
Coordinate Multi-agent with
Organization in Distributed

Scheduling System

A Dissertation Submitted to

Civil Aviation University of China

For the Academic Degree of Master of Science

BY

XUE Fan

Supervised by

Prof. FAN Wei

College of Computer Science and Technology

Civil Aviation University of China

25th February 2007

©aÒµTP18 � ?µúm

UDCµ 004.89 Æ Òµ048030307

¥I¬Ê�Æ

a ¬ Æ Ø ©

(Ü|��.�õAgent©ÙªNÝïÄ

ïÄ)6¶µ Å ~

��6¶µ � U �Ç

��Æ ?Oµ óÆa¬ Æ�;�¶¡µO�ÅA^Eâ

¤3�XµO�Å�Æ�EâÆ� Ø©�FFÏµ2007c 3� 17F

2007c 2� 25F

¥I¬Ê�ÆÆ Ø©ÕM5(²

�<(²¤¥��Æ Ø©´·�<3����e?1�ïÄó�9���ïÄ

¤J"¦·¤�§Ø
©¥AO\±I5Ú���/�	§Ø©¥Ø�¹Ù¦<®²

uL½>�L�ïÄ¤J§�Ø�¹�¼�¥I¬^Ê�Æ�½Ù§��Å��Æ

½yÖ¦^L�á�"�·�Óó��Ó�é�ïÄ¤��?Û�zþ®3Ø©¥

�
²(�`²¿L«
�¿"

ïÄ)\¶µ F Ïµ

¥I¬Ê�ÆÆ Ø©¦^Ç�(²

¥I¬Ê�Æ!¥I�ÆEâ&EïÄ¤!I[ãÖ,k��3�<¤x�Æ

Ø©�E<�Ú>f©�§�±æ^K<! <½Ù¦E�Ãã��Ø©"�<>f

©��SNÚ��Ø©�SN���"Ø3��ÏS���Ø©	§#NØ©���

Ú/�§�±úÙ£�)r�¤Ø©��Ü½Ü©SN"Ø©�úÙ£�)r�¤Ç

�¥I¬Ê�ÆïÄ)Ü�n"

ïÄ)\¶µ ��\¶µ F Ïµ

To My Beloved Parents

i

Acknowledgements

First and foremost, I thank my advisors Prof. Fan Wei. He is a first-rate mentor and

great friend, from whom I learnt more than academic skills, moral characters and social

adaptability. It is difficult to fully outline all the ways in which he has contributed to my

study and growth. It is impossible to fully express my gratitude. I would like to thank

Prof. Zhu Shi-Xing and Dr. Gu Zhao-Jun for their delightful collaborations and fatherly

enlightenments.

I have been fortunate to have such great colleagues and friends, Zhang Guang-Cai,

Wang Xing-Yun, Wang Yuan-Kun, Zhang Jie, Guo Qi-Ming, Fan Jing-De over the past

years as well as the research group of Software Technology Research Center, and I got

huge support from them in all-round. I thank Mr. Huang Xiao-Rong, Ms. Huang Cui-Wei

and Ms. Pan Hai-Ying in Xiamen Airline, Mr. Liu Yun-Lei in Center of Aviation Safety

Technology CAAC, Ms. Kang Li-Ping in AMECO, it was a pleasure to collaborate with

them. A very special thanks goes to my friends for their support on this thesis and past

three-year academic life, especially Ellen Zhang and Anne Cao.

I also thank the foundation support by National Natural Science Foundation of China

(NSFC) (Grant No. 60472123, Jan. 2005 – Mar. 2006) and Doctoral Startup Foundation

of Civil Aviation University of China (Grant No. QD13X04, Jan. 2004 – Jan. 2006).

