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4 Abstract. Building Information Modeling (BIM) has become well recognized and increasingly mandated5

in the building sector, where Scan-to-BIM automation shows great potential for BIM users. For the ‘last6

mile’ or ‘last step’ of automatic Scan-to-BIM, parametric reconstruction, existing methods focus on7

surface reconstruction. However, BIM practitioners have to handle architectural elements as volumetric8

instances rather than connected surfaces. This paper proposes a volumetric reconstruction method called9

BSS-Indoor. The method is based on a novel Building Section Skeleton (BSS) theory which pairs the10

parallel and symmetric facades of the building exterior. By adapting BSS from building exteriors to11

interiors, BSS-Indoor reconstructs internal walls as BSS segments. Our method simultaneously locates12

walls and estimates their thicknesses, addressing common issues in existing solutions, such as fragmented13

long walls and merged adjacent walls. Preliminary experiments on a subset of the CV4AEC (3D) dataset14

demonstrate the effectiveness and potential of BSS-Indoor in reconstructing volumetric walls.15
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1 Introduction17

The Building Information Modeling (BIM) has become significantly important throughout a building’s18

entire lifespan, covering all phases from initial design to eventual demolition [1]. To streamline the19

building sector with BIM, automating the creation of BIMs is extremely crucial [2]. Scan-to-BIM, a20

popular task that converts 3D scans captured by laser scanners or photogrammetry, shows great potential21

in the creation and uses of as-is BIM [3]. A typical Scan-to-BIM workflow involves four steps: scanning,22

scan registration, semantic segmentation, and parametric reconstruction. In recent years, solutions and23

datasets for registration and semantic segmentation of building interiors have rapidly evolving, which24

significantly boosted the Scan-to-BIM popularity [4]. However, the parametric reconstruction, which is25

the ‘last mile’ or ‘last step’ of the Scan-to-BIM pipeline, does not yet fulfill the actual requirements of26

BIM practitioners in the industry [5].27

Existing methods for reconstructing building interiors focus on surface reconstruction instead of vol-28

umetric modeling. These methods reconstruct the surfaces of architectural elements, i.e., walls, floors,29

and ceilings, into lightweight meshes [6, 7]. Simultaneously, rooms and their closed boundaries are30

extracted [8, 9]. The resulting surface models or floorplans satisfy the requirements of indoor naviga-31

tion [10] and fit the native geometric representation of CityGML for City Information Modeling [6].32

However, BIM practitioners in the building sector pay more attention on the individual instances of ar-33

chitectural elements [5]. Walls and slabs are preferably modeled as volumetric instances enriched with34

joints and details inside the surfaces rather than separated facets that bound different rooms.35

Volumetric reconstruction of architectural elements essentially involves locating the volume, outlines36

the volumetric shape and/or estimates the dimensions of the identified volume. For walls and slabs,37

thickness should be estimated. Meanwhile, walls are usually simplified as cuboids. Volumetric walls can38

be reconstructed by clustering the wall points produced by semantic segmentation and then estimating39

the bounding box of each cluster [4]. To achieve a higher reconstruction fitness to the scans, optimiza-40

tion models were formulated to finetune the locations and dimensions of wall boxes [11]. Moreover,41

wall thickness can also be predicted by deep learning after projected the point clouds onto horizontal42

planes [5]. However, as the height information is missing after the projection, the method reconstructs43

floorplans only. A common aspect among these solutions is that they separate the volume localization and44

dimension estimation processes. As a result, long walls are prone to being cut into pieces and adjacent45

walls with different dimensions are prone to being merged into one wall.46

In this paper, we propose a volumetric reconstruction method for walls based on the Building Section47

Skeleton (BSS) [12]. Our method aims to locate and estimate the thickness of walls simultaneously. BSS48

is a shape skeleton defined to adapt the morphological characteristics of building exterior boundaries.49

