 2.55% (Blue denotes pure sands, orange
denotes cemented clusters, and black lines denote the shear wave propagation path); (b) Wave propagation
process (green indicates sands without vibration, red and blue indicate sands with vibration) (Sun et al.
2022).

To address these challenges, researchers need efficient methodologies to predict Vs and clarify
microscopic features. Conventional DEM simulation relies on manual calibration and iterative
processes, which are time-consuming and inefficient. Given that prior Vs measurements in
cementation samples provide many microscopic features, AutoML-based end-to-end
prediction represents a feasible and promising research direction (Sun et al. 2025).
Interpretability analysis enables the investigation of dominant microscopic features. Therefore,
the integration of AutoML and interpretability techniques in Vs prediction is promising, as this

combination enhances both predictive accuracy and mechanistic insight.

3 Research methods

To conduct the Vs prediction and microscopic interpretation from the DEM model, we propose
an approach that integrates AutoML with interpretability analysis. In this Section, Fig. 2
presents the workflow, including the case dataset derived from DEM simulations, the AutoML
regression pipeline for Vs prediction, and four interpretability methods. The pseudocode of this
approach is presented in Algorithm S1 in Appendix D.
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Fig. 2 The conceptual diagram for Vs prediction and microscopically interpretability analysis.

3.1 Case dataset

This paper uses a total of 1,972 DEM samples with measured Vs published by Sun et al. (2025)
to construct a dataset of trusted synthetic data. The procedure for acquiring the sample data is
provided in Appendix B of the supplementary material. The dataset spans a wide range of
cementation content levels. On a microscopic scale, the propagation of shear waves results
from the transfer of force between particles through contact. Vs is dominated by the preferential
propagation path of shear waves (Bate et al. 2021; Santamarina et al. 2001; Sun et al. 2022).
Ten typical physical features of the contact along the propagation path were extracted to
quantify their detailed contributions to Vs. The definition and distribution of these features are
illustrated in Table 3 and Fig. S1 (Appendix C). In the subsequent sections, this paper focuses
on the relationship between the extracted microscopic features and Vs and leaves the
macroscopic quantity of cementation content aside.

Table 3 The definition of 10 microscopic features

ID Features / Label Definition
Fi The proportion of the number of LPB contacts to all the contacts on the shortest
LPBPercent path
F>  ContactsNumber The quantity of all contacts on the shortest path
Fs; LPBConstantMax The quantity of LPB contacts within the longest consecutive LPB contacts on the
Number shortest path
F4 split0 The quantity of segments with LPB contacts split by Hertz contacts on the

propagation preference path

Fs sl The quantity of segments with more than one LPB contact split by Hertz
contacts on the propagation preference path
Fs LPBNumber The quantity of LPB contacts on the shortest path
F; HertzNumber The quantity of hertz contacts on the shortest path
Fs LPBconstantPret The proportion of the number of LPB contacts within the longest consecutive
LPB contacts to the total number of contacts on the shortest path
Fo  ShortestDistance Weighted shortest distance from the transmitter to the receiver
Fio  averageSplitLen The average length of split segments with LPB contacts
Vs Shear wave velocity




3.2 AutoML regression

This paper applies Auto-sklearn to predict Vs based on DEM simulations. Fig. 3 shows the
AutoML regression process. Microscopic features are extracted from the DEM simulation to
construct the trusted synthetic dataset. Then, a 10-fold cross-validation procedure is employed
to select models and mitigate bias. This is an iterative process in which nine folds are used for
training, and one fold is designated for validation (hold-out set). To prevent data leakage, all
DEM samples generated from the same initial spatial configuration are grouped together and
assigned to the same fold.

Auto-sklearn system

DEM
e Single model 1
1
Extracted ML process

features

Data ) . Feature
ol "u(wm Encoding I—- preprocess [—+ Regressor
l cAnSIng -or .
Predictions
Synthetic
e Single model 2
Bayesian optimizer
10-fold Hyperpara e Evaluation on
Cross- Told -meter leMm.L[;;lnE ™1 A e El:;zﬁz_bl}e the validation
Validation | tuning = Data Feature fold
S Encoding preprocess —=| Regressor
cleansing = - =
Single model 3
Bayesian optimizer
ML process
Feature
Data - R - B OPRESOr
cleansing Encoding ph.p_l:;ens —* Regressor
1 validation fold
Data cleansing Encoding methods Feature preprocessors Regressors Evaluation metrics
N/A completion Standard scale No preprocessing Bayesian Ridge Regression  Orthogonal Matching Pursuit MSE
Pass through Extra trees preproc for regression Decision Tree Passive Aggressive MAE
FastICA Elastic Net Random Forest RMSE
Feature agglomeration Extra Trees SGD R?
Kernel PCA Gradient Boosting Adaboost
Kitchen sinks Kernel Ridge Regression Ard regression
PCA K Nearest Neighbors Gasusian process
Polynomial Lasso Support Vector Regression
Random trees embedding MLP

Fig. 3 Structural schematic and process details in the Auto-sklearn prediction.

Within the Auto-sklearn system, hyperparameter tuning is automated to maximize the
automation advantages of AutoML, except that configuration parameters must be preset. Prior
to applying each individual model, meta-learning is employed to optimize hyperparameters by
calculating the similarity between the training dataset and existing datasets (Feurer et al. 2015).

