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Abstract: Although the value of 3D point cloud data (PCD) has been increasingly 
recognized by the architectural, engineering, construction and facility operations (AECO) sectors, 
there is much less actual application of PCD in facility management (FM) than other stages. In 
order to facilitate the exploration of using PCD for FM, this study aims to summarize existing 
research effort and identify the gaps based on a systematic review of previous studies touching 
upon the PCD-enabled FM. This review was guided by a conceptual model that consists of four 
key components associated with PCD application process, including target objects, PCD sensing, 
model output and applications. 47 papers published in 21 academic journals were collected for the 
analysis. It was found that Light Detection and Ranging (LiDAR), photogrammetry, and Synthetic 
Aperture Radar (SAR) were the three mostly used technologies for collecting the PCD. The raw 
signals, such as fragments of point cloud and photos, collected by these technologies need to be 
pre-processed for generating the PCD, and segmentation and meshing are two general aspects of 
PCD post-processing to create models. It was also found that most studies focused on geometric 
properties, data processing, feature extraction, object recognition, and model generation, seldom 
would they dig deeper for decision-making support of FM applications. Based on the results, three 
major gaps of PCD-enabled FM were concluded, including (1) overlooking the valuable 
non-geometric properties (e.g. specifications of materials, relations between objects); (2) less 
focusing on providing decision support functions; and (3) hovering at data level rather than 
information level. Eleven possible research directions including semantics enrichment, real-time 
model generation, longitudinal analysis, and smart living applications of PCD-enabled FM were 
thus suggested for future research. 
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1 Introduction 

Nowadays, with the increasing affordability of obtaining accurate 3D point clouds data (PCD) by 
Synthetic Aperture Radar (SAR), Light Detection and Ranging (LiDAR) and photogrammetry, 
PCD has been widely used as digitalized representations of buildings[1] and infrastructure. Many 
studies in computer vision, remote sensing, and AEC have adopted PCD for 3D building and city 
model generation and 3D Global Positioning System (GPS) navigation. Typical applications of 
PCD in the construction industry include object recognition[2], building information modeling 
(BIM)[3], progress tracking[4], safety assessment[5], quality control and management[6], site activity 
monitoring[7], and energy performance modeling[8], most of which are at the construction stage[9]. 

In contrast, research on the use of PCD in facility management (FM) is not as intensive as 
that in other project phases. FM is a profession that encompasses multiple disciplines to ensure 
functionality of the built environment by integrating people, place, process, and technology[10]. 
FM covers a wide range of operation and maintenance services and is directly connected with the 
success of the facilities and their relevant business[11]. All these services required the accurate, 
real-time information, which can be retrieved from PCD. However, current applications of PCD in 
FM is rather limited. In order to allow future exploration on PCD-enabled FM to proceed on a 
more solid foundation, it is necessary to summarize the existing efforts and identify the gaps.  

The aim of this paper, therefore, is to revisit the PCD-enabled FM. In this paper, the 
PCD-enabled FM is conceptualized into a closed loop of processes, i.e., (1) object property 
measurement, (2) PCD sensing and processing, (3) model supported decision-making, and (4) 
applications in object-based FM. Each process is extensively reviewed based on the existing 
literature. As a result, the limitations of current PCD-enabled FM studies are concluded and future 
research directions are recommended. 

The remainder of the following parts is: A summary of the research method is presented in 
Section 2. Section 3 shows the analytical results of the systematic review. Section 4 discusses the 
limitations of current research and suggests future research directions. Finally, the conclusion is 
given in Section 5. 

