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Appendix A. Algorithms of BBnB and Fast BBnB

Algorithm 1 presents the procedure of BBnB for building decomposition. Nodes that
need further branching are stored in an ordered set Q, which is sorted in ascend-
ing order according to f ′(n). f ′(n) denotes a redefined objective function for BBnB
search, introduced in Section 3.3.2. Algorithm 2 presents Fast BBnB integrating the
two acceleration mechanisms introduced in Section 3.3.3. In Algorithm 2, the objective
function and node branching of Algorithm 1 are updated according to ϵ and li.

Algorithm 1: BBnB search for the convex decomposition of buildings

Input: A node n0 containing the singleton building cell R
Output: Optimal convex parts Θ

1 Q ← {n0} ; // An ordered set Q
2 B ← +∞ ; // Upper bound initialized

3 while Q ≠ ∅ do
4 n← Q.pop(); // Pop the ‘best’ node with the lowest f ′(n)
5 C ← n.branch(); // Branch of the node as Fig. 5

6 for ni ∈ C; // Loop for i-th node of n
7 do
8 if ni is a leaf and f ′(ni) < B then
9 B ← f(ni); // Update the bound B

10 Q.prune(B); // Remove nk in Q if f ′(nk) >= B
11 Θ← Parts(ni);

12 else if f ′(ni) < B then
13 Q.add(ni);

Algorithm 2: Fast BBnB search for the convex decomposition of buildings

Input: A building singleton cell R of the building, coefficient ϵ of h(n), and
levels of detail L = {l0, l1, . . . , lL}

Output: Sub-optimal convex parts Θ
1 C ← {R}
2 for li ∈ L; // Loop the i-th LoD L
3 do
4 L ← ∅; // Parts of li initialized

5 for cj ∈ C; // Decompose j-th part in C
6 do
7 L = L∪ BBnB(cj , ϵ, li) ; // ϵ and li are two new parameters for

Alg. 1

8 C ← L; // Update parts for next level of detail

9 Θ← C;
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Appendix B. Supplementary details of methodology

B.1. Cutting plane proposal of concave edges

As shown in Fig. B.1, we categorize concave edges into six types based on their direc-
tions, which are detailed below.

(1) Horizontal concave edges are formed by two inclined planes (Fig. B.1(a)) or
by a vertical and a horizontal plane (Fig. B.1(b)). Cutting planes always include
the two forming planes. Additional horizontal and vertical planes are added for
more regular decomposition.

(2) Inclined concave edges are formed by either two inclined planes (Fig. B.1(d))
or a vertical and an inclined plane (Fig. B.1(e)). The two forming planes are
used as potential cutting planes.

(3) Vertical concave edges are formed by two vertical planes (Fig. B.1(f)). the
cutting planes include both forming planes and one of their symmetric joint
planes.

(a) (b) (c) (e)(d) (f)
z

Horizontal edge Incline edge Vertical edge

Figure B.1. Concave edges and potential cutting planes. We categorize the concave edges into six types

depending on the line directions and the orientations of their intersecting planes. Planes of the adjacent faces
on the building surfaces are shown in dark blue, while the light blue ones are additional planes for potentially

better decomposition.

B.2. More examples of centralized and decentralized decomposition

Fig. B.2 presents more examples of centralized and decentralized decomposition.
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(b)
# ccv edges = 8

# parts = 9 

(d)
# ccv edges = 8

# parts = 3 
k = 4 

Decentralized decomposition
(# parts = # ccv edges + 1)

Centralized decomposition
(# parts = # ccv edges / k + 1)

(a)
# ccv edges = 4

# parts = 5 

(c)
# ccv edges = 8

# parts = 5 
k =2 

(e)
# ccv edges = 8

# parts = 2 
k = 8

Figure B.2. Numbers of concave edges and decomposed parts in decentralized and centralized decomposition.

# ccv edges and # parts refer to the number of concave edges and parts, respectively. k indicates the number
of concave edges surrounding a part attached to a central part. Concave edges are highlighted as red segments.