Each BSS segment corresponds to a pair of parallel vertical planes representing facades or a pair of50

symmetric incline planes representing roofs. A BSS segment is parameterized with the radius and forms51

a polyhedron, which is a similar concept of volume thickness. This study transfers the BSS for building52

exteriors to interiors. Each internal walls are reconstructed as a BSS segment, while the external walls53

are detected as the parallel facades that bound buildings. Preliminary experiments on the a subset of the54

CV4AEC (3D) dataset [13] show that our method, named BSS-Indoor, can effectively reconstruct the55

volumetric walls.56

The remainder of this paper will introduce our method BSS-Indoor, report preliminary results, as57

well as discuss the strengths and future improvement of BSS-Indoor.58

2



2 Preliminaries: Building Section Skeleton for wall reconstruction59

The fundamental concept of the Building Section Skeleton is to capture the parallel and symmetric planes60

of buildings, building on the classical concept, shape skeleton, in computer graphics. The identified par-61

allel and symmetric planes can be assembled into 3D volumes which represent the space inside buildings,62

providing semantic information. These 3D volumes may corresponding to the empty space of building63

interiors designated for specific functions, such as offices and corridors, or they could also be physical64

structures, such as walls.65

BSS are defined at three levels, i.e., atoms, segments, and the relations between segments. A BSS66

atom is the center of the sphere inscribed by symmetric points on the exterior or interior surfaces of67

buildings. If the surfaces are vertical, the radius of the sphere and the normals of the inscribed points68

are attributes of a BSS atom. If the surfaces are not vertical, the intersection height of the two inscribed69

directions and the normals of inscribed points serve as the parameters of a BSS atom. When two points70

lie on a pair of parallel planes, then the corresponding BSS atom is equivalent to the midpoint of these71

two points. At the second level in the definition of BSS, a segment is a group of BSS atoms distributed72

on a same plane, forming a region, and sharing same radius or intersection height and normal. Hence, a73

BSS segment represents the medial plane of a pair of parallel or symmetric planar regions. Furthermore,74

by sweeping the medial vertical region of a BSS segment, there is a corresponding volume of a BSS seg-75

ment, which represents the empty or physical space of buildings. The relations of BSS segments, which76

constitute the third level of the BSS definition, refer to their topological relations, including intersections77

and adjacency. For more details on BSS, please refer to [12].78

In the practice application of BSS in Scan-to-BIM, there are two specific designs for wall reconstruc-79

tion. Although a BSS segment could be the medial planar region of both vertical and incline planes which80

could be parallel and non-parallel, respectively, the planes involved in wall reconstruction are usually par-81

allel. Therefore, we solely use BSS for vertical and parallel planes. Moreover, different mechanisms are82

employed reconstructing interior and exterior walls. As a BSS segment represents the medial plane of83

a pair of parallel or symmetric planes, the use of BSS assumes the presence of dual planes to bound a84

space. However, the scanned point clouds for BIM reconstruction may not always include the facades85

of buildings, leaving only one single plane for an exterior wall. To reconstruct both interior and exterior86

walls, our method captures dual wall surfaces as close as possible to each other for reconstructing BSS87

segments for interior walls, and as far apart as possible for reconstructing the interior spaces of buildings.88

Subsequently, we use the boundaries of the interior spaces to supplement the exterior walls.89

3 Method90

3.1 Overview91

Fig. 1 shows an overview of our method. BSS-Indoor takes the segmented point clouds of architectural92

elements as inputs and outputs the volumetric walls. Plane detection is performed first to group points as93

planar primitives. Then, the method clusters the primitives in terms of their normals. In the case shown94

in Fig. 1, two orthogonal orientations are clustered. After that, two stages, one for proposing, the other95

for refining, are implemented to reconstruct the walls of each orientations.96

Stage 1 locates the possible walls and outlines their vertical planar boundaries as the initial BSS97

segments. This stage pairs the parallel planar primitives of each orientation whose distances between98

each other are close or far apart enough in terms of given thresholds. After pairing, the proposed method99
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Figure 1: Overview of BSS-Indoor.