2 Research method 

To investigate the PCD-enabled FM, a preliminary search in Elsevier Scopus Database was 
conducted on March 13, 2018. Scopus is one of the biggest databases of research publications 
with access to more than 12000 journals[ 12 ]. The search conditions were setup as 
(TITLE-ABS-KEY ("point cloud") AND TITLE-ABS-KEY (facility OR operation)) AND (LIMIT-TO 
(DOCTYPE, "ar" )) AND  (LIMIT-TO (SRCTYPE, "j" )), Which means the searched results must 
contain “point cloud” and at least one of “facility” and “operation” in the title, abstract or 
keywords of journal articles. There were only 25 results returned. Based on their titles and 
abstracts, only 5 were identified as relevant to civil engineering and construction domains. Using a 
snow-ball search, i.e., checking their reference and the authors’ other publications not in the prior 
searched results manually, another 42 articles were found based on the first-identified 5 papers. 
All the 47 articles are screened by the authors to ensure that they are closely related to 
PCD-enabled FM. A list of the journals of the selected articles is shown in Table 1.  



Table 1. Source of the selected articles  
Journal Title No. Journal Title No. 

Automation in Construction 14 Structural Survey 1 

Journal of Computing in Civil Engineering 8 Structural Control and Health Monitoring 1 

Sensors 3 Surveying and Built Environment 1 

Advanced Engineering Informatics 2 Journal of Surveying Engineering 1 

Computers, Environment and Urban Systems 2 Remote Sensing 1 

Construction and Building Materials 2 Simulation Modelling Practice and Theory 1 

Computer-Aided Civil and Infrastructure 

Engineering 
2 

Digital Applications in Archaeology and 

Cultural Heritage 
1 

Mediterranean Archaeology and Archaeometry 1 
IEEE Journal on Selected Topics in Signal 

Processing 
1 

International Journal of Automation and 

Computing 
1 

Electronic Journal of Information 

Technology in Construction 
1 

Open Construction and Building Technology 

Journal 
1 

ISPRS Journal of Photogrammetry and 

Remote Sensing 
1 

Journal of Civil Engineering and Management 1     

As shown in Table 1, the 47 articles were collected from 21 journals, among which 14 
journals published only one relevant paper. Automation in Construction and Journal of Computing 
in Civil Engineering are the top two journals publishing PCD-enabled FM research. Figure 1 
shows the yearly distribution of the selected articles. As shown in Figure 1, the combination of 
FM and PCD started around 2006 as far as we concerned and it is still in an early stage. However, 
the publication number remained at a very low level until 2013 and achieved a peak in 2014. The 
overall number was steady and relevant research continued to be active after 2014. What lies 
behind this development trend is the fact that the affordable price and the popularization of remote 
sensing equipment in the 2010s made it possible to widely apply this technology. Another possible 
reason was the fever of digitalizing everything from the 2010s. Even though, the publication 
number of PCD-enabled FM was much less than that of PCD-enabled construction applications [9].  

 
Figure 1. Yearly distribution of selected articles 

A conceptual model is proposed to guide the analysis of the collected articles (Figure 2). The 
four blocks in different color in Figure 2 signify the four important nodes of the information flow 
while the arrows speak for the processes of data/information handling. The dashed arrows 



represent the links between the physical and cyber systems. The ‘Object’ block includes the target 
human beings and facilities. The properties of an object comprise its geometrical and 
non-geometric features. PCD sensing is the process of data acquiring with equipment such as laser 
scanners or digital cameras. Processing the obtained PCD to recognize objects and generate 3D 
models is the field where the majority research concentrates. This step is crucial because it 
transforms massive and noisy signal data to valuable information. With data processing, the 
isolated PCD sets will be ready to fabricate a semantically rich model for decision support. 
Moreover, PCD and the generated model have the potential to monitor target facilities and protect 
human beings. This model and its elements, procedures and approaches as well as the logic behind 
the closed loop are further elaborated in the next section. 

 
Figure 2. The conceptual model beneath PCD-enabled FM research 

3 PCD-enabled FM research 

As shown in Figure 2, the information in PCD-enabled FM research flows from the object to PCD, 
then to a PCD generated model and finally from a model supported application to the object, 
which forms a closed loop. The basis of this cycle is the data collected from objects, the target of 
FM. However, data not transformed to information is just a pile of loose sand, only when 
converted to information which can support decision-making, does the PCD data become the solid 
foundation of FM applications. The information is valuable only when it consists of one or more 
well-formed data that are meaningful[13] by providing the details of ‘who’, ‘what’, ‘where’, and 
‘when’ (4Ws), i.e., tell end-users what is happening to who at which place at an exact time. The 
4Ws, the essence of information, are directly concerned with the decision-making. In this section, 
the properties of objects that can be recorded by PCD, the PCD sensing and processing 
approaches, the output of the PCD and how to use them in FM applications will be thoroughly 
concluded, and the research gaps will be revealed. 