Appendix C. Supplementary details of experiments

C.1. Details of selected samples from three datasets

The test samples and urban scenes in the experiments are selected from three open
datasets (in alphabetical order):

• 3D-BIT00 (LandsD, 2024): 3D building models from Hong Kong, China. This
dataset includes many high-rise buildings with complex footprints, created based
on official records of architectural drawings from the Hong Kong government.
• City3D (Huang, Stoter, Peters, & Nan, 2022): 3D building models from the
Netherlands, the City of Surrey in British Columbia, Canada, and Vaihin-
gen, Germany. The dataset includes over 20,000 3D buildings automatically
reconstructed from point clouds and footprints from AHD3 (AHN3, 2018),
DALES (Varney, Asari, & Graehling, 2020), and Vaihingen (Rottensteiner et
al., 2012) by the City3D algorithm (Huang et al., 2022).
• NYC 3D Model (DCP, 2018): 3D building models from New York City, United
States. The dataset was publicly released by the Department of City Planning
of New York City based on the aerial survey of 2014. It includes all buildings in
New York as of 2014, with iconic structures reconstructed in greater detail.

C.2. Method implementation

Our solution was implemented in C++ and compiled with the C++17 standard (ISO,
2014). In preprocessing, we obtained the manifold reference surfaces using Manifold-
Plus (Huang, Zhou, & Guibas, 2020). Region growing, 3D triangulation, and mesh op-
eration were implemented based on the Shape Detection package (Oesau et al., 2024),
3D Triangulation (Jamin, Pion, & Teillaud, 2024), and Combinatorial Map (Damiand,
2024) of CGAL (version 6.0), respectively. The ray intersection for interior and exte-
rior point classification was implemented based on the open-source code by A. Yu and
Shang (2019).
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Figure C.1. Profile of the 24 selected samples. The first rows of the tables indicate the length*width*height
in meters; the second rows display the numbers of planar regions, concave edges, and potential cutting planes
for li = 10−4; the third rows present the source datasets, City3D (Huang et al., 2022), 3DBIT00 (LandsD,
2024), and NYC3D (DCP, 2018).
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C.3. Computational facilities

Experiments on the 24 selected samples were conducted on a MacBook Pro with
the M1 chip (8 cores, 16GB RAM). The urban-scale validation was established on
a workstation with an Intel Core i7 CPU (2.9 GHz, 8 cores) and 128 GB of RAM.
Besides, as SAMPart3D requires GPU acceleration, we tested it on high-performance
computing (HPC) facilities equipped with NVIDIA Tesla L40S 48 GB PCIe GPU.

C.4. Details of baseline method configurations

C.4.1. Detailed configurations for VHACD

VHACD has three major tunable parameters: (i) voxel resolution, (ii) convexity thresh-
old, and (iii) number of parts. Based on empirical testing, we set the voxel resolution
to VHACD’s maximum allowable value of 10,000,000 for sufficient decomposition qual-
ity. For the convexity threshold and number of parts at each LoD, we referenced the
corresponding values from MorphCut’s results. Specifically, convexity thresholds were
set to 0.2, 0.1, 0.05, and 0.01 for L = {10−1, 10−2, 10−3, 10−4}, respectively. In our
experiments, VHACD tended to produce significantly more parts than MorphCut. To
ensure a fair comparison, we constrained VHACD to output the same number of parts
as MorphCut at each LoD. As a result, the compactness values of VHACD matched
those of MorphCut (see Fig. 7(a)). Moreover, VHACD is not robust in handling open-
bottom building models. To offset this topological issues, we took the reconstructed
singleton building cells as VHACD’s inputs.

C.4.2. Detailed configurations for COACD

Similar to VHACD, we tuned the convexity thresholds and numbers of parts for
COACD, while keeping other parameters—such as MCTS search depth and number
of iterations—at their default values based on our empirical testing. The convexity
thresholds were aligned with those used for MorphCut and VHACD. However, setting
the threshold to 0.01 for the finest LoD significantly increased COACD’s processing
time on medium to high complexity buildings, without yielding the desired convexity.
Therefore, we adjusted the threshold to 0.02 for the finest LoD. Despite this tuning,
COACD occasionally produced far more parts than MorphCut at fine LoDs. To en-
sure a fair comparison, we also set the numbers of parts of COACD to be identical to
MorphCut’s. Conversely, at coarse LoDs, COACD tended to produce fewer parts than
MorphCut, even when given the same convexity thresholds and target part counts, as
shown in Fig. 7. Similar to VHACD, COACD also encountered topological issues when
handling open-bottom building models. Thus, we took the singleton building cells as
their inputs.