segments the common regions coarsely of each paired regions in an ascending order for close ones and100

descending order for far away ones. Note that the common region is the vertical medial region of the101

paired planes. However, as shown in Fig.1, the initial BSS segments have irregular boundaries. There102

are also topological errors including intersections and gaps between different BSS segments.103

Therefore, Stage 2 further refines the BSS segments by aligning the BSS segments of different orien-104

tations to smooth the boundaries and remove the intersections and gaps. The aligning procedure projects105

the vertical regions of a BSS segment onto a vertical plane. The method then triangulates the projected106

extent. Triangles in the extent are labeled as inside or outside the BSS segment. Refining the boundary107

of a BSS segments now can be conducted by flipping the inside/outside labels of the triangles. An in-108

teger programming model is formulated to optimize the flipping for a smooth and topologically correct109

boundary of each BSS segment.110

After the two stages, internal walls are reconstructed from the BSS segments formed by close paired111

planes, while external walls are from BSS segments composed by far apart parallel planes. The method112

extrudes the vertical region of a BSS segment horizontally by the radius of a BSS segment for interior113

walls or a standard thickness for exterior walls.114

3.2 Stage 1: Pairing and Segmentation115

In Stage 1, parallel planes within each cluster are paired, and the common regions of the paired planes116

are segmented for each orientation individually.117

Planes within a cluster that are either closer or farther than given thresholds are filtered as potential118

pairs. Then, the method sorts the pairs with small distances in an ascending order for reconstructing inte-119

rior walls, while pairs with large distances in descending order for exterior walls. The segmentation of the120

common regions for interior and exterior walls are performed individually according to their respective121

orders. Although a plane can be paired with multiple planes, a region of the plane can only be segmented122

once and paired with one of its pairing candidates. Therefore, within a single orientation cluster, BSS123

segments and their corresponding volumes cannot intersect with each other. By design, paired planes124
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with closer distances are segmented first for interior walls; whereas farther paired planes are prioritized125

for exterior walls.126

The segmentation of common regions are based on the Boolean operations of polygons. Our method127

projects the points of each plane onto a vertical plane and then polygonizes the projected regions by128

calculating their 2D Alpha shapes. When segmenting the common region for a pair of planes (A,B), the129

two polygons of each plane are separated into three parts: A∩B, A\B, and B \A. The region of A∩B130

is segmented out as one of the initial BSS segment. The regions of A \B and B \A are retained for the131

subsequent segmentation with the remaining paired planes of A and B, respectively.132

After segmenting the region of a BSS segment, our method extrudes the vertical region of a BSS133

segment horizontally in both orientations by its radius to form a 3D polyhedron, representing the initial134

interior walls and indoor spaces (presented in the two sub-figures on the left-hand side in the second row135

in Fig. 1).136

3.3 Stage 2: Alignment137

Stage 2 refines the initial BSS segments by aligning those of different orientations. This process includes138

smoothing the boundaries of the BSS segments and eliminating intersections and gaps between them.139

The alignment procedure relies on the intersections of BSS segments from various orientations. The140

method first intersects the medial planes of the initial BSS segments, filtering out intersection lines that141

are too distant from the segmented regions. Next, for each orientation cluster, our method projects all142

the segmented common regions from Stage 1, along with the intersection lines, onto the vertical plane143

orthogonal to the orientation. Constrained triangulation is performed on the projection. The resulting144

triangles are labeled based on whether they belong to a particular segment or not. Assume there are n145

segments in a cluster; each triangle is labeled with a k-dimensional binary vector. The refinement of146

initial BSS segments is then transformed into a problem of flipping the labels of these triangles.147