3.1 Object properties 

Objects are the cells of facilities which facilitate the function of a convenience or service. 
Facilities have an all-encompassing scope, ranging from physical ones, such as transport facilities, 
medical facilities and telecommunication facilities, to spiritual ones like cultural facilities and 
correctional facilities. Therefore, there are myriads of objects in these facilities, varying from as 
big as walls, roofs, highways to as small as bulbs, bolts and sockets. When researchers talk about 
facility management, they typically refer to the physical facilities, for instance, transportation 
infrastructure, buildings of residence, commerce, administration and medical care. These built 
facilities are all designed, constructed, utilized, operated and maintained by human beings and 
serve for better living of human beings. Generally, the properties of these objects can be divided 



into geometry and non-geometry category.  
Geometry concerns about the shape, size, dimensions, symmetry, position, color, texture and 

their topology[14]. In AECO sector, the shapes of columns, beams, plates, walls, and windows are 
usually basic cylinders or polyhedrons like cubes or prisms with polygons, especially 
quadrilaterals. But there are also more and more special-shaped structures, e.g., the roofs of 
Sydney Opera House and China's National Centre for the Performing Arts (the Egg Building). 
Table 2 illustrates some examples of different types of objects in AECO sector, it can be noticed 
that the shape of the same type object can be completely changed. However, the current database 
of PCD objects, the most representative online open source platform Point Cloud Library (PCL) 
for instance, are usually too generalized to optimize all parts[15]. Consequently, there are presently 
three types of geometry-related methods of point clouds modelling, i.e., model-driven, data-driven 
and hybrid-driven[16]. The top-down model-driven methods search best match between PCD and 
existing object models from a model library with quicker speed. In contrast, the bottom-up 
data-driven processes identify geometric primitives and their topology to extract object models 
from PCD. While hybrid-driven methods combine model-driven and data-driven methods, which 
forestall the limitations of both methods, to convert the object modeling to graph matching with 
basic topology graph elements in a model library [14]. 

Table 2. Examples of common and special objects in AECO sector  

 

Scores of researchers have been contributing to the geometry modelling of PCD with 
building objects. Holz et al. [17] proposed a modular registration framework for aligning 3D PCD 
with objects in PCL, they also overviewed registration algorithms, usage examples and application 
tips for 3D PCD model-driven registration. Furthermore, Balali et al. [18] conducted a 3D traffic 
sign detection and classification method based on the geometrical features, i.e., the shape together 
with color. More precisely, cylinder was used to automatically detect pipes, conduits, and some 
ducts from 3D PCD in real-life buildings with very high accuracy [19]. Polygonal models from 
unstructured PCD were automatically created by extracting a group of RANSAC (Random sample 
consensus)-based locally fitted planar primitives, their boundary polygons, and local adjacency 
relations[20]. On the other hand, symmetry is another significant property which can be adopted for 
regular or repeated geometric 3D structure discovery [21]. However, recent symmetry detection and 
symmetry-aware geometry processing studies are mostly conducted in computer graphics, while 
AECO sector hasn’t gone deep into this level yet to our best knowledge. Besides, Gao et al. [22] 
pointed out that there can be discrepancy of shape, dimension and composition between 
as-designed BIM and PCD. Therefore, the classification and extraction of different geometry 
property need to be further explored, together with the combination and interoperability of 
different open source databases. 