C.4.3. Detailed configurations for COMPOD-PSDR

COMPOD takes point clouds with detected planar regions as input. To prepare com-
patible input, we sampled the input meshes into point clouds with normals consistent
with the meshes and detected planar regions using PSDR (Sulzer, Yu, & Lafarge,
2023; M. Yu & Lafarge, 2022), which is designed for high-quality plane detection
and recommended by the authors of COMPOD. The sampling interval was set to
0.25 m to balance partitioning fidelity and efficiency, and the distance thresholds
for plane detection matched those used in MorphCut’s preprocessing. By default,
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COMPOD’s merging process produces slightly more parts than MorphCut. To en-
sure fair comparisons, we predefined the number of parts for COMPOD at each LoD
in L = {10−1, 10−2, 10−3, 10−4} to match those of MorphCut. However, due to COM-
POD’s local greedy merging strategy, the process often terminated early, resulting in
more parts than predefined. Consequently, COMPOD-PSDR yielded higher normal-
ized part counts than MorphCut, as shown in Fig. 7.

C.4.4. Detailed configurations for SAMPart3D

For SAMPart3D, most parameters were kept at their default settings. Sixteen ren-
dered views were used for SAM-based segmentation. For each sample, training was
required to generate 3D features, with the number of training epochs set to 5000 as
recommended. We also tested a reduced setting of 2000 epochs for efficiency, which
led to noticeable performance degradation. SAMPart3D provides four default LoD
settings, which we adopted directly. However, these settings produced no significant
differences in results. Therefore, we report only the results from one LoD and exclude
SAMPart3D from comparisons involving LoD variation.

C.5. Details of evaluation metrics

Denoted the set of decomposed parts as Θ, the average convexity is calculated as:

Convexity(Θ) =

∑
p∈ΘConvexity(p)

|Θ|
, (C1)

where Convexity(p) is the convexity of a part. Convexity(p) is commonly measured by
the volume ratio of a part p (Mamou, Lengyel, & Peters, 2016) to its convex hull:

Convexity(p) =
Volume(p)

Volume(CH(p))
, (C2)

.
Besides, we normalize the number of decomposed parts same as f(n) defined in

Eqn. 3, which is

|Θ|
|ConcaveEdges(R)|+ 1

, (C3)

where R refers to the singleton building cell reconstructed during preprocessing.
We measured the overall geometric deviations between the input building models

and the reconstructed singleton building cells by computing their Hausdorff distance,
which is formulated as:

dH(I,R) = max{sup
i∈I

d(i, R), sup
r∈R

d(r, I)}, (C4)

where d(i, R) refers to the closest distance from i to R; supi∈I d(i, R) indicates the
maximum d(i, R) for all i ∈ I. However, self-intersections and open bottoms in the
input models can lead to inaccurate Hausdorff distance estimates, as shown in Fig. C.2.
Therefore, we use the median of {d(i, R)|i ∈ I} and 75th percentile of {d(r, I)|r ∈ R}
to estimate the supi∈I d(i, R) and supr∈R d(r, I), respectively.
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0 m

>= 1m

Bottom view

(b)(a) Input building model Reconstructed singleton building cell

Figure C.2. Incorrect geometric deviation between the input building models and singleton building cells
due to topological defects.

C.6. Details of comparisons with baseline methods

C.7. Details of parameter sensitivity tests

Table C1. Parameter analysis of ϵ in f ′(n) (Eqn. 6) on 19 samples†.
(Best values are in bold.)

ϵ = 2.0 ϵ = 4.0

Convexity ↑ 0.95± 0.05 0.96±0.04
Normalized number of parts ↓ 0.35±0.26 0.39± 0.30
Decomposition time (sec.) ↓ 12.28±15.67 12.51± 16.16
†5 samples excluded due to the processing time > 5 min.
↑: higher is better; ↓: lower is better.

We tested three different numbers of LoD L as:

(1) {10−2, 10−4},
(2) {10−1, 10−2, 10−3, 10−4}, and
(3) {5× 10−1, 10−1, 5× 10−2, 10−2, 5× 10−3, 10−3, 5× 10−4, 10−4}.