Finally, I thank from the bottom of my heart, my parents, for giving me life, culturing

me, offering me unconditional support and encouraging me to pursue my dreams. I would

also like to thank my younger brother, with whom I had a cherished golden childhood.

ii

Á �

Nõó§+�¥�NÝÚ5y¯KÑ��/(J§cÙ´�5�NÝÚ5y`z

¯K"�Å/¡��NÝ£AGSS¤Ò´ù����¯K"

�©3£�
�Å/¡��NÝ�'+��ïÄ�§Äké�Å/¡��NÝ¯

K3�å÷v¯Kµee?1
/ªz"¿y²
T¯K´ NP-��£3,
�¹e

´ PSPACE-��¤�(J¯K"

��JÑ
��¡��Å/¡��NÝ¯K�Ä�©ÙªNÝ�.!��Ä

�Ä�Â8¿KÜ�Å/¡���'�êâ�NÝ�¸ run-and-schedule Ú��

DSAFO£Dynamic Scheduling Agents with Federation Organization§äké�(��

Ä�NÝ Agent¤�{"DSAFO�{´��;��Å/¡��NÝ¯Kmu�#L�

õ Agent�{§T�{Ú\
ü«üÑ5÷v�Å/¡��NÝ¥��åµÛÜéu

ªÚÄu Agent�ÚÚé�|�¢y��Û��"

DSAFO?1�Å/¡��NÝ�Ì�Ú½´µ¢�/l run-and-schedule�ÂÊ

�êâ§òÊ�I¦©)�Nõf��¶|^õ AgentÄ�/òz@f���)�m

©��Ün�y©¶3z�y©£Agent¤S?1ÛÜéuª¦)¶|^y©m���

?1�Û)�`z¶¿Ó�ò(J©u��ÅÑÖ]þ"

DSAFO �{äkØ���mE,Ýµ0u²�Úng��m"�,¢�y¢

DSAFO´Ø½�{§�É�A�ëê�K�§�´T�{U
éÐ/÷v�Ü�

å!aÑÛÜ4��!Ïé]Ñ¤Ú<å©��C`)"3éëêE¤�K�?1

�\�¢�ÚnØ©Û�§©Ùò DSAFO�{ÓMMASé¬�{ÚDÚéuª

�{?1
¢�é'"

���Ñ
 DSAFO�ïÄo(Ú�Å/¡��NÝ¯K��5ïÄ��"

'�c õ Agent�{§�Å/¡��§NP-��§©Ùª�å÷v¯K§õd π-ü

�§©ÙªNÝ

iii

Abstract

Numerous scheduling and planning problems in various industrial environments are

known to be extremely challenging, especially large scale scheduling and planning opti-

mization problems. Airport Ground Service Scheduling (AGSS) problem is such a prob-

lem.

After a brief review of researches on AGSS related areas, formulations of AGSS

problem are presented from constraint satisfaction view. Furthermore, AGSS problem is

classified as a NP-complete (PSPACE-complete in some cases) scheduling problem.

A dynamic distributed scheduling model is structured for AGSS problem then, and

a dynamic distributed scheduling environment run-and-schedule is put forward to collect

and uniform AGSS related data. DSAFO (Dynamic Scheduling Agents with Federation

Organization) is a novel multi-agent algorithm for AGSS problem. To fulfill constraint

satisfactions and optimizations in AGSS, DSAFO employs two strategies: local heuristics

and global coordination, based on roles of agents in a federation organization.

In a typical AGSS solving process, DSAFO accepts real-time flights data from run-

and-schedule environment; decomposes flight service goals into operations, according to

gathered data; divides the solution space dynamically into rational partitions with multi-

agents; conquers each partition with local heuristics within an agent; optimizes the solu-

tion simultaneously via coordination among partitions from global view; and dispatches

the solution to real world aircraft service resources simultaneously.

The complexity of DSAFO is bounded between quadratic and cubic polynomial time.

Though experiments show that DSAFO is unstable and influenced by several parameters,

this algorithm is good at satisfying all constraints, jumping out of local minimum, and

finding near optimal solutions for consumption of resources and man-days. After careful

experiments and theoretical analysis on parameters in DSAFO, a comparison is presented

with three opponent algorithms, including aMMAS approach and two traditional heuris-

tics.

iv

¥I¬Ê�Æa¬Æ Ø©

Finally a brief conclusion of DSAFO and the future research directions in AGSS are

given at the end of this thesis.