Non-geometry properties, including the specifications of materials, family types, functions, 



assembly order [14], and relations between objects, are of significant importance by adding rich 
information to the properties. These properties embedded in BIM make BIM essentially different 
from and more advanced than CAD. They provide more compact, high-level description of objects 
in a facility instead of purely raw PCD [23], enabling robots, computers to reason about objects and 
interact with its environment in a goal-directed way [24]. Chen et al.,[25] concluded the geometry 
and non-geometry information requirements of construction and FM stages, as displayed in Table 
3. It can be easily noticed that both the types and requirements of non-geometric information are 
greater than that of geometric information. However, limited research explored the non-geometric 
properties in depth. 

Table 3. Geometric and non-geometric information requirements of construction and FM stages [25]  

 Stage  Geometric Non-geometric 

Construction 

Site information 

(coordinate’s data and 

layout); 

Building spaces (floor, 

zones, rooms, openings); 

Utility lines; 

Dimension of building 

components. 

Construction materials (status, quality, category, manufacturer); 

Precast elements (quality, category, manufacturer); 

Equipment attributes (ID, type, status); 

Financial data; 

Location of labor, materials, and machine; 

Project performance data; 

Construction schedule; 

Construction activity status; 

Site environment. 

Facility 

Management 

Building services (location, 

relationship); 

Building spaces (floor, 

zones, rooms, openings); 

Utility lines; 

Specification of exterior 

enclosure products; 

Furnishing. 

Building services (identification number, manufacturer); 

Status of mechanical, electrical, and plumbing equipment; 

Maintenance record; 

Indoor environment; 

Attributes of replaced components; 

Maintenance status; 

Maintenance schedule; 

Operation records. 

Both geometric and non-geometric information can be generalized to semantic information, 
which are increasingly used throughout a building’s life cycle, from design, through construction, 
and into the FM phase[26]. To name a few, a predefined semantic net encompassing general 
architectural knowledge about indoor environments was used for in-door semantic scene 
interpretation from the scanned PCD [27]. Koppula et al. [28] proposed a graphical semantic labeling 
model to capture a variety of properties and contextual relationships (local graphic appearance and 
shape cues, object co-occurrence and geometric relationships included) in 3D indoor scenes of 
homes and offices. Though growing attention has been paid to the semantics of objects and 
models of facilities, most of the transformations from raw 3D PCD into semantic information 
were conducted manually through labor-demanding, time-consuming, and error-prone processes 

[23]. In addition, few studies provided rich enough semantics model to enable decision-making and 
applications of smart FM till now. 

3.2 PCD sensing and processing 



3D PCD is obtained by visible access to scanned surface of physical objects using SAR, LiDAR 
technology or photogrammetry. Figure 3 illustrates the sensing methods of PCD. SAR employs 
radar operating at the microwave region of the electromagnetic spectrum to acquire point clouds 
or images. Since radar has the ability to penetrate the cloud, it can be used on a spacecraft or 
aircraft for high resolution of earth observation and surveying. Different from radar used in SAR, 
LiDAR is a widespread technology used for 3D scanning of various objects with pulsed laser light 
at ultraviolet, visible, or near infrared regions. There are generally three types of LiDAR, i.e., 
Airborne Laser Scanning (ALS), Mobile Laser Scanning (MLS), and Terrestrial Laser Scanning 
(TLS). A laser scanning system typically consists of a LiDAR unit, a scanner, a GPS receiver and 
an Inertial Measurement Unit (IMU). ALS is an active remote sensing system with a LiDAR 
instrument mounted on an airplane platform, while the LiDAR of MLS or TLS is mounted on a 
moving platform (e.g., vehicle or mobile phone) or a tripod respectively. Photogrammetry is also 
commonly employed for 3D mapping and object reconstruction in AECO sector by extracting 
PCD from massive 2D photos taken by digital cameras equipped within a spacecraft (spaceborne), 
a plan or drone (airborne), or mounted on a vehicle or built in a mobile phone (mobile). Either 
adopting a single digital camera to acquire 2D calibrated images or a Multi-view Stereo (MVS) 
camera to take 3D stereo pictures is common and workable. Stereo-photogrammetry, a special 
case of photogrammetry which focuses on 3D coordination of objects is emerging as a robust 
technique in 3D reconstruction and dynamic characteristics detecting. Jalayer et al.[29] evaluated 
different technologies including field inventory, photo/video log, integrated GPS/GIS (Geographic 
Information System) mapping systems, aerial/satellite photography, TLS, MLS, ALS for 
collecting roadside features data. Discussions of each types of PCD sensing equipment and their 
instructions is not within the scope of this paper. 