All settings terminate at 10−4.

Table C2. Parameter analysis of number of LoD in Fast BBnB search on 19 samples†.
(Best values are in bold.)

|L| = 2 |L| = 4 |L| = 8

Convexity ↑ 0.991± 0.02 0.991± 0.014 0.992±0.014
Normalized number of parts ↓ 0.566±0.237 0.573± 0.256 0.575± 0.232
Decomposition time (sec.) ↓ 15.73± 23.89 14.33±21.03 14.42± 21.06
†5 samples excluded due to the processing time of |L| = 2 longer than 5 min.
↑: higher is better; ↓: lower is better.

C.8. Parameter settings for urban-scale validation

In the urban-scale tests, we used identical decomposition parameters (k = 4.0, ϵ =
2.0, L = 10−1, 10−2, 10−3) with two resolution schemes. For 3DBIT00, preprocessing
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(9, 0.77) (9, 0.69) (22, 0.82) (22, 0.67) (42, 0.96) (42, 0.65)

(1)

(3)

(6)

(7)

(11)
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Appendix

Figure C.3. Comparisons between VHACD, COACD, and MorphCut (Ours) across different LoDs. (•, •)
refers to the number of decomposed parts and the average convexity.

Table C3. Parameter analysis of k in h(n) on 24 samples. (Best values are in bold.)

k = 2 k = 4 k = 8

Convexity ↑ 0.990± 0.013 0.991±0.012 0.989± 0.017
Normalized number of parts ↓ 0.540± 0.25 0.536±0.288 0.553± 0.248

Decomposition time (sec.) ↓ 21.37± 60.21 21.09±57.62 37.71± 136.73

↑: higher is better; ↓: lower is better.

employed a 4 m sampling interval and 1 m region-growing threshold, while City3D
used the automatic tuning method from Section 4.3.4 with fd = 0.01. Further details
on parameters and sensitivity analysis are provided in Sections 4.1.2 and 4.3.
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Appendix

Figure C.4. Comparisons between COMPOD-PSDR and MorphCut (Ours). LoD 1 corresponds to the lowest
LoD result by COMPOD, with results of similar LoD by MorphCut for comparisons. (•, •) refers to the number

of decomposed parts and the average convexity.

Table C4. Parameter analysis of resolution in preprocessing. (Best values are in bold.)

fd = 0.00625† fd = 0.0125 fd = 0.025 fd = 0.05 fd = 0.1‡

HD (m) ↓ 0.24±0.15 0.33± 0.39 0.45± 0.48 0.66± 0.63 2.57± 4.37

# Parts ↓ 36.5± 23.2 30.1± 17.8 20.7± 11.2 11.7± 6.0 5.3±3.0

Prep. time (sec.) ↓ 34.7± 38.4 16.1± 13.8 10.0± 9.2 7.2± 7.2 5.6±6.0
Decomp. time (sec.) ↓ 29.1± 50.8 12.2± 13.3 5.6± 5.6 1.8± 1.3 0.5±0.4

† Two samples excluded due to fine details causing decomposition time > 5 min.

‡ One sample excluded due to no interior cells labeled.

↑: higher is better; ↓: lower is better.
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Appendix

Figure C.5. Comparisons between SAMPart3D and MorphCut (Ours).
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(5) (6)(2)

(15) 

(3)
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(1)

(20)
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(7) (8) (9)

(16)
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(23)

0.08 0.090.08
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0.39 0.34

0.13 0.22 0.610.44

0.43

0.62

(11) (12)0.38 0.23

Figure C.6. Reconstruction error of singleton building cells from preprocessing. For each sample, the left and
right columns colorize the input model and reconstructed cell in terms of the nearest point distance to each

other, with the value beneath referring to the Hausdorff distance in meters. Significant geometric deviations

(dark red regions) only occur at trivial details omitted during reconstruction, such as the spires in Samples
(17), (21), (22), (23), and (24). Besides, the medium deviations, colorized in cyan, came from the plane fitting

of region growing, e.g., Samples (7) and (13). The deviations could be greater for close parallel planes forming

small setbacks or protrusions, such as the red planar regions in Samples (17) and (24).
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(2) (8)(5)