A binary optimization model is formulated for the label flipping. The Boolean variables indicate148

whether a label should be flipped, or equivalently, a triangle should be removed from or added to a BSS149

segment. The smoothing and topology refinement are achieved by controlling the label distinctions of150

triangles distributed across the intersection lines. Adjacent triangles sharing edges on the intersection151

lines are prone to be labeled differently; that is, if one belong to a BSS segment, the other should not152

belong to the same BSS segment. For adjacent triangles whose common edges are not on the intersection153

lines, the optimization model tends to label the two triangles in a same way, i.e., both either belong to154

or do not belong to a BSS segment. As a result, the optimization encourages continuity inside a BSS155

segment and discontinuity along the intersection lines, which drives the boundaries of the BSS segments156

to align with the intersection lines. Additionally, the refinement should not deviate significantly from the157

initial BSS segments. Therefore, the optimization model also minimizes the number of label flipping.158

4 Preliminary experiments159

4.1 Data and implementation details160

To validate the initial effectiveness of BSS-Indoor, six samples from the training set of the CV4AEC 3D161

dataset were tested. Note that this dataset was captured by laser scanners. As a result, there are missing162

points for walls and outliers outside the buildings due to windows. The six samples include two typical163

scenarios: office and parking. For the following experiments, the point clouds were uniformly sampled164
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at an interval of 2cm.165

The semantic point clouds of architectural elements were segmented by PointContrast [14] which166

were trained on ScanNet [15] and S3DIS [16]. Plane primitives of the semantic point clouds were de-167

tected by RANSAC [17]. We employed K-Means for clustering the plane orientations, where users need168

to provide the number of clusters k in advance. In Stage 1, the Alpha shape polygonization of the plane169

primitives was implemented based on GEOS [18]. The hyper-parameter α was set to a range from 1 to170

3 m. In Stage 2, the constrained triangulation was implemented based on CGAL [19]. The optimization171

of integer programming was solved by Gurobi [20] with a weight factor provided by users to balance the172

geometric consistency and the degree of alignment.173

4.2 Evaluation174

Results were evaluated by the official 3D evaluation code [21] of CV4AEC’s Scan-to-BIM competition.175

The evaluation metrics include 3D Intersection-over-Union (IoU) and the matching precision, recall, and176

F1-score of the 2D wall segments. Note that the matching of the 2D segments were evaluated at three177

different resolutions with matching thresholds of 5, 10, and 20 cm, respectively.178

4.3 Results179

The reconstructed volumetric walls and the evaluation results are presented in Fig. 2 and Tab. 1. The180

average 3D IoU is 20.4 %, with a range of 7.4 % to 28.7 %. At the 10-cm resolution, the average181

precision, recall, and F1 scores are 41.4 %, 41.2 %, and 40.6 %. The precision and recall show a good182

balance. The F1-scores at 10-cm resolution range from 21.2 % to 56.1 %. As shown in Fig. 2, some183

internal walls and their thicknesses are accurately estimated, as BSS-Indoor captured their dual planes184

correctly. The external walls were also partially reconstructed. However, there are still some noticeable185

limitations, particularly for missing walls.

Table 1: Evaluated results of the 6 samples in CV4AEC 3D dataset. #gt, #pred, #m refer to the
number of ground truth, prediction (reconstruction), and matched walls, respectively. The matching
between 2D wall segments were evaluated with three matching thresholds of 5, 10, and 20 cm.

thresh: 5 cm thresh: 10 cm thresh: 20 cm

sample #gt #pred 3D IoU #m prec. rec. F1 #m prec. rec. F1 #m prec. rec. F1

06 B1 496 712 7.4% 68 9.6% 13.7% 11.3% 128 18.0% 25.8% 21.2% 172 24.2% 34.7% 28.5%
06 F3 976 856 7.5% 169 19.7% 17.3% 18.4% 217 25.4% 22.2% 23.7% 243 28.4% 24.9% 26.5%
07 F5 904 544 21.0% 198 36.4% 21.9% 27.3% 290 53.3% 32.1% 40.1% 368 67.6% 40.7% 50.8%
32 F1 528 640 31.3% 214 33.4% 40.5% 36.6% 311 48.6% 58.9% 53.3% 340 53.1% 64.4% 58.2%
32 F2 656 688 26.3% 249 36.2% 38.0% 37.1% 333 48.4% 50.8% 49.6% 376 54.7% 57.3% 56.0%
32 F3 688 728 28.7% 301 41.3% 43.8% 42.5% 397 54.5% 57.7% 56.1% 433 59.5% 62.9% 61.2%