 
Figure 3. Point cloud sensing methods 

Closely following the sensing step is the PCD processing, which transforms raw PCD to 
well-formed objects or models. A general workflow of PCD processing is shown in Figure 4. A 
pre-processing procedure including filtering, registration, shearing and re-sampling is the prior 
step, among which densification might be needed before re-sampling if the density of point clouds 
is too sparse. Noise is inevitable due to the surrounding environment, scene complexity, weather 



conditions and equipment status, therefore noise filtering or reduction is fundamental to generate 
ideal datasets for further processing. Another most-studied pre-processing step known as 
registration (or point matching) is essential to align the local coordinate frame of different point 
clouds datasets in a global coordinate system[30]. Iterative closest point (ICP) is a frequently 
adopted algorithm in registration to minimize the difference between two sets of PCD [17]. There 
are other registration algorithms, for example, robust point matching (RPM), thin plate spline 
robust point matching (TPS-RPM), kernel correlation (KC), Gaussian mixture models (GMM), 
coherent point drift (CPD), and sorting the correspondence space (SCS). This paper won’t go 
in-depth with the introduction of these algorithms and their comparison. There are a lot research 
dealing with the semi-automated registration[31] or automated registration[32][33]. Shearing is to clip 
redundant parts of the registered PCD of targeted facilities. If some PCD parts of the targeted 
facility are obviously intensive or scattered than other parts after the former pre-processing 
procedures, a data re-sampling will be needed to ensure the equal density distribution of the whole 
PCD.  

 
Figure 4. General PCD processing workflow 

After pre-processing, comprehensive PCD will be well-prepared for main processing which 



generally includes meshing and segmentation/classification. Depending on different requirements 
or situations of PCD usage, order of the two steps are not fixed. Meshing of point clouds is to 
represent a geometric object with a set of simple polyhedral meshes from PCD. Meshing 
comprises a set of processing steps, including mesh representation, mesh compression, rendering, 
progressive transmission, editing operations, smoothing, parameterization, and shape 
reconstruction[34]. Mesh simplification, removing elements whilst preserving mesh fidelity, is the 
basis of constructing Level of Detail (LoD) mesh representations and was the most discussed in 
meshing[35]. Majority of meshing simplifications are triangular dominated[36], with an increase in 
quadrilateral dominated[ 37] with the growth of data complexity. After mesh representation, 
shape/object reconstruction will be conducted for segmentation or model generation, after other 
might procedures such as smoothing, lighting, rendering, etc. depending on the requirements of 
models. 

Segmentation is to divide or disintegrate the given PCD set into non-overlap objects or 
regions with homogenous spatial and spectral characteristics for feature extraction, object 
recognition or model generation[38]. Traditional segmentation is data-driven using images with 
region growing approach or range data with edge-based technique. Model-driven segmentation 
methods will be used when the mathematical expression of the objects to be extracted is known, 
for which Hough Transform (HT) and RANSAC approaches are frequently adopted[39]. For most 
of the time, segmentation was done manually or semi-automatically, which is slow, painstaking, 
skill-specialized, and prone to errors. For example, Yang and Dong had to manually select training 
and validation targets, manually count number of objects in a shape-based segmentation method 
for MLS point clouds; Rau and Chen[40] proposed a semi-automated segmentation of building 
rooftops from photogrammetric 3D lines (either complete or incomplete). Challenges including 
density, surface roughness, curvature, clutter, occlusion, messing/erroneous data, abstraction and 
scale lead to the complexity and difficulty of automated segmentation[41]. However, researchers 
never stop exploring automated segmentation methods, to name a few, Khaloo and Lattanzi[42] 
proposed a region growing algorithm to automatically segment large scale PCD of surfaces with 
planar and non-planar; Díaz-Vilariño et al.[43] presented a model-driven approach to automatically 
segment columns of as-built buildings based on HT. 