Keywords Airport ground service, Distributed constraint satisfaction problem, Dis-

tributed scheduling system, Multi-agent algorithm, NP-complete, Polyadic π-calculus

v

Contents

Dedication . i

Acknowledgements . ii

Chinese Abstract and Keywords . iii

Abstract and Keywords . iv

List of Tables . ix

List of Figures . xi

List of Abbreviations . xv

1 Introduction and Motivation . 1

1.1 What is AGSS . 1

1.2 Motivation . 5

1.2.1 Economic importance . 5

1.2.2 Existing management problems . 5

1.2.3 Benefits of effective AGSS . 6

1.3 Thesis contributions . 6

1.4 Thesis outline . 7

2 Background and Related works . 9

2.1 AGSS investigations . 9

2.2 Job-Shop Scheduling Problem . 10

2.3 Distributed Constraint Satisfaction Problem 11

2.4 Coordinative multi-agent system . 13

2.4.1 Multi-agent system . 13

2.4.2 Coordinative multi-agent system 14

2.4.3 Agent organization paradigms . 19

vi

¥I¬Ê�Æa¬Æ Ø©

2.5 Polyadic π-calculus . 23

3 AGSS: Formulation and Characteristics 25

3.1 Assumptions . 25

3.2 Formulation . 26

3.2.1 Airport ground service . 26

3.2.2 AGSS satisfaction . 27

3.2.3 AGSS problem . 30

3.2.4 Uncertain AGSS satisfaction . 31

3.2.5 Uncertain AGSS problem . 32

3.3 Notes in practical AGSS programming . 32

3.4 Characteristics . 33

4 Dynamic Distributed Scheduling Modeling 34

4.1 Motivation . 34

4.2 Model overview . 35

4.3 Run-and-scheduling . 36

5 DSAFO: Overview, Design and Implementation 38

5.1 An overview . 38

5.2 DSAFO strategies . 40

5.2.1 Local heuristics . 40

5.2.2 Global coordination . 41

5.3 Agent roles in DSAFO . 41

5.3.1 Role Blackboard . 42

5.3.2 Role ResourceAdmin . 44

5.3.3 Role Member . 45

5.3.4 Role Coordinator . 48

5.4 A formalized summary . 49

5.4.1 Blackboard . 49

5.4.2 ResourceAdmin . 50

vii

¥I¬Ê�Æa¬Æ Ø©

5.4.3 Member . 51

5.4.4 Coordinator . 52

5.5 Complexity . 53

5.5.1 UC’s Complexity . 53

5.5.1.1 Complexity from agent behaviors 53

5.5.1.2 Complexity from agent communications 55

5.5.1.3 UC’s complexity summary 56

5.5.2 Complexity of DSAFO . 56

5.6 Implementation . 56

6 Experiments and Analysis on Diverse Parameters 60

6.1 The experiment . 60

6.2 The factors . 61

6.2.1 Member agent number and Reqcycle 61

6.2.2 Blockfactor . 65

6.2.3 Delayfactor . 68

6.2.4 Syncycle . 71

6.3 Experimental summary . 71

7 Comparison . 75

7.1 Opponents . 75

7.1.1 MMAS . 75

7.1.2 EDD* and ERT* . 77

7.2 Comparison . 77

8 Conclusion and Future Works . 80

8.1 Conclusion . 80

8.2 Future works . 80

Appendix A: Agent Communication Grammar in DSAFO 81

Publications During M.Sc. Study . 97

Curriculum Vitæ . 98

References . 97

viii

List of Tables

1–1 Resource requirements in airport ground service 4

2–1 A taxonomy of MAS organizational paradigms 21

7–1 Mapping BT operations to TSP points . 77

7–2 Optimization algorithm comparison . 79

A–1 ACL protocols and agent communication grammar in DSAFO 81

ix

List of Figures

1–1 Typical operations for a transfer flight . 2

1–2 Typical operations for a departure flight 3

1–3 Typical operations for an incoming flight 3

2–1 A taxonomy of agent interaction behavior 15

4–1 Dynamic distributed model for AGSS . 37

5–1 Algorithm category of DSAFO . 39

5–2 Channel organization for agent communication 42

5–3 Behaviors and channel utilization of agent role Blackboard 44

5–4 Behaviors and channel utilization of agent role ResourceAdmin 45

5–5 Behaviors and channel utilization of agent role Member 48

5–6 Behaviors and channel utilization of agent role Coordinator 49

5–7 Gantt chart of typical scheduled plans for a flight (the Blackboard) 57

5–8 Gantt chart of typical scheduled plans for resources (a BT Member agent) . 58