Average / / 20.4% / 29.4% 29.2% 28.9% / 41.4% 41.2% 40.6% / 47.9% 47.5% 46.9%

186

The current BSS-Indoor implementation failed to reconstruct some external walls. As shown in187

Fig .2, such failures are more significant for Samples 06-B1, 06-F3, and 32-F3. This issue occurred188

because there might be large empty regions on the external walls where there are large windows. As a189

result, holes could be observed in the original scans, semantic point clouds, and the initial alpha polygons190

of the plane primitives, making it difficult to reconstruct the external walls.191

Significant incompleteness in the semantic point clouds and initial alpha polygons also led to the192

missing internal walls. These failures could be common due to the heavy occlusions caused by clutter193

near the walls.194
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06_B1 
F1 = 11.3 %@5 cm, 21.2%@1 cm, 28.5%@20 cm

06_F3 
F1 = 18.4 %@5 cm, 23.7 %@1 cm, 26.5%@20 cm

07_F5 
F1 = 27.3 %@5 cm, 40.1%@1 cm, 50.8%@20 cm

32_F1 
F1 = 36.6 %@5 cm, 53.3%@1 cm, 58.2%@20 cm

32_F2 
F1 = 37.1 %@5 cm, 49.6%@1 cm, 56.0%@20 cm

32_F3 
F1 = 42.5%@5 cm, 56.1%@1 cm, 61.2%@20 cm

Figure 2: Results of the 6 samples. The right sub-figure for each case displays the matching between
the ground truth (in blue) and reconstruction (in red).

5 Discussion195

We believe that BSS-Indoor has significant potential in calling for research interest on the volumes of 3D196

objects above points and triangles. Our method separates the reconstruction of the dual-plane walls (usu-197

ally internal walls) and single-plane walls (usually external walls), offering higher flexibility in thickness198

estimation. By distinguishing these two situations, the thickness of a dual-plane wall is calculated as199

the distance between its paired planes, while the thickness of a single-plane wall can be estimated or as-200

signed by user-specific, average, or standard wall thickness. Furthermore, BSS-Indoor can clearly detect201

single-plane walls, allowing users to manually review and adjust them if necessary. Importantly, BSS-202

Indoor does not rely on any learning techniques requiring large-scale manual annotations for thickness203

estimation, which makes it easier for BIM practitioners to adopt our method in the future.204

There are also a lot more details should be improved for the current BSS-Indoor, including (1) fine-205

tuning the parameters of PointContrast on CV4AEC dataset; (2) adjusting the hyper-parameters of plane206

detection, Alpha shape polygonization, and the optimization for aligning the BSS segments; (3) debug-207

ging the current implementation; (4) testing the method on more samples. Addressing these limitations208

could lead to enhanced performance and more accurate results.209

6 Conclusion210

In this paper, we introduced BSS-Indoor, a novel volumetric reconstruction method for walls based on211

Building Section Skeleton. Our method successfully adapts BSS for building interiors and simultane-212

ously locates and estimates wall thicknesses. BSS-Indoor differentiates between the reconstruction of213

dual-plane walls and single-plane walls, enhancing the accuracy and flexibility of wall thickness esti-214

mation. Preliminary experiments on the CV4AEC (3D) dataset show the effectiveness of BSS-Indoor215

in reconstructing volumetric walls. Although BSS-Indoor demonstrates potential, further refinement is216

required to meet the standards necessary for real-world Scan-to-BIM practice in the building sector. Fu-217

ture work will focus on improving the implementation and addressing the limitations identified in the218

preliminary experiments.219
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