(1.0, 4, 4.7) (1.0, 7, 715.9)(1.0, 4, 1.1)(1.0, 4, 0.4) (1.0, 7, 0.6)(1.0, 4, 0.4)

Optimal FastOptimal Fast Optimal Fast

Figure C.7. Comparison between optimal and fast search on Samples (2), (5), (8). (•, •, •) indicate the con-

vexity, number of parts, and decomposition time (sec.). Both approaches achieved the same level of convexity

and number of parts. However, the decomposition time increased drastically with shape complexity. For exam-
ple, the decomposition time for Sample (8) using the optimal search was 1,193 times longer than that of the

fast search, highlighting the necessity and effectiveness of our fast BBnB design.

(16) (0.95, 23, 101.2) (0.96, 29, 114.8) (22)

Top view

(0.91, 5, 8.8) (0.97, 7, 8.8)

Top view

𝜀 = 2 𝜀 = 4 𝜀 = 2 𝜀 = 4

Figure C.8. Decomposition results for different ϵ values on Samples (16) and (22). (•, •, •) represents con-

vexity, number of parts, and decomposition time (sec.), respectively.

(13) (1.0 23, 26.1) (1.0, 24, 8.7) (1.0, 27, 11.3) (17)

Bottom view

(0.94, 32, 75.9) (0.96, 35, 15.9) (0.96, 29, 28.2)

|L| = 2 |L| = 4 |L| = 8 |L| = 2 |L| = 4 |L| = 8

Figure C.9. Decomposition with different numbers of LoD on Samples (13) and (17). (•, •, •) represents the
convexity, number of parts, and decomposition time (sec.), respectively.

Appendix D. Objectives for building decomposition of various patterns

To formulate the convex decomposition of 3D building models towards different pat-
terns, we extend the objective function f(n) defined in Eqn. 3 by introducing new terms
for specific patterns. The objective function is then renamed as fo(n) where o indicates
the given pattern. Similar to the BBnB search for f(n), we combine fo(n) with the
same heuristics h(n) in Eqn. 5 into f ′

o(n) for adopting BBnB search. Meanwhile, to
ensure the optimality in BBnB search, fo(n) should be monotonically non-decreasing.
In the following, we show the formulation of fo(n) for main-volume, symmetrized,
centralized, and decentralized convex decomposition.
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(a)

Input Singleton cell Decomposition

(5, 10, 14.2, 7.6)

LoD in reconstruction

(1, 2, 27.2, 9.7)

Singleton cell Decomposition

(4, 8, 7.5, 0.4) (0.5, 1, 102.2, 63.6)

(b)

Figure C.10. Resolution for reconstructing singleton building cells in preprocessing. (•, •, •, •) represents the
distance threshold (m) of region growing, sampling interval (m), preprocessing time (sec.), and decomposition

time (sec.).

D.1. Objective: main-volume

Main-volume decomposition simultaneously minimizes the number of parts and the
difference ratio between the total volume and the maximal volume of the parts:

fmv(n) = f(n) + λmv(1−MaxVolumeRatio(n)) (D1)

where MaxVolumeRatio(n) refers to the ratio of the maximal volume of the parts in
the node n over their total volume; λmv weights between f(n) and the maximal-volume
term. Along the branching path of a node, since parts are split rather than merged,
the maximal volume of any part in the node can only decrease. Therefore, the term
(1−MaxVolumeRatio(n)) is monotonically non-decreasing and so is fmv.

D.2. Objective: Symmetrized

The symmetrized decomposition maximizes the global symmetry in terms of the ver-
tical symmetric plane of a building (Fig. D.1). As illustrated in Fig. D.1(b) and (c),
a symmetrized decomposed part p should have a corresponding best-matching part
under a symmetric transformation. Their intersection volume divided by the volume
of p, termed intersection-over-self (IoS), should be close to 1. Therefore, we define the
objective of symmetrized decomposition as:

fsym(n) = f(n) + λsym(1−
∑

|PotentialCuts(p)|=0,wherep∈Parts(n)

VolumeRatio(p,n) · IoS(p))

(D2)
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Figure D.1. Global symmetric plane (vertical) of a building. (a) presents the top view of a buildings’ vertical

global symmetric plane. (b) shows the building after a reflective symmetric transformation. (c) overlaps the
building before and after the transformation.