5–9 DSAFO on JADE RMA GUI . 58

5–10 Communication observed by JADE sniffer 59

5–11 Agent inner states observed by JADE introspector 59

6–1 BT solution distributions with respect to agent number 62

6–2 BT solution distributions with respect to agent number (more) 63

6–3 BT solution marginal distributions with respect to agent number 64

x

¥I¬Ê�Æa¬Æ Ø©

6–4 BT solution distributions with respect to Blockfactor 66

6–5 BT solution marginal distributions with respect to Blockfactor 67

6–6 BT solution distributions with respect to Delayfactor 69

6–7 BT solution marginal distributions with respect to Delayfactor 70

6–8 BT solution distributions with respect to Syncycle 72

6–9 BT solution marginal distributions with respect to Syncycle 73

7–1 A simple illustration of EDD and ERT . 78

xi

List of Abbreviations

Abbreviation Description

A-SMGCS Advanced-Surface Movement Guidance and

Control Systems

10

ACL Agent Communication Language 16, 56, 68

ACO Ant Colony 11, 18, 74

ADOPT Asynchronous Distributed OPTimization 13

AGSS Airport Ground Service Scheduling 4, 38, 60

AI Artificial Intelligence 7

ANN artificial neural networks 11

AODB Airport Operation Data Base 36

ARCHON ARchitecture for Cooperative Heterogeneous

ONline system

17

ARM Airline Resource Management system 9, 17

AS Ant System 75

BCIA Beijing Capital International Airport 10, 60

BDI Belief-Desire-Intention 18

BOID Beliefs-Obligations-Intentions-Desires 18

BT Baggage Tractor 4, 53

CMDP single-agent Constrained MDP 19

CNET Contract NET 16

COM-MTDP COMmunicative Multiagent Team Decision

Problem

19

Coo-BDI Cooperative BDI 18

CSP Constraint Satisfaction Problem 11

xii

¥I¬Ê�Æa¬Æ Ø©

Abbreviation Description

DAI Distributed AI 11, 14

DEC-MDP DECentralized MDP 19

DEC-POMDP DECentralized POMDP 19

Dis-CSP Distributed Constraint Satisfaction Problem 12, 30, 33

Dis-DSS Distributed Dynamic Scheduling System 9, 17

Dis-HTN Distributed HTN 17

DJSSP Dynamic Job-Shop Scheduling Problem 31

dMARS distributed Multi-Agent Reasoning System 18

DSAFO Dynamic Scheduling Agents with Federation

Organization

38, 60, 77

DSIPE Distributed System for Interactive Planning

and Execution

17

DSS Distributed Scheduling System 9

EDD Earliest Due Date 11, 40, 77

EMTDP Extended Multiagent Team Decision Problem 19

ERT Earliest Ready Time 11, 77

FA/C Functionally Accurate, Cooperative system 17

FCFS First-Come-First-Serve 11

FIDS Flight Information Display System 36

FIFO First-In-First-Out 11

FIPA Foundation for Intelligent Physical Agents 16, 56

FOC Flight Operations Control system 36

FSTS Fuzzy Subjective Task Structure 18

GA Genetic Algorithm 9, 11

GBB Generic Blackboard 9

GIS Geographical Information System 10

GPGP Generalized Partial Global Planning 17

HPS Hospital Patient Scheduling 17

HTN Hierarchical Task Network 17

xiii

¥I¬Ê�Æa¬Æ Ø©

Abbreviation Description

JADE Java Agent DEvelopment framework 56, 60, 68

JSSP Job-Shop Scheduling Problem 10, 31, 33, 76