The sensing and processing procedures are so complex that not all aspects can be concluded 
and discussed due to the limitation of words. However, the key point is choosing sensing methods 
and equipment, as well as processing procedures and algorithms according to the requirements of 
the applications. Researchers should bear in mind that how to make the most of data sensed and 
convert them into valuable information in this whole process is always the first priority. In FM, 
the accuracy and richness of data and information deserve most attention, which does not 
necessary mean that the process methods can be neglected. Considering the complexity and huge 
amount of objects in FM, automated processing approaches are in urgent demand. Coming 
research has a duty to promote semantic enrichment during PCD sensing and processing to foster 
smart applications of buildings, infrastructure and cities. 

3.3 PCD output and decision support 

Based on the 3D PCD sensing and processing procedures, final feature extraction, object 
recognition or model generation will be conducted for applications. Features, higher level entities 
that model the correspondence between information and activities[ 44 ], can be divided into 



spatial-based features and shape-related features according to Gao et al.[22], as illustrated in Table 
4. In practice, Priestnall et al.[45] extracted surface roughness from a digital surface model 
produced by LiDAR using both topographic and spectral characteristics; Yoon et al.[46] detected 
concrete tunnel installations and physically damaged parts of the liner using the geometric and 
radiometric features from 3D PCD for automated tunnel routine inspections and maintenance; 
Yang et al.[47], proposed a framework to identify contextual features like relative positions, relative 
directions, and spatial patterns for road facilities using MLS data.  

Table 4. Classification of features and object recognition approach, summarized from [22] and [48] 
Features Examples Object recognition approach 

Spatial-based 

features 

Relative location, distance, angle, 

relationships (i.e., orthogonal, parallel, 

adjacent, coplanar), surface roughness, 

connectivity 

2D overlap area matching; Spatial 

relationship-based graph matching  

Shape-related 

features 

Shape, shape distribution, size, similarity, 

surface area, surface normal, orientation, 

volume, dimension, linearity, planarity, 

scattering, omnivariance, anisotropy, 

eigenentropy, eigenvalues and change of 

curvature 

Distribution-based 3D shape matching; 

Distribution-based 2D shape matching  

Object recognition is the next step of feature extraction. The objects can be outdoor objects 
such as pedestrians[49], railways[50], poles[51], traffic signs[52], and trees[53] and indoor objects like 
walls[54], floors, ceilings, windows, doorways, and steel structures[55] etc. Different features of 
point clouds help to recognize objects; thus object recognition approaches can also be divided into 
two categories according to two different types of features, i.e., spatial-based object recognition 
methods and shape-based object recognition methods. Among the four object recognition 
approaches displayed in Table 4, spatial relationship based approach achieved the best precision 
and recall of spatial relationship, but it takes the longest time, while 2D overlap area mapping is 
on the contrary[22]. Recently, Sharif et al.[2] adapted and examined an automatic model-based 3D 
objects finding from 3D construction PCD robustly and quickly.  

Some research may also target at further 3D CAD or BIM model generation which has two 
categories of methods, i.e., data-driven and model-driven. The former is bottom-up aiming at 
organizing models from given geometrical and topological information; while the latter top-down 
requiring predefined typical sub-models matched with the raw data[56]. Data-driven methods can 
generate buildings with complex shapes but have no ability to handle strongly noisy data. On the 
contrary, model-driven algorithms are robust to erroneous data, however are not competent to 
describe buildings with miscellaneous shapes. Many researchers have been studying the 
automatical construction of 3D building models[ 57 ], historical architecture[ 58 ], indoor 
environment[59], pipelines[60], and industrial plants[61] from PCD, Hinks et al.[62] reported a flight 
planning optimization strategy using ALS to create urban infrastructure model. Früh and Zakhor[63] 
even proposed a drive-by-scanning methods of generating large-scale model of a city at 
ground-level. 