where |PotentialCuts(p)| refers to the number of the potential cutting planes of the
part p; VolumeRatio(p, n) calculates the ratio of p’s volume over the total volume
of all parts of n; and λsym weights the fewer-part and symmetric terms. To ensuring
the monotonicity of fsym, we only accumulate the symmetric metrics of the inde-
composable parts p for which there is no potential cutting planes available. As the
best symmetrically matched part may be decomposed into smaller ones and cannot
grow bigger, the IoS(p) is monotonically non-increasing and fsym(n) is monotonically
non-decreasing.

D.3. Objective: Centralized

For centralized decomposition, we detect the decentralized parts of a node and ac-
cumulate their volume ratio. The decentralized parts are detected as parts with two
adjacent parts. To guarantee the monotonicity, we only accumulate the volume ratio
of parts that do not have potential cutting planes, as well as their two adjacent parts,
i.e., indecomposable decentralized parts. As an adjacent part with potential cutting
planes can be decomposed into more parts, the number of decentralized parts could
decrease, which may decrease the fcen if we count such decomposable parts in the de-
centralized parts. The objective towards centralized decomposition is thus formulated
as:

fcen(n) = f(n) + λcen

∑
p∈DecentralizedParts(n)

VolumeRatio(p,n) (D3)

where DecentralizedParts(n) counts the indecomposable decentralized parts only; λcen

weights the fewer-part and centralized term.

D.4. Objective: Decentralized

Opposite to the centralized decomposition, the search counts the centralized parts
with more than two adjacent parts. To ensure the monotonicity, we only count the
indecomposable centralized parts but allow their adjacent parts to be decomposable.
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We formulate the decentralized objective as:

fdec(n) = f(n) + λdec

∑
p∈CentralizedParts(n)

(|AdjacentParts(p)| − 2) ·VolumeRatio(p, n)

(D4)
where |AdjacentParts(p)| refers to the number of adjacent parts of p; λdec weights the
fewer-part and decentralized terms.

D.5. Visualization of decomposition with different objectives

Fig. D.2 displays the decomposed results towards different patterns. “FP” refers to
fewer-part decomposition, the fundamental type defined in Section 3.3.1.2. “MV” de-
composition emphasizes the main volume of a building, making the results of Samples
(1) and (5) preserve their most significant convex parts from cutting. “SYM” mode de-
composes buildings to enforce global symmetry (Wu, Xue, Li, & Chen, 2024; Xue, Lu,
Webster, & Chen, 2019), resulting in distinct decompositions for Samples (5) and (10).
Meanwhile, centralized (“CEN”) and decentralized (“DEC”) decompositions represent
two contrasting patterns. Centralized decomposition often resembles “FP”, “MV”, or
“SYM”. In contrast, decentralized decomposition produces noticeably different results
for all 6 samples in Fig. D.2. However, the relationship between building morphol-
ogy and decomposition patterns, along with their implications for different aspects of
urban analytics, remains an open question for future research.

FP MV SYM CEN DECFP MV SYM CEN DEC

(5)

(6)

(14)

(1)

(8)

(10)

Figure D.2. Building decomposition with different patterns on 6 samples. FP, MV, SYM, CEN, and DEC

refer to fewer-part, main-volume, symmetrized, centralized, and decentralized decomposition, respectively.
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Appendix E. Supplementary visualization of method limitations

(d) (e)

(a)

(b)

(c)

Figure E.1. Fidelity issues of VHACD, COACD, and COMPOD-PSDR. Left: Erroneous decomposition of

open-bottom building models by VHACD and COACD. Right: Missed interior parts by COMPOD-PSDR.

(a) and (d): Input building models. (b), (c), and (e): Results of VHACD, COACD, and COMPOD-PSDR,
respectively.

COACD MorphCut (Ours)

Figure E.2. Sub-optimal decomposition results of Samples (11) and (12) by MorphCut due to acceleration.

(a) (b) (c)

Figure E.3. Occasional errors in labeling the interior and exterior cells. (a) Input mesh. (b) A correct space

labeling result. (c) Problematic labeling of cells, indicated by the red arrow.
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