KQML Knowledge Query Manipulation Language 16

LB Load Baggage 4, 60

LC Load Cargo and mail 4, 60

LGPL Lesser General Public License Version 56

MAS Multi-Agent System 11, 13, 16, 20

MBO Model-Based Optimization 11

MDP Markov Decision Process 18

MIS Management Information System 9

MMAS MAX -MIN Ant System 76

MMDP Multiagent MDP 19

MSF minimum slack 11

NEXP-complete Non-EXPonential complete 19

NP-complete Non-Polynomial complete 11, 28, 30

PGP Partial Global Planning 17

POMDP Partially Observable Markov Decision Process 13, 19

poset partial ordered set 26

PSO Particle Swarm Optimization 11, 74

PSPACE-complete Polynomial SPACE complete 31

QBF Quantified Boolean Formula 32

RCS Rolegraph Coordination Strategy 18

SA simulated annealing 11

SIPE System for Interactive Planning and Execu-

tion

17

SPT shortest processing time 11

xiv

¥I¬Ê�Æa¬Æ Ø©

Abbreviation Description

TAAM Total Airport & Airspace Modeller system 9

TÆMS a framework for Task Analysis, Environment

Modeling, and Simulation

17

TM Turing Machine 18, 31

TSP Travel Salesman Problem 75

UB Unload Baggage 4, 60

UC Unload Cargo and mail 4, 53, 60

xv

Chapter 1 Introduction and Motivation

Numerous scheduling and planning problems in various industrial environments are

known to be extremely challenging. Because from computational complexity view, they

are NP-hard or harder [1, 2, 3]. It is extremely difficult for traditional optimization

algorithms to solve this type of problems in their general forms. AGSS (airport ground

service scheduling), which is focused in this thesis, is such a very difficult scheduling

problem.

1.1 What is AGSS

AGSS (airport ground service scheduling), briefly, is the scheduling activities for air-

port ground service.

In this thesis, airport ground service is the series of service processes from flight land-

ing to takeoff, including baggage handling, catering, fueling, cleaning, etc. In this thesis,

we called the service processes as “operations”. It should be noticed that H. Hartmann

(2001) divided this definition into three partitions: Ground traffic service (follow-me),

Airport ground service (towing, de-icing, refuel, etc.) and Airline ground service (ground

handling: load, unload, catering, water, lavatory, etc.) [4]. His partitions are mainly from

individual enterprise view, oppositely our definition is mainly from systematic collabora-

tion view.

From flight landing on to takeoff, there are many service operations to be fulfilled for

an aircraft in different work flow orders, according to different flights and situations [5].

Service operations and their orders may vary from one flight to another. For example,

typical operation flows for a typical transfer flight, a departure flight, and an incoming

flight are respectively shown in Fig. 1–1, Fig. 1–2, and Fig. 1–3.

In Fig. 1–1, operations which are marked with a light pink background color are

some critical operations which usually delay flights. And those connected with dotted

1

¥I¬Ê�Æa¬Æ Ø©

co
m

m
is

sa
ry

tr
uc

ks
/ m

ob
ile

be
lt

co
nv

ey
or

un
lo

ad
pu

sh
ba

ck
ch

oc
k

w
he

el
s

cl
ea

ni
ng

ca
te

ri
ng

cu
st

om

di
se

m
ba

rk
tr

an
sf

er
 b

ri
dg

e/
pa

ss
en

ge
r

st
ai

r

ba
gg

ag
e

bo
ar

di
ng

re
m

ov
e

br
id

ge
/

st
ai

r

lo
ad

ba
gg

ag
e

lo
ad

&
 m

ai
l

ca
rg

o
ca

rg
o

un
lo

ad

&
 m

ai
l

re
fu

el

po
rt

ab
le

 w
at

er
&

 la
va

to
ry

 s
er

vi
ce

po
w

er
 s

up
pl

y/
 d

ei
ci

ng
/ a

ir
 c

on
di

tio
n

m
ai

nt
en

an
ce

 c
he

ck

Figure 1–1: Typical operations for a transfer flight

2

¥I¬Ê�Æa¬Æ Ø©

commissary
trucks/ mobile
belt conveyor

chock
wheels

passenger stair
transfer bridge/ catering boarding

remove
bridge/
stair

push
back

load
baggage

load
cargo
& mail

refuel

portable water

maintenance check

power supply/ deicing/ air condition

Figure 1–2: Typical operations for a departure flight

commissary
trucks/ mobile
belt conveyor

chock
wheels

passenger stair
transfer bridge/ cleaningdisembark

remove
bridge/
stair

push
back

unload
cargo
& mail

unload
baggage

maintenance check

lavatory service

Figure 1–3: Typical operations for an incoming flight

3

¥I¬Ê�Æa¬Æ Ø©

arrow are optional operations for different kinds of flights, they depend on specific flight’s

internationality, real-time aircraft maintenance requirement, and so on.

For each type of operations shown in Fig. 1–1, Fig. 1–2, and Fig. 1–3, certain type(s)

of materials, productions, workforce, engineers, aviation ground support facilities and

equipments, and transportation equipments are required. In this thesis, we call these

requirements as “resources”, and the typical resource requirements in airport ground

service are listed in Table 1–1, categorized by different operation types.

Table 1–1: Resource requirements in airport ground service

Operation Type Resource Type

chock wheels wheel chock

handling preparation commissary truck/ mobile belt conveyor

unload baggage (UB) baggage tractor (BT) + carts

unload cargo and mail (UC) baggage tractor (BT) + carts

load cargo and mail (LC) baggage tractor (BT) + carts

load baggage (LB) baggage tractor (BT) + carts

deplaning preparation transfer bridge/ passenger stairs

cleaning cleaners (+ cleaners’ bus)

catering catering truck

refueling refuel truck

portable watering portable water cart

lavatory service lavatory truck/ cart

rubbish disposal rubbish truck

maintenance check maintenance engineer (+ stand)

push back push-back tractor (+ towing bar)

power supply (optional) ground power supply

air supply (optional) air conditioner

deicing (optional) deicer

The AGSS (airport ground service scheduling) problem is the process to schedule

airport ground service effectively and efficiently [5]. P. Baptiste, C. Le Pape and W.

Nuijten (1995) stated that “scheduling is the process of assigning activities to resources

in time” [6]. Following this definition, the AGSS (airport ground service scheduling)

problem is the process of assigning all constrained operations (aircraft service processes)

to many kinds of dynamic resources (such as engineers, aviation ground support facilities

and equipments, material, transportation equipments, etc.), in order to meet every flight’s

arrival and departure deadlines timely.

4

¥I¬Ê�Æa¬Æ Ø©

Moreover, formalized definitions on AGSS problem are discussed further in Chapter

3, where more theoretical and practical characteristics of AGSS are introduced as well.

1.2 Motivation

The AGSS problem is economically very important to airline industry, but currently

there are some management problems in AGSS process in China.

1.2.1 Economic importance

On one hand, AGSS is important to economy of airlines and airports. In 2006

first season, average flight normal rate of all China flights is 81.07%, and the lowest three

company Shenzhen Airline, Xiamen Airline, and Shanghai Airline has respectively 75.86%,

78.65%, and 75.87% [7]. Such a high rate of flight delay would bring enormous economic

loss to airlines and airports. According to L. Shi (2005), loss caused by abnormal flights

counts for 2–3% of total flight operation cost which is usually about tens of billion RMB

dollars for large airline in China [8]. That means, abnormal flights bring hundreds of

million RMB dollars to China airline. Among all kinds of reasons responsible for flight

delay, AGSS is one of the most important factors.

On the other hand, AGSS is important to services quality of airlines and airports.

Convenient departure and arrival time and timeliness, which is provided by AGSS, are

very important factors for airline professionals and passengers to evaluate airline services

quality: they count for 12.8% of all factors in Taiwan reported by S.-H. Tsaur, T.-Y.

Chang and C.-H. Yen (2002) [9].

In conclusion, AGSS is very important for airline industry.

1.2.2 Existing management problems

However there currently exist two major problems in AGSS process in China:

During tens of years enterprise management, most airlines and airports have built

kinds of information systems. But these systems were constructed for different targets

in different time, they lack of uniformed blueprints. They become isolated information

islands. Additionally, some fundamental infrastructures are in short. So in some airports,

information for AGSS now cannot be systematically gathered, and emergency strategies

5

¥I¬Ê�Æa¬Æ Ø©

cannot be applied efficiently. For example, once a typhoon went ashore, airport in Macao

computed that flights did not need grounding, but the Airport in Shenzhen could not

compute result in time, so all the flights grounded, and the economic loss should be

counted in hundreds of millions [10].

Secondly, in current airlines and airports, real AGSS operational mechanisms are

mainly with single resource type, i.e., scheduling different type of vehicles with isolated

different methods. Systematic scheduling has not been considered. Additionally, most

of scheduling methods are personally experiential, so the manpower and vehicles cannot

be fully utilized. AGSS should be finished via many types of resources and coordination

among them, because there might be spatial collision in limited job space around aircraft

body. However there still lacks of systematic and scientific decision approaches to process

AGSS rationally.

1.2.3 Benefits of effective AGSS

Effective AGSS, which this thesis is expected to achieve, is greatly profitable for

airline industry. It is because:

1. effective AGSS solution results in efficient time-sequenced aircraft service plans and

yet minimizes aircraft transfer time;

2. it identifies the preferential requirements that should be produced properly and yet

minimizes cost on man-days, equipment and inventory;

3. it also improves airline’s ground scheduling capability under uncertain situations,

and identifies possible delayed aircraft services due to lack of availability in uncertain

flight arrivals.

1.3 Thesis contributions

The main contributions of this thesis are:

1. to formalize the AGSS problem from constraint satisfaction view, and reveal some

characteristics of AGSS;

2. to establish a dynamic distributed scheduling model and a dynamic scheduling en-

vironment run-and-schedule for AGSS problem;

6

¥I¬Ê�Æa¬Æ Ø©

3. to develop a novel multi-agent approach DSAFO, practically and formally, satisfy

and optimize AGSS problem;

4. to study parameters of DSAFO, and give advice on how to incorporate DSAFO

with suitable parameters into AGSS problems;

5. to represent that the nature of DSAFO is a coordination optimization model based

on a traditional Artificial Intelligence (AI) concept Divide-and-Conquer, and point

out that the optimization of DSAFO comes from dynamic message transmission and

organization-based coordination.

6. to develop a MMAS (MAX −MIN Ant System, in Subsection 7.1.1) approach

for AGSS problem, for algorithm comparison.

1.4 Thesis outline

The remainder of this thesis is organized into seven chapters.

Chapter 2 offers a general overview of former AGSS researches and applications, and

also reviews two research areas related to AGSS: job-shop scheduling problem (JSSP, in

Section 2.2) and Distributed Constraint Satisfaction Problem (Dis-CSP, in Section 2.3).

Coordinative multi-agent system (MAS) and its organizational paradigms are surveyed in

Section 2.4 as well. In addition, polyadic π-calculus is also reviewed in Section 2.5.

Chapter 3 discusses the formalization of AGSS problem, after making some ideal as-

sumptions for computational availability. Practical scheduling features and characteristics

are also described, in order to adapt the formal analysis to real problem.

Chapter 4 states the advantage and necessity of modeling AGSS within distributed

scheduling model in Section 4.1, and presents a distributed scheduling model in Section

4.2 and a dynamic scheduling environment run-and-scheduling for AGSS problem in the

last section.

Chapter 5 details the multi-agent optimization algorithm DSAFO, which is proposed

to optimize AGSS effectively. The nature and strategies of DSAFO are introduced in

Section 5.2; Agent roles and their formalizations are presented in Section 5.3 and Section

5.4 respectively; Section 5.5 analyzes the time complexity of DSAFO; Section 5.6 lastly

implements this multi-agent optimization algorithm in JADE and FIPA ACL.

7

¥I¬Ê�Æa¬Æ Ø©

Chapter 6 describes a real-data-driven AGSS experiment to prove the performance

of DSAFO. Section 6.2 demonstrates the DSAFO’s optimization results and optimiza-

tion variation under variant parameters of DSAFO. Section 6.3 gives a summary of the

experiment results and characteristics of DSAFO.

Algorithm comparison appears in Chapter 7. DSAFO is compared with three oppo-

nent algorithms: MMAS, EDD* and ERT*. The MMAS algorithm for AGSS problem

is detailed in Subsection 7.1.1.

Finally, a conclusion is given in Chapter 8, where research summary of DSAFO and

hopeful future research directions in AGSS are represented as well.

8

Chapter 2 Background and Related works

In AGSS domain, many researches and systems have been done from theoretical

algorithms to industrial applications; The JSSP and DisCSP, which are related to AGSS

problem, have been investigated largely from the mathematical programming to Artificial

Intelligence (AI) areas; Multi-agent coordination and organizational paradigms, which are

important foundation of algorithm proposed in this thesis, have also been developed for

several decades.

2.1 AGSS investigations

In the Airline Resource Management (ARM) system, a multi-agent system Dis-

tributed Dynamic Scheduling System (Dis-DSS) for AGSS had been done by D. E. Neiman,

D. W. Hildum, V. R. Lesser, et al [11, 12]. This Dis-DSS evolved from Distributed Schedul-

ing System (DSS), by employing a Generic Blackboard (GBB). Dis-DSS employs resource

texture measure, most-tightly-constrained-first, negotiation, and synchronous plan repair

to generate schedules. D. E. Neiman and V. R. Lesser then improved Dis-DSS with a co-

operative repair method to deal unsatisfiable situations [13]. And M. Chia, D. E. Neiman,

et al enhanced Dis-DSS with two cooperative behaviors poaching and distraction [14].

Another approach, which schedules AGSS with Genetic Algorithm (GA) , was also

investigated by A. Cheung, W. H. Ip, D. Liu and C. L. Lai [15]. They proposed a modified

operation-based chromosome representation to stand for different trucks and tractors in

order to generate vehicle service schedules.

In industrial applications, a Boeing company Preston1 presented a system called

TAAM (Total Airport & Airspace Modeller) for airport resource management, which

includes to allocate all gates and baggage belts trucks. Lufthansa built the PERSEUS

project2 and its support staff demanded planning, shift planning and the allocation of

1See http://www.preston.net
2See http://www.groundstar.de

9

http://www.preston.net
http://www.groundstar.de

¥I¬Ê�Æa¬Æ Ø©

staff in real time for Lufthansa’s passenger services. ASCENT technology inc.3 presented

ARIS/AR routing system to schedule baggage handlers, cleaners, caterers, ramp workers,

ground equipments, etc. The Second Research Institute, General Administration of Civil

Aviation of China4 produced a Management Information System (MIS) named Command

Scheduling System (��NÝXÚ), as a subsystem of Airport Integrated Information

Management System (Å|nÜ&E+nXÚ), to do ground resource allocation and

operation result collection. And the Command Scheduling System was widely used in

many domestic airports such as Shenzhen, Kunming, Chengdu, Hangzhou, Zhengzhou,

Xi’an, Xiamen, Tianjin, etc.

Moreover, A-SMGCS (Advanced-Surface Movement Guidance and Control Systems)

within Park Air Systems5 by Northrop Grumman Corporation6 spread over the world

for complete control of airport traffic movements. And there was another airport ground

traffic assistant with GIS (Geographical Information System) technology which researched

by Beijing University of Aeronautics and Astronautics for Beijing Capital International

Airport (BCIA) [16].

2.2 Job-Shop Scheduling Problem

Definition 1 (JSSP). A. S. Manne firstly gave a definition of Job-Shop Scheduling Prob-

lem (JSSP) in 1960 [17]:

. . . the sequencing problems involves the performance of n tasks — each task

being defined in such a way as to require the services of a single machine for an

integral number of time units. Any one end product will, in general, necessitate

the performance of several tasks in sequence. The scheduling problem consists

of drawing up a plan for time-phasing the individual jobs so as to satisfy:

• sequencing requirements,

• equipment interference problems.

The integer-valued unknowns xj are indicated the day on which task j is to

begun (x = 0, 1, . . . , T). