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Abstract

This paper presents a deep learning-based point cloud
processing method named FloorPP-Net for the task of Scan-
to-BIM (building information model) [1]. FloorPP-Net first
converts the input point cloud of a building story into point
pillars (PP) [6], then predicts the corners and edges to out-
put the floor plan. Altogether, FloorPP-Net establishes an
end-to-end supervised learning framework for the Scan-to-
Floor-Plan (Scan2FP) task. In the 1st International Scan-
to-BIM Challenge (https://cv4aec.github.io/)
held in conjunction with CVPR 2021, FloorPP-Net was
ranked the second runner-up in the floor plan reconstruc-
tion track. Future work includes general edge proposals,
2D plan regularization, and 3D BIM reconstruction.

1. Introduction
Floor plan is an essential and popular representation

of building interiors in the Architecture, Engineering, and
Construction (AEC) industry. With advanced technolo-
gies, such as building information model (BIM) and high-
definition point cloud 3D scanning, Scan-to-BIM is the task
of reconstructing accurate and detailed BIMs from point
cloud scans [1]. The reconstruction of floor plan (Scan2FP)
is thus highly desired by Scan-to-BIM and AEC practi-
tioners. However, Scan-to-BIM (and Scan2FP) encounters
computational challenges, including large-scale inputs, data
diversity (e.g., different indoor scenarios), accurate geome-
try, and detailed semantics (e.g., labels of building compo-
nents) [11]. A general automatic solution must handle the
challenges in order to achieve satisfactory generalizability,
effectiveness, and efficiency.

In recent years, deep neural networks (DNNs) showed
promising potentials in many tasks of parsing geometry and
semantics. The DNNs have also been applied to solving
several Scan2FP problems. For example, FloorNet [7] takes
the point clouds and images as inputs and uses three sep-
arate branches for extracting the geometry and semantics
from 3D, point density of top-down view, and images to

(a) Point cloud (b) Floor plan

(c) Point pillars [6] (d) Corners (e) Edges

Figure 1. Our method takes the (a) point cloud of a building story
as input, then converts the point cloud into (c) point pillars of the
corresponding 2D horizontal grid. Next, FloorPP-Net learns to
predict the (d) corners and (e) edges to output the (b) final floor
plans.

predict the pixel-wise floor plans. Floor-SP [2] uses Mask
R-CNN [4] to segment rooms from the density/normal maps
of the top-down view and then optimizes the boundary loops
of rooms. These works proposed novel frameworks to learn
Scan2FP from data and gained state-of-the-art outcomes on
the residential datasets.

In this paper, we propose a method named FloorPP-Net.
FloorPP-Net converts the point cloud into point pillars (PP)
[6] and learns to predict the corners and edges from the
point pillars to form the floor plan. A point pillar in this pa-
per is a compact geometric feature from a top-down view. In
general, the point pillar is more distinguishable and robust
than the conventional point density/normal maps. More-
over, by simultaneously learning the corners and edges,
FloorPP-Net is an end-to-end pipeline for Scan2FP. Our
multi-task learning framework for corners and edges is sim-
ilar to the LCNN [12]. However, FloorPP-Net exploits the
innate architectural regularities [9], thus is able to simplify
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Figure 2. Overview of FloorPP-Net.

the edge sampling and proposals.
FloorPP-Net was ranked the second runner-up in the

floor plan reconstruction track in the 1st International Scan-
to-BIM Challenge held in conjunction with CVPR 2021.
The results showed the general framework of FloorPP-Net
is reasonable; yet, some components of FloorPP-Net were
still in their naive versions and some components were not
implemented by the competition. For example, the archi-
tecture and hyper-parameters of FloorPP-Net were not yet
fully tuned.

2. FloorPP-Net

2.1. Overview

Figure 2 shows the pipeline of the FloorPP-Net. First,
the input point clouds of building stories are preprocessed
into point pillars, as shown in Figure 2b and Section 2.2.
Next, FloorPP-Net takes the point pillars as inputs and de-
tects the corners through an encoder-decoder with an ROI
detection head (Section 2.3). Once corners are detected,
FloorPP-Net connects corners, generates edge proposals,
and classifies edges (Section 2.4). As shown in Figure 2,
FloorPP-Net has separate heads for corner detection and
edge verification. Hence, the loss function of FloorPP-Net
is the weighted sum of the loss LC for corner detection and
LE for edge verification, which is L = LC +λELE , where

λE is the weight parameter.

2.2. Point cloud to point pillars

To convert the point cloud into point pillars, FloorPP-Net
employs a 2D grid for the horizontal bounding box. Feature
vectors are computed within the 2D grid cells to represent
the vertical point distributions along the corresponding ver-
tical prism, or pillars. Specifically, we compute the feature
vector in two steps:

1. binning a pillar at equal intervals and

2. labeling the bins as TRUE if points inside and FALSE
otherwise.

The feature computation is simple and intuitive. Yet
the feature is sensitive to the vertical outliers. Because the
lengths of feature vectors, i.e., the numbers of vertical bins,
are fixed for all point cloud samples, points belong to the
target story will be squeezed into few bins when far outliers
exist. To alleviate this negative effect, we estimated the el-
evations of each story’s floor and ceiling and removed the
points outside of the vertical range of a story. Furthermore,
the point clouds are aligned to the x- and y-axes to reduce
the rounding error [9].



Table 1. Official metrics report.
Method warping error precision 0 precision 1 precision 2 recall 0 recall 1 recall 2 IoU betti error
FloorPP-Net 0.268 0.011 0.042 0.065 0.071 0.256 0.386 0.120 1.204

2.3. Corner detection

FloorPP-Net utilizes an encoder-decoder structure to
produce a feature map with high resolution and rich con-
text information for detecting corners. The corner scores
of grid cells are predicted on the feature map. However, in
pilot experiments, we observed that the ‘per-pixel’ corner
prediction produced duplicated and blurred results as well
as caused noisy edge proposals. To focus on appropriate
corner proposals and results, FloorPP-Net refines the cor-
ner locations using the RoIAlign [4] on the grid cells with
higher corner scores. Therefore, the loss function of the
corner detection includes two parts:

LC = Lcls + λlocLloc,

whereLcls is the binary cross-entropy loss over two classes:
corner or not; Lloc is a smoothL1 function [3] that measures
the errors between the refinement and the ground truth lo-
cation; λloc is a weight parameter to balance the two parts
of the LC .

To ease the learning of the corner detection, LC only
takes the filtered grid cells into account. We use a similar
filtering strategy as Faster R-CNN [8]:

1. generating boxes of each grid cell and ground-truth
corners with a given side length;

2. computing the box Intersection-over-Union (IoU) be-
tween the grid cells and ground-truth corners; and

3. selecting those cells with a maximum IoU larger than
0.7 as positive samples and lower than 0.3 as negative
samples.

The cells with maximum IoU from 0.3 to 0.7 are ignored
in the computation of LC . Meanwhile, since the number
of the negative cells can still be overwhelming to the posi-
tive, we randomly sample from the negative cells to keep a
balanced ratio of positive to negative. Besides, only the lo-
cation refinement of the positive samples contributes to the
Lloc.

2.4. Edge verification

After the corner detection, FloorPP-Net generates edge
proposals by connecting the detected corners with refined
locations. Although an intuitive way to propose edges is
filtering the full connections between all the detected cor-
ners. However, the full connection leads to a large number
of proposals, and an extremely imbalanced ratio of positive

to negative samples in particular. Thanks to the axis align-
ment in the preprocessing, the true positive edges’ orien-
tations are highly regular on common Manhattan-like floor
plans. Therefore, simple heuristic rules can be applied to
connect corners in a very efficient way. Based on the Man-
hattan layout assumption for the floor plans, FloorPP-Net
only connects horizontal and vertical edges and ignores the
unlikely or inapplicable connections. The main side effect
from the Manhattan assumption was the missing of incline
edges.

Once the edge proposals are generated, the RoIAlign [4]
predicts the edge score for each proposal. We use the binary
cross-entropy loss as LE . Besides, FloorPP-Net employs
a filter, similar to that of the corner detection, of the edge
proposals, to reduce the complexity of learning.

3. Implementation and Results
FloorPP-Net was initially implemented for the 1st In-

ternational Scan-to-BIM Challenge (https://cv4aec.
github.io/). We adopted ResNet-18 as the backbone of
the encoder-decoder structure of the corner detection. Three
residual blocks were stacked to extract the feature maps
of the edge proposals. We trained the FloorPP-Net model
from scratch for 55 epochs with a learning rate of 0.0001
which was decreased by 10 at epoch 40. The FloorPP-Net
model was trained on a GPU with 8 GB memory. The batch
size for training was set to 1. All point clouds were down-
sampled to voxels at the resolution of 0.05m. Every point
cloud was cropped into horizontal grids with a side length
of 512; while the side length of the corner box was set to 9.

Table 1 shows the error metrics computed by the Chal-
lenge organizers. Overall, FloorPP-Net won the 2nd runner-
up in the floor plan reconstruction track. The 0.268 warp-
ing error [5] indicated FloorPP-Net returned floor plans
with low homotopic deformations. Yet, the precision-
recall pairs were not satisfactory. E.g., all the three val-
ues of precision were below 0.1, and the IoU was only
0.120. The indications and details of the metrics can
be found on the Challenge web pages at https://
cv4aec.github.io/ and https://github.com/
seravee08/WarpingError_Floorplan.

4. Discussion and future work
The method FloorPP-Net proposed in this paper focuses

on corners, a kind of typical joints in building interiors, for
the task of Scan2FP and Scan-to-BIM. The point pillars
(PPs) and edges between PPs are the key features to han-
dle in the FloorPP-Net model. Results showed that the PPs

https://cv4aec.github.io/
https://cv4aec.github.io/
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https://github.com/seravee08/WarpingError_Floorplan


and PP-based edges were reasonable and efficient to pro-
cess large-scale point cloud scans, e.g., 200 million points
of a building floor with more than 100 rooms.

There are three major directions to complete and im-
prove FloorPP-Net. The first is to include the non-
Manhattan edges between PPs. Another one is the regu-
larization of walls and spaces (e.g., [10]) for floor plans.
Subsequently, 3D as-built BIMs can be reconstructed for
Scan-to-BIM based on confident 2D floor plans.
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