During each model training, all samples in the dataset were normalized and encoded using
either standard scaling or pass-through methods for the 10 input features (Fig. 3). Namely, two
continuous features, ShortestDistance and averageSplitLen, were rescaled to the range [—1, 1]
by subtracting the mean and scaling to unit variance. The remaining features were left
untransformed. This encoding step is essential to prevent the adverse effects of varying data
scale. After the encoding step, a collection of 11 feature preprocessing methods was used,
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including polynomial features and feature agglomeration. Then, 17 regressors, including K
Nearest Neighbors (Huang et al. 2019), Gaussian Processes (Rasmussen et al. 2004), and Extra
Trees (Geurts et al. 2006), are selected to predict Vs both independently and collectively.
Collective predictions are made using ensemble methods, including Ensemble Selection,
Library Pruning, and SingleBest. The final prediction is evaluated using metrics such as MSE
(Mean Squared Error), MAE (Mean Absolute Error), RMSE (Root Mean Squared Error), and
R? (Coefficient of determination) to ensure the reliability and performance of the ensemble
model. Examples of prediction outputs are listed in Table 4.

Table 4 Examples of features and predicted values

Instance Features for prediction Vs (m/s)
1d Fiy F> Fs .. Fio predicted DEM
measured
1 0 41 0 -0.753 195.42 195.44
2 0.073 41 1 -0.644 206.08 209.52
3 0.262 42 1 -0.644 241.87 232.09
1,972 0.950 40 38 -1.597 2105.74 2090.84

3.3 Interpretability methods

3.3.1 Partial dependent plot (PDP)
A Partial Dependence Plot (PDP) is a global method used to describe the marginal effect of

each feature on the predicted outcome. PDP assumes that the first feature under study is

unrelated to the second feature (if applicable). The result arises from observing changes in the
predicted outcome after shuffling the values of the feature in question. This method quantifies
the contribution of the feature to the prediction. PDP provides a causal interpretation that is
intuitive and implementable (Zhao & Hastie 2021).

The PDP analysis process is as follows (using the feature F; as an example):
a. Shuftle the F; values within the dataset while fixing all other feature values.
b. Calculate the average output for different values of F1 under Monte Carlo conditions.
c. Plot the PDP result, showing the average curve.
To supplement PDP, Individual Conditional Expectation (ICE) provides an individual sample
perspective and enhances the understanding of the impact of features. The combined use of
PDP, which gives an overall view of feature influence, and ICE, which provides individual
sample insights, enables a deeper understanding of the model’s behavior and the role of features.

3.3.2 Accumulated local effects (ALE)
The Accumulated Local Effects (ALE) method is a distinct interpretable method that

effectively addresses feature correlation issues. ALE calculates the variance, accumulation, and

centralization of predicted values. Features are partitioned into multiple bins to ensure the
points within each bin reflect the actual data points. For each instance within a bin, the
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differences in predicted values result from substituting the feature with both the upper and
lower bounds of the bin. These differences are subsequently accumulated and centered to form
the ALE curve.

3.3.3 Local Interpretable Model-agnostic Explanations (LIME)
Local Interpretable Model-Agnostic Explanations (LIME) is a locally additive feature

attribution method (Ribeiro et al. 2016b) commonly used in classification tasks. In the LIME
process, a new dataset (local samples) is generated by perturbing the original data; the original
predicted value serves as the reference. An interpretable model (e.g., linear model, decision
tree) trains using the local samples. This interpretable model then provides a data representation
with features and allows observation of the importance of each feature. This paper treats the
regression task as a matrix to execute data perturbation through sampling and inverse

operations.

The detailed process is as follows (using feature F; as an example).
a. Train the uninterpretable AutoML model and select the feature F to interpret.
b. Generate N perturbations of the data to generate local samples.
c. Calculate the weight of the samples, which corresponds to the distance between the
perturbed data and the feature to be interpreted.
d. Fit a new interpretable model based on the new dataset.
Interpret the contribution of feature F; in the AutoML model using the interpretable

model.

3.3.4 SHapley Additive exPlanations (SHAP)
SHapley Additive exPlanations (SHAP) is a method designed to interpret predictions of

complex models in a unified framework (Lundberg & Lee 2017). As a local model-agnostic
interpretable method, SHAP derives from game theory and quantifies the contribution of
features to predictions for individual instances. The core of the SHAP method is the Shapley
value, which provides an attribution value for each input feature. The Shapley value is additive
and locally accurate. In this context, the predicted value can be interpreted as the sum of the
Shapley values for all features and the global predicted average. The significance of SHAP lies
in its ability to measure feature contributions consistently, which ensures a fair and consistent

interpretation of each feature’s impact on the prediction.

In summary, PDP intuitively interprets microscopic features and reveals interactions between
features. ALE addresses the issue of feature correlation in global interpretations. LIME and
SHAP focus on the interpretation of individual sample differences. LIME ensures local fidelity
through ‘faithful approximations’, and SHAP, available globally and locally, offers further
insight into the evolution of Vs for each sample.
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4 Experiment results

4.1 Experimental Settings

The case dataset was used as the input for AutoML in Auto-sklearn (ver. 0.15). 10-fold cross-
validation was employed to select models and reduce bias, enhancing model generalization
(Fushiki 2011; Liang & Xue 2023). The time limits for automated model search, single model
fitting, and memory limit were set to 300 seconds, 30 seconds, and 3,072 MB, respectively.

After training, the ensemble selection method automatically selected the best model from all
the trained models and assigned weights based on performance. Additionally, the R* metric was
used to evaluate the performance of the ensemble model. Four open-source tools—PDPbox
(ver. 0.3), Scikit-Explain (ver. 0.1), Lime (ver. 0.2), and SHAP (ver. 0.44) —were selected to
perform interpretability analysis for PDP, ALE, LIME, and SHAP, respectively. Based on
fitting Vs versus the normalized connectivity per unit distance (Cgn), two methods were
selected as baseline (Sun et al. 2025).

4.2 Results of AutoML’s Vs prediction

The AutoML process trained 1,972 samples and employed 17 types of machine learning
regressors (Fig. 3). These regressors were used in a total of 66 models applied during the 10-
fold training. The ensemble model was selected from these models, and its overall performance

was outstanding, as shown in Table 5.

Table 5 Ensemble model performance in each fold

Fold Best Ensemble Model Accura.c y ()

Total Train  Test
1 0.34G1.11+0.28G121+0.34K1.1+0.04 A1 0.952 0.952 0.948
2 0.5G2.110.16G2,+0.1R».1+0.24K 54 0946 0.949 0.926
3 0.32K5.1+0.14G3.1+0.12R5.1+0.2L3.;+0.16K3.,+0.06K 53 0.942 0.942 0.936
4 0.82G4.110.02R4.1+0.16K 4.1 0.936 0.940 0.902
5 0.5Gs5.4+0.14E5.;+0.14R5.4+0.12L5.;+0.08K5.1+0.02Gs.2 0.944 0.944 0.943
6 0.38Ge.110.1K6.110.02E4.1+0.18D6.11+0.1L6.110.12K6.2+0.08 E6.2+0.02D6.2  0.943 0.945 0.923
7 0.52G7.1+0.1E7.1+0.14K7.1+0.02G7,+0.2K7.5,+0.02E7.» 0.941 0.942 0.937
8 0.72Gg1+10.08Lg.1+0.12G3.,1+0.06Eg1+0.02Gs.3 0.935 0.937 00911
9 0.46Go.110.28Go9.,+0.1Lo.1+0.16Ko_ 0.937 0.939 0.923
10 0.24G10-1170.32G19210.04K 19.1+0.1L10.1+0.02K 19-2+0.08K 1 0-3+0.1K 10- 0941 0949 0881

41+0.02E10.170.02A10-1+0.06L -2

G: gaussian_process; K: k_nearest neighbors; A: adaboost; R:random_forest; L: liblinear_svr; E:
extra_trees; D: decision_tree

Individual models should be investigated before applying the ensemble model. Fig. 4
summarizes the regressors using different algorithms in 522 single-model training sessions of
the 10-fold cross-validation.
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Fig. 4 Regressor analysis during the AutoML (10-fold) process.

The K-Nearest Neighbors and Liblinear SVR were the top two regressors for the dataset, with
more than 90% successful runs. In contrast, some regressors failed; this indicates their
unsuitability for this Vs prediction task. Among the eight regressors that ran successfully, Fig.
4bcd shows the best performer for each regressor in each fold. This figure also presents test
scores, rankings, runtime, and inter-fold errors analyses.

The Gaussian process achieved the highest score and ranked first in terms of test performance.
However, it had a significantly longer execution time than the other regressors, with a total
time nearly three times that of the others. Extra Trees also performed well in predictions, but
its performance varied greatly across folds; this indicates poor robustness.

These regressors had distinct advantages and disadvantages, suggesting that an ensemble
model would improve performance. Table 5 shows that the ensemble model for each fold was
determined through post-hoc ensembling (Feurer et al. 2022). The evaluation metric R* was
greater than 0.88 for all 10 folds in the test set. The ensemble size ranged from 3 to 10, and the
Gaussian process formed the primary component in all 10 folds.
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Fig. 5 presents the prediction performance metrics of the AutoML model compared to prior
baseline methods. Both Cyn-Coord and Cgn-Monte-Carlo (MC) depended on connectivity
among the preferential paths, discussed in prior studies (Sun et al. 2022; Sun et al. 2025). The
AutoML prediction (RMSE = 143.472m/s) showed smaller errors compared to Cqn-Coord
(RMSE = 208.218 m/s) and Cyn-MC methods (RMSE = 343.835 m/s). Within the 20% error
interval, the AutoML approach achieved a higher percentage of predicted results (90.16%) than
Can-Coord (78.50%) and Can-MC (44.27%) methods. Extreme outliers in the predictions of
the Cqpn-related methods indicate incorrect predictions in some cases (dashed boxes in Fig. 5).
In contrast, the AutoML predictions showed no excessive deviation; this demonstrated its

robustness.
AutoML Predictions Cdn-Coord Predictions Cdn-MC Predictions
|" gl i
5000 1 MAE: 87.026 . 5000 4 MAE: 146,991 5000 1-MAE: 249,641 ; '
MAPE: 10.061 MAPE: 18.297 MAPE: 37.825 ; i
RMSE: 143/472 RMSE: 208218 RMSE: 343 835 i
= R?:0.952 R?:0.895 b R 0.712 i
o 4000 i i 4000 = 4000 - =
g A e e
% LA -
= 3000 - 3000 - 3000 = aates S
~ T "
E w ¥
v it
% 2000 - 2000 + i Zeay | 20001
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Fig. 5 Scatter plot of prediction results by the presented AutoML, Cqn-Coord, and Cyqn-MC approaches,
where the light color areas are 20% error intervals and dashed boxes highlight extreme outliers in
predictions.

The AutoML approach reduced computational cost substantially compared to DEM-based
simulations (Fig. 6). For a single Vs prediction task, repeated trial calibrations were
indispensable in the DEM simulation, which was quite time-consuming. Plus, the Simulation
Process 1 (843s) must be included in the prediction preparation. In contrast, the training process
of AutoML only required 3048s. For each prediction in the task, the AutoML approach only
costs 0.193s while the DEM-based simulation costs 337s.
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Fig. 6 The computation time contrast between the DEM-based simulation and the AutoML approach in one
Vs prediction task

4.3 Results of interpretability analysis

4.3.1 PDP & ICE
As a global interpretable method, Fig. 7 shows the thick blue PDP curves of the trained AutoML

model, regarding the relationship between Vs (y-axis) and all 10 features (x-axis). Additionally,

light blue lines represent all individual conditional expectations (ICE).
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Fig. 7 PDP curves of 10 features regarding the trained AutoML model.
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ShortestDistance is the most influential among all 10 features, as its maximum effect on Vs
can be 750m/s. Given that this feature has attributes of contact types, propagation distance, and
coordination number, the significance of ShortestDistance to Vs is understandable. The
interpretability analysis result echoed prior studies that the preferential propagation dominates
Vs (Bateetal., 2021; M. Sun et al., 2022). Additionally, the monotonically positive contribution
of LPBNumber (170 m/s) and the negative contribution of HertzNumber (300 m/s)
corroborated the microscopic analysis (Sun et al. 2022). This analysis stated that LPB contacts
representing cemented particles provide strong interaction, and more LPB contacts/fewer Hertz
contacts result in higher Vs.

However, due to the correlation between features, the accuracy of the interpretation was
potentially limited, and the 2D PDP was used to indicate how the interaction of 2 related
features influenced the prediction (Molnar, 2020). In this way, the inaccuracy caused by the
feature independence assumption was addressed. All the interactions between feature pairs
were visualized (Molnar, 2020). Using this method, features that have a significant impact on
Vs were verified. The 2D PDP is plotted in Fig. 8.

! @a19

17 e——— i =N
I"04O 41 42 43 46 0 0 22 26.0 31 35.0 38 40.0 44 0() 7.0 15.0 22 26.0 31 35.0 38 40.0 44
ContactsNumber LPBNumber LPBNumber

Fig. 8 2D PDP between bi-variate features, where red arrows represent the increasing direction of Vs and
values represent the normalized contribution ratio of features (Fyertical/Fhorizontal)-

The 2D PDP between bi-variate features in Fig. 8 indicates the evolution of contributions of
two features to Vs by quantifying the normal direction of the steep contour. In Fig. 8, though
both ContactsNumber and ShortestDistance had a monotonic negative impact on predicted Vs,
the interaction between the two features showed that the variation of ContactsNumber hardly
affects the contribution of ShortestDistance to Vs, as the normalized contribution ratio was
22.09 (Arrow #1). HertzNumber and LPBNumber were negatively correlated and played
similar importance generally (—4.51 in Arrow #2); this was also verified in Fig. 8.

Yet, when LPBNumber was low and HertzNumber was high, reverse contributions occurred
(Arrows #3, #4). While HertzNumber was low, the increase of LPBNumber contributed less
and less to Vs with a ratio from 0.86 to 6.37 in Arrows #5, #6, and #7. LPBNumber and
LPBconstantPrct were other feature pairs indicating the different evolutions. Vs kept
increasing as LPBNumber and LPBconstantPrct increased, and LPBNumber contributed more
when Vs was below 870 m/s (0.18 in Arrow #8). When Vs was high (>870 m/s) with
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LPBNumber>31 and LPBconstantPrct>0.77, the increase of LPBNumber contributed little to
the Vs increase and probably caused the opposite effect (5.66 and —1.61 in Arrows #9, #10).
The result was interpreted as a high value of LPBNumber, indicating a long propagation
distance; this resulted in a low Vs (Bate et al. 2021). Under these conditions, LPBconstantPrct

had a greater influence on the increase in high Vs as the normalized contribution ratio was from
5.66to -1.61.

43.2ALE
Fig. 9 shows the ALE curves (Red line) of the trained AutoML model; the feature distribution

is also presented. As mentioned above, ALE plots are a more unbiased alternative to PDP,
especially when the features are not independent. LPBPercent had a significant and lasting
positive impact on Vs with centered ALE from -134 to 343, while HertzNumber (centered ALE
from 326 to -177) and ShortestDistance (centered ALE from 461 to -236) had the steepest
negative cumulative effect. Analysis of LPBconstantPrct was also relevant as the feature’s
centered ALE echoed the role of cementation in different stages of Vs evolution (Sun et al.
2022). When the cementation content was low (LPBconstantPrct < 80%), the continuous
contact was relatively dispersed; this resulted in the difficulty of searching for a faster
propagation path for shear waves. With the percentage of continuous LPB contacts increased
to over 80%, the centered ALE started rising from 6 to 97; this echoed that the high content of
continuous LPB contacts greatly contributed to the Vs prediction (Sun et al. 2025).
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Fig. 9 ALE curves of 10 features regarding the trained AutoML model.

4.3.3 LIME
Fig. 10 shows a local feature explanation of a set of instances ordered by cementation content

in LIME. With the increase in cementation content, these features showed similar trends in
contribution to Vs; ShortestDistance emerged as the most influential feature, with the negative
contribution exceeding 300 m/s. Additionally, the averageSplitLen and HertzNumber of this
sample also had a negative contribution greater than 100 m/s; this confirmed the importance of
the number of different contact types and continuous particle cementation, respectively (Cheng
et al. 2013; Yun & Evans 2011). Unlike other features, the lower value of splitl/, which
represented the dispersion of cementation, positively contributed to Vs when Vs was lower
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than 273 m/s; this indicates that too-dispersed cementation under low cementation content
could only lead to a slight stiffness increase in uncemented sand samples, echoing the findings

in Stage I in M. Sun et al. (2022).
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Fig. 10 The local feature explanation of 4 instances ordered by cementation content in LIME.

As shown in Fig. 11, Vs varied in the three instances, though the cementation content was the

W

ShortestDistance as described in the above interpretability analysis (Fig. 11b). On the other

same (5%, Stage III). Instance No. 523 exhibited a notably higher Vs due to its superior

hand, the low Vs of the other two instances were attributed to the following reasons.
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Fig. 11 Comparison of three instances under the same cementation content (5%, Stage III) by LIME. (a)
The variation range of Vs adapted from M. Sun et al., 2025; LIME explanation of Instance 423 (b), 642
(c), and 540 (d).

As shown in Fig. 1lc, in Instance No. 642, the high ShortestDistance value was the primary
cause of the low Vs; this reflected the primary importance of this feature (Sun et al. 2025). The
high value of averageSplitLen and the low value of HertzNumber replaced the
ShortestDistance as the dominant features. The result echoed the evidence showing that in the
absence of direct linear distance as the shortest path, the shear wave preferred to choose a path
with long-distance cementation and fewer Hertz contacts to speed up Vs (Sun et al. 2025).

As shown in Fig. 11d, the ShortestDistance of Instance No. 540 still functions as a significant
feature, but the incoherence of cementation in the path seriously reduces Vs. This is reflected
in that splitl, LPBConstantMaxNumber, and split0, which represent the incoherence of
cementation, negatively affect Vs. Among them, the large negative effect of split/ echoes that
incoherent continuous cementation can significantly affect Vs (Sun et al. 2022).

To sum up, the comparison analysis of these three instances was consistent with prior studies
(Sun et al. 2022; Sun et al. 2025). The cementation variability led to diverse Vs under the same
cementation content, and the difference between the three instances was properly interpreted
within the microscopic scope; this interpretation focused on the influence of cementation on
the propagation path. This LIME method compensated for the lack of experience in the end-
to-end black-box AutoML prediction; it provided a reasonable interpretability analysis of the
Vs difference between the three instances.
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4.3.4 SHAP
Fig. 12 shows the global importance of features by SHAP. The wide SHAP value range of

ShortestDistance showed a significant impact on predicted Vs (Fig. 12a), consistent with the
above analysis result. Low values of ShortestDistance, HertzNumber, splitO), and
ContactsNumber made a positive contribution generally, while the others (except split/) had
the opposite effect. Fig. 12b specifically shows the predicted Vs evolution under different
features. Although the predicted Vs was generally monotonically related to the increase of the
selected feature, the evolution by LPBConstantMaxNumber, LPBNumber, split0, and split]
had extreme values. The extreme values under LPBConstantMaxNumber =42 and LPBNumber
= 42 corresponded to the contact count in the shortest path. In addition, lower sp/it0 and split]
values generally correlated with higher Vs (Sun et al. 2025). However, the extremal condition
(split0 = 1, split]l = 1) specifically identified uncemented samples (i.e., split0 = 0, split] = 0).
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Fig. 12 Global summary of features in all samples. (a) Global feature beeswarm plot; (b) Force plot of

predicted Vs versus feature values ranked by the selected feature.

Fig. 13 shows that SHAP also allowed for the contribution analysis of the above microscopic
features on the variability of Vs in local instances, when the cementation content was 5%. In
Fig. 13a, the high SHAP value range of ShortestDistance indicates that it was the main cause
of Vs variability. On the other hand, LPBNumber, split0, splitl, and LPBconstantPrct were not
responsible for the variability of Vs, as these SHAP values had a small variation range. In Fig.
13b, the smooth evolution by HertzNumber, averageSplitLen, LPBNumber, split0,
ContactsNumber, and splitl indicates that the predicted Vs caused by changes in these features
are continuous and gradual, which have a stable influence; the zigzag evolution by
ShortestDistance and LPBPercent indicates these features would affect the prediction by
interacting with other features; the more zigzag of LPBConstantMaxNumber and
LPBconstantPrct indicate their complex relationship with predicted values when the

cementation content was 5%.
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Fig. 13 Local summary of features when cementation content was 5%. (a) feature beeswarm plot; (b) Force
plot of predicted Vs versus feature values ranked by the selected feature

Fig. 14 compares the local analysis by SHAP between the above three instances presented in
Fig. 11a. In Instance No. 523, ShortestDistance = -1.208 (+328.54m/s) contributed the most to
predicted Vs (1952.31m/s), followed by LPBConstantMaxNumber =43 (+210.11m/s); this was
consistent with the explanation of that by LIME (Fig. 11b). In Instance No. 642, the positive
contribution of LPBConstantMaxNumber = 17 (+1.38m/s) and ShortestDistance = -0.878
(+153.68m/s) to the predicted Vs was significantly reduced; this was the main reason for the
low Vs (1302.06m/s). In Instance No. 540, the contributions of all features decreased
significantly; this led to the lowest predicted Vs (906.90m/s) compared with the other two
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instances. ShortestDistance, the most important feature in the global analysis, had essentially
no positive contribution (+8.74m/s). Different from the LIME explanation, the difference of
LPBConstantMaxNumber contributions varied significantly (+210.11m/s in Instance No. 523,
+1.38m/s in Instance No. 642, and -19.01m/s in Instance No. 540); this increased the Vs gap
between the three instances.
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Fig. 14 Feature contribution comparison of 3 instances under the same cementation content (5%) by SHAP

4.4 Sensitivity analysis and feature ablation

Two analyses, namely sensitivity and ablation, were employed to further assess the feature
importance. Sensitivity analysis indicates how perturbations in features affected the predicted
Vs, and the ablation experiment reflects feature importance by removing features. These
approaches provide quantitative evidence to support post-hoc interpretations.

The ICE curves in Fig. 7 for individual instances (light blue curves) show the overall predicted
Vs changes and indicate the model sensitivity to feature perturbations. It is noted that predicted
Vs is highly sensitive to ShortestDistance and HertzNumber in individual samples, with
average changes of 750 m/s and 300 m/s, respectively. The evidence of high sensitivity and
consistent patterns across samples strongly confirms their roles as key features influencing the

effectiveness of cementation reinforcement.

A feature ablation analysis was also performed to further quantify the importance of each
feature. This involved sequentially removing each feature, retraining the AutoML model, and
recording the drop in the evaluation (AR?). Consistent with the results of the interpretability
analysis, the drop of ShortestDistance led to the greatest performance drop (AR* = -0.006),
followed by HertzNumber (AR* = -0.004) and LPBConstantMaxNumber (AR* = -0.004). In
contrast, removing other features had little impact on performance (JAR? < 0.002). The ablation
confirms that the model relies heavily on ShortestDistance and HertzNumber to make accurate
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predictions.

5 Discussion

5.1 AutoML-enhanced DEM simulation

The findings in this paper show that AutoML enhanced Vs prediction using the DEM simulated
dataset. Due to the high costs of laboratory experiments and DEM simulations, coupled with
the limitations of Cyqn-based methods in capturing sample instance variability, AutoML offered
a necessary solution for efficient and accurate characterization. The proposed AutoML method
achieved higher accuracy than Cgn-based methods (Sun et al. 2025); it incorporated more
microscopic features and nonlinear regression models to predict stiffness in static samples (Fig.
5). Plus, the automation of AutoML offered a convenient tool for geotechnical professionals
and researchers. The open-source method can be readily extended to other relevant experiments

and DEM simulations.

The evaluation of prediction uncertainty is valuable in guiding engineering practice. The
proposed AutoML approach, with 90.16% of predictions falling within a 20% error interval,
achieved a substantially higher percentage than Cqn-Coord (78.50%) and Cyqn-MC (44.27%)
methods. However, a small proportion of outliers (9.84%) reflects the inherent uncertainty
associated with complex geotechnical systems. Therefore, in engineering practice, excessive
outliers from the expected range should be treated with caution, and additional site-specific
verification should be conducted if necessary.

5.2 Comparisons between the four interpretability methods

This paper used four model-agnostic methods to analyze AutoML’s prediction results from
different perspectives. Generally, the feature interpretations of the predicted Vs (Section 4.3)
aligned with prior experimental observations, simulations, and shear wave propagation
principles (Bate et al. 2021; Sun et al. 2025). Furthermore, the quantitative analysis provides

researchers with critical information on key features for experiments and simulation designs.

Two global interpretability methods, PDP and ALE, presented similar feature importance
rankings and complemented each other. While PDP reduced the persuasiveness of global
interpretability due to the feature independence assumption, it uniquely revealed the interaction
between two features. The alternative global method, ALE, addressed feature correlation and
identified ShortestDistance and HertzNumber as the most significant features. These two
features were consistent with the PDP results, and this consistency can be validated through
DEM analysis (Sun et al. 2025).

Both LIME and SHAP, as local model-agnostic methods, focus on interpreting the differences
between samples. Consistent with prior studies, ShortestDistance was the dominant factor in
the differences between samples. However, cementation continuity in Stages I and III of
cementation content also greatly affected shear wave propagation. Continuous cementation
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allows for faster shear wave propagation than discontinuous cementation at the same
ShortestDistance value in Stage II1. The feature ranking in LIME interpretation (e.g., Fig. 10)
varied for each instance. This variation indicates that LIME’s local fidelity ensures a faithful
local approximation but may not provide a good global approximation. SHAP addressed this
limitation through dual global-local interpretability.

In summary, although each interpretability method offered a distinct yet limited perspective,
their interpretations were not in conflict but were highly complementary instead. The advantage
of ALE in handling correlated features complements the feature independence assumption of
PDP. While LIME provided local fidelity, it was sensitive to kernel width and failed to provide
a global interpretation of the models. SHAP addressed this limitation through combined global-
local interpretability based on a game-theoretical framework. These complementary methods
provided a robust predicted Vs interpretation, aligning with domain knowledge. Integrating
these four methods allowed for a more trustworthy interpretation than any single method could
offer.

5.3 Research significance

The AutoML prediction and interpretability analysis offer valuable feedback and guidance for
experiments and DEM simulations (Zhou & Xue 2025). This analysis highlights features that
warrant global attention in engineering practice and reinforcement research, such as
ShortestDistance in Stages | and III. Specifically, these features have practical implications in
the reinforcement process. For instance, the reinforcement process should maximize the total
cementation content and achieve a continuous spatial distribution of cementation as suggested
by the interpretation. Additionally, local interpretability methods allow for the analysis of
sample-specific variability, which helps explain performance differences in individual field

samples.

The significance of this research is summarized below:

1. This paper provides an end-to-end AutoML prediction approach that enhances
computational efficiency in small-strain simulation, exceeding existing Vs
quantification methods (e.g., Can-based predictions) that only capture basic
evolutionary trends. This efficient approach can be adopted in practical engineering to
rapidly predict Vs without the need for costly simulations.

2. This paper quantifies the significance of each microscopic feature on the macroscopic
Vs evolution by interpretability analysis. Four model-agnostic methods verify the
consistency of the feature interpretations with expertise in experimental theory and
DEM simulation. This quantification provides practitioners with prior features to

monitor and control during the reinforcement process.

5.4 Limitations and future directions
Although the AutoML prediction and interpretability analysis contribute to the study of
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cementation reinforcement mechanisms, the following limitations also exist:

1.

Omission of the temporal dimension: The disordered time-series samples hinder the
interpretation of the dynamic reinforcement process due to the loss of sample
connections.

Deficiency in stage-wise analysis: Although global and instance-specific feature
importance were analyzed, stage-based characteristics remained unclear; this limited
the understanding of temporal evolutionary patterns in the reinforcement process (Sun
et al. 2022).

Macroscopic parameter gap: The significance of macroscopic parameters for Vs was

not investigated.

Future research directions can therefore be suggested based on the limitations above and

general technological prospects:

1.

Within the experiment and DEM simulation, the reinforcement process was a
temporally injected solution that can be treated as a time-series dataset (Bate et al.
2021). These time-sequenced microscopic spatial features can be imported into
recurrent neural networks (RNNs) or Long Short-Term Memory (LSTM) models to
capture evolutionary patterns (Ghorbani et al. 2025; Wang et al. 2023; Rajabi et al.
2023; Hazbeh et al. 2024). Combining these temporal models with the current AutoML
framework could create a multi-stage predictive model that accounts for both temporal
and spatial variability. The proposed approach would provide a whole view of the
entire time-dependent reinforcement process.

Stage-wise feature importance analysis should be emphasized as the significance of
microscopic features differs between stages. Future work should include stage-by-
stage sample analysis to better guide the reinforcement process. More multi-scale
datasets should also be established to optimize the model.

Direct macro-to-micro prediction should be further studied. While this paper analyzed
the effect of microscopic features on shear stiffness, advances in Al enable the direct
utilization of easily accessible macroscopic features as inputs. It is promising to
address the challenge of micro-parameter calibration and infer microscopic properties
through multi-scale modeling approaches.

Emerging digital twin and large language model (LLM)-based technology can advance the

research on cementation reinforcement (Luo et al. 2023; Zhao et al. 2025). Integrating

numerical simulation and experimental sensing can reconstruct scenarios depicting material

states across sections, and LLM-based agents can automate calibration and sample generation

tasks. These technological applications hold significant promise.

6 Conclusions

The conventional discrete element method (DEM) simulations are computationally expensive

for shear wave velocity (Vs) prediction in cementation analysis, while machine learning (ML)
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is long challenged by interpretability in applying to DEM. This paper proposes an integrated
approach that combines end-to-end AutoML prediction with interpretability analysis using
DEM simulation, demonstrating its applicability in other relevant potential microscopic studies.
The new approach resolves the computational complexity associated with Vs prediction and
the dynamic small-strain analysis of microscopic feature effects in the DEM simulation.

The test dataset included 1,972 DEM samples with 10 key microscopic features. Compared to
the Can-based fitting approach, the adopted AutoML improved both the generalization analysis
and prediction accuracy for Vs. Four interpretability methods—PDP, ALE, LIME, and
SHAP—were used to provide both global and local microscopic interpretations; these methods
address concerns about AutoML’s black-box nature. These model-agnostic methods identified
the most influential microscopic features (e.g., ShortestDistance) and clarified their functional
relationships with the predicted Vs, thereby validating the impact of cementation on Vs.

The following conclusions are drawn from the findings:

1. The algorithmic integration of AutoML with DEM-generated datasets
outperformed the traditional Cqp-based fitting approach, and achieved a high R? of
0.952 with strong robustness.

2. The unified interpretability pipeline combining PDP, ALE, LIME, and SHAP
methods verified that ShortestDistance and HertzNumber are two dominant
microscopic features for predicting Vs, with cementation continuity
(averageSplitLen and LPBConstantMaxNumber) affecting shear waves in Stages |
and III of cementation.

3. The interpretable AutoML approach provided transparent and model-agnostic
feedback that can be further applied to other potential microscopic studies.

The interpretable AutoML approach presented in this paper establishes a robust foundation for
future research. Promising research directions can be extended, including incorporating a time-
dependent reinforcement process, stage-wise feature importance analysis, and integrating

additional macroscopic features.
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Appendix A: Pseudocode of integrating automated machine learning and interpretability
analysis

Algorithm S1 Pseudocode for integrating automated machine learning and interpretability analysis
Input: DEM simulation features (Fi), Number of samples N

Output: Trained ensemble model (M), Vs predictions (Vs), Feature interpretation

# Phase 1: Data Generation

for i=1 to N do
Run DEM simulation with cementation parameters CaCO3%, Xsced
Extract microscopic feature vectors Fi and measured Vs

end for

Construct dataset D={( F;, Vs)}¥,

Standardize each feature in D

# Phase 2: AutoML Modeling & Validation
Split D into k folds for cross-validation
for each fold (Dyain, Diest) do
Initialize Auto-sklearn regressor
Fit model on Dy4in // Automated pipeline incl. feature preprocessing, model selection, and
hyperparameter tuning
Predict Vs on Dyes)
Evaluate performance (R?)
end for
Construct the final ensemble model M from all trained models

# Phase 3: Interpretability Analysis

for each interpretability method {PDP, ALE, LIME, SHAP} do
Conduct interpretation for model M using dataset D

end for

return M, Vs, feature interpretation
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Appendix B: Sample data

The sample data distribution matrix of these 1,972 samples is as follows (Sun et al., 2025):

Sia Say v Sied /F(Xgc 4,,CaC03%,)  F(Xeeq,,CaC03%,) -+ F(Xgeeq,,,CaC0O3%,) \ Vsii  Vspy - Vsied

Sin S o Sie 2\ F(XeedsCaC0O3%,)  F(Xieeq,,CaC0O3%,) -+ F(Xeed; -CaC0O3%,) /Vsl_z Vsyy oo+ Vsll(,_z\
ksls Sz Sie 3) | F(Xseed, CaCO3 %3)  FlXgeeq,,CaCO3%;) -+ FlXoeed, o0 CaCO;A] ) | K Vsiz  Vsaz - Psies |-

S1a7 Sa7 o Siens F(Xseed],CaCO3 %,;)  F(Xieeq, CaC03% ;) - F(Xseedm,CaCO3%”) Vsiar Vs =+ Vsiiens
Matrix 1: sample number Matrix 2: model expression Matrix 3: the estimator Vs

In Matrix 1, a total of 17 x 116 samples were generated, where the number of columns
(116) represents the sample group, and the number of rows (17) represents the sample
numbering in each group. Matrix 2 demonstrates mathematically that each sample was
determined by two variables: Xseed, the random-seed variable in the DEM simulation
(representing the spatial distribution of cementation), ranging from 1 to 116; and CaC0O3%, the
calcite content in the DEM simulation (Error! Not a valid bookmark self-reference.).
Through modeling each sample in Matrix 2, the Vs estimator matrix can be obtained, as shown
in Matrix 3. All 1,972 DEM samples conformed to physical laws, therefore ensuring the

representativeness in the context of shear wave velocity prediction.

Table S1 Calcite contents of 116 groups
m* CaCOz% m* CaCO3%

1 0 10 2.55
2 0.11 11 3.17
3 0.23 12 4
4 0.34 13 5
5 0.45 14 6
6 0.55 15 7
7 0.66 16 8
8 1.24 17 9
9 1.88

The m refers to the CaCO3% numbering.
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Appendix C: Distributions of the ten microscopic features
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Fig. S1 Distributions of the ten microscopic features.

Appendix D: Summary of the optimal hyperparameter values in the ensemble model

Table S2 Summary of the optimal hyperparameter values in the ensemble model

Model Wetl gh Parameter Value
alpha 0.0560
Kernel RBF(length scale =1[]1), 1,1,1,1,1,1,1, 1,
Gaussian_process 0.34 n_restarts_optimize 10
r
normalize y True
random _state 1
alpha 0.429
Kernel RBF(length_scale =1[]1), 1,1,1,1,1,1,1, 1,
Gaussian_process 0.28 n_restarts_optimize 10
r
normalize y True
random _state 1
K nearest neighbor n_neighbors 20
- = 0.34 ] .
S weights distance
base estimator DecisionTreeRegressor(max_depth = 10)
Adaboost 0.34 leamlpg_rate 0.678
n_estimators 175
random state 1
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