

Scan2Floorplan: Floor Layer-based Kernels and Pillars of Points (FLKPP)

Yijie Wu, Maosu Li and Fan Xue

Faculty of Architecture, The University of Hong Kong

2nd Workshop on Computer Vision in the Built Environment, CVPR 2022

19 June 2022, New Orleans, Louisiana, USA.

Dr. Fan Xue

Who are we?

Yijie Wu

Yr-1 PhD student, Dept. Real Estate & Construction Research interest: <u>Building reconstruction</u> from point clouds

Maosu Li

Yr-3 PhD candidate, Dept. Urban Planning & Design Research interest: <u>Semantics in CIM</u>, 3D view assessment

Fan Xue

Asst Prof, Dept. Real Estate & Construction; Dept. Urban Planning & Design (Part-time) Research interest: <u>Digital twin buildings/city</u>, optimization, LiDAR processing, <u>explainable AI</u>

Maosu Li

<u>Yijie Wu</u>

Fan Xue

Outline

- I. Background
- II. Our method
- **III.** Results
- **IV.** Discussion & future work

Scan2Floorplan in AECO

3D scan

- $\,\%\,$ Consistent with the real layouts
- $\,\%\,$ Rich in details and appearance
- $\,\%\,$ Much faster than traditional survey

Floorplan

 \times Most commonly used in AECO

- ***** A great amount of achieved floorplans
- % Low acquisition cost
 - **#** Boost data-driven methods

Challenges in Scan2Floorplan

3D scan

- \times Geometry fitting
- % Semantics understanding
- \times Data deficiencies

Floorplan

- ※ Drawn for human interpretation rather than machine processing
 - # Flexible layer naming, annotations & topology
- \times Inconsistent with the real layouts

Step by step vs. End to end

Step by step

Preprocessing (e.g., downsampling, axis aligning, outlier/clutter/horizontal structure removal) semantic segmentation, RANSAC fitting, topology repairing, ...

Excellent and guaranteed results presented in the 2D leaderboard of last year

End to end

FloorPP-Net in 2021 Scan2BIM 2D Challenge Project the point clouds to 2D and learn to output a floorplan (edges)

Without careful network design and parameters tuning, output noisy results (3rd place in 2D Challenge last year)

Han et al., 2021

FLKPP: A framework with both step-by-step & end-toend

22 June 2022

FOA@HKU

Preprocessing

(Voxels occupied

by scan data)

(Indoor

space

voxels)

E C C C

WECC

E

W

₩AIMs:

- **#** Room clustering
- # Room-base noise removal
- ※ Space voxels labeling
- ※ Region growing to segment rooms
- ※ Clutter removal (using head levels in rooms)

(Zoom-in)

FOA@HKU

2D edge detection

FloorPP-Net

2D edge detection

End-to-End Wireframe Parsing

2D edge detection

2D edge completion, guided by **explainable** floorplan objects

Semantic segmentation of point cloud by KPConv

walls, doors, and stairs

Results

02_TallOffice_01_F7

20 cm pre: 16% | rec: 29% | iou: 85%

08_ShortOffice_01_F1

20 cm pre: 14% | rec: 21% | iou: 90%

Results

11_MedOffice_05_F1

20 cm Pre.: 12% | Rec.: 20% | IoU: 50%

25_Parking_01_F2

20 cm Pre.: 4% | Rec.: 0.12 | IoU: 0.76

Ablation study

→	Clutter removal	Sem. Seg.	LCN N	FloorPP-Net	IoU @ 20cm	Pre. @ 20cm	Rec. @ 20cm	Betti error
	\checkmark	\checkmark	\checkmark	\checkmark	37.4%	13.2%	25.3%	1.12
	\checkmark	\checkmark			36.4%	25.1%	6.6%	1.29
	\checkmark		\checkmark	√	39.2%	10.4%	16.6%	1.24
				~	12.0%	6.5%	38.6%	1.20

Discussion & future work

*☆*Limitations

- **#** A lot of clutters; missing exterior points
- # The inconsistencies between floorplans and point clouds in the 2D edge learning
- # Incomplete topology (connection & closure)

\times Future work

- **#** To design **rules** for clutter removal
- **#** To build a classifier handle the **inconsistencies**
- # To **repair** the topology (Learning? Graph? Domain knowledge?)

Suggestions

- # Inconsistent metrics? (IoU@20cm = 42%, Pre.@20cm = 4.5%, Rec.@20cm = 3.2%)
- **#** Evaluation code (Bounding the extent when match the regions | Without classification evaluation)

FOA@HKU

References

- * Wu, Y., & Xue, F. (2021). FloorPP-Net: Reconstructing Floor Plans using Point Pillars for Scan-to-BIM. *arXiv preprint arXiv:2106.10635*.
- Wu, Y., Shang, J., & Xue, F. (2021). Regard: Symmetry-based coarse registration of smartphone's colorful point clouds with cad drawings for lowcost digital twin buildings. *Remote Sensing*, 13(10), 1882.
- ※ Bosché, F., Ahmed, M., Turkan, Y., Haas, C. T., & Haas, R. (2015). The value of integrating Scan-to-BIM and Scan-vs-BIM techniques for construction monitoring using laser scanning and BIM: The case of cylindrical MEP components. *Automation in Construction*, 49, 201-213.
- Han, J., Rong, M., Jiang, H., Liu, H., & Shen, S. (2021). Vectorized indoor surface reconstruction from 3D point cloud with multistep 2D optimization. *ISPRS Journal of Photogrammetry and Remote Sensing*, 177, 57-74.
- X Lang, A. H., Vora, S., Caesar, H., Zhou, L., Yang, J., & Beijbom, O. (2019). Pointpillars: Fast encoders for object detection from point clouds. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 12697-12705).
- X Zhou, Y., Qi, H., & Ma, Y. (2019). End-to-end wireframe parsing. In *Proceedings of the IEEE/CVF International Conference on Computer Vision* (pp. 962-971).
- Thomas, H., Qi, C. R., Deschaud, J. E., Marcotegui, B., Goulette, F., & Guibas, L. J. (2019). Kpconv: Flexible and deformable convolution for point clouds. In *Proceedings of the IEEE/CVF international conference on computer vision* (pp. 6411-6420).
- Schnabel, R., Wahl, R., & Klein, R. (2007, June). Efficient RANSAC for point-cloud shape detection. In *Computer graphics forum* (Vol. 26, No. 2, pp. 214-226). Oxford, UK: Blackwell Publishing Ltd.

2nd CVPR Workshop and Challenge on Computer Vision in the Built Environment

Thank you for listening!

FOA@HKU