However, with so much research focusing on algorithms and methods of processing PCD, 
extracting features, recognizing objects and generating models, few studies have tried to reach 



decision support of FM. Some special cases are: MLS data was adopted to analyze pedestrian 
crossing environments for safety management[49], extract vertical walls for solar potential 
assessment[54], and collision detection of 3D models[64]; TLS data was utilized to conduct concrete 
structures health assessment[65], monitor the structural health of a bridge[66], as well as automatic 
detect and analyze cracks in timber beams[67]; Gonzalez-Aguilera et al.[68] presented a method to 
analyze geometric information and urban density attributes automatically from ALS data; Ma et 
al.[69] proposed an approach to compile BIM and PCD to generate synthetic as-damaged models 
for post-earthquake operations. Actually, PCD supported models of built environment will ease 
communication between stakeholders about the maintenance, refurbishment and regeneration[70], 
which is of great potential value to support the decision of FM. Most current research just need to 
go a step further to exploit the information in their extracted features, recognized objects and 
generated models. 

4 Discussion and conclusion 

Based on the 47 selected articles which are closely related to PCD-enabled FM, this paper 
reviewed the geometric and non-geometric properties of objects, PCD sensing methods and 
processing workflow, and feature extraction, object recognition or model generation from 
processed PCD, as well as the gaps of decision support for FM applications. Among semantics 
information, geometric properties received more attention than non-geometric ones, though the 
latter add more value to information. To acquire data for information production, SAR, LiDAR, 
and photogrammetry are three main sensing methods of PCD. The raw signals need to be 
pre-processed through filtering, registration, shearing, resampling etc. for followed PCD 
processing, which mainly includes segmentation and meshing. After that, the processed PCD will 
be extracted and recognized for model creation. Generally, most research would stop after feature 
extraction, object recognition or model generation, with only a small number going further to 
support FM decision-making.  

According to the analytical results, it is safe to conclude that there are three major gaps in the 
existing PCD-enabled FM research. First, few studies went deep to symmetry, not to mention 
semantics enrichment level. Second, little attention was paid to decision support and practical 
applications in FM. Third, previous studies often failed in converting data to information. Possible 
reasons for these three gaps could be: (1) FM research concerns more about strategy management 
than information management; (2) the improvement of hard aspects such as intelligence and 
automation of facilities and services draws more attention than soft parts such as documentation 
and information visualization; and (3) using PCD to facilitate FM requires multidisciplinary 
knowledge, which includes but not limited to FM, remote sensing, and computing. However, it is 
generally difficult for single researcher to obtain all the required knowledge. 

To sum up, a lot of further research work is still needed in order to address the 
above-mentioned gaps in PCD-enabled FM research. Future research can be conducted in the 
following eleven directions: (1) enriching the semantics of 3D facility models generated from the 
PCD[71]; (2) utilizing geometric properties such as regularity[21], symmetry[14], and repetition for 
quick object recognition and model generation of typical facilities for further FM applications; (3) 
generating detailed models of complex facilities to supplement the scope of FM and study the 
uniqueness of their management; (4) generating more accurate and higher LoD models of exterior 



façades and interior environment for better visualization[72]; (5) improving the capacity and 
efficiency of PCD storage; (6) increasing algorithm scalability and computing performance for 
large-scale FM studies[67]; (7) developing unified framework, standards, libraries for sharing, 
updating and storing PCD of FM for wider range (city-level or even nation-level for example) of 
FM research; (8) modeling real-time status of facilities for monitoring and control, safety 
management, and emergency management[6]; (9) studying of real-life cases of PCD adoption in 
FM and its cost benefits; (10) analyzing longitudinal evolution of facilities to study the changes in 
facility properties and human behaviors; and (11) exploring potential applications including 
sustainable energy, intelligent services, smart living with the accurate facility models[73]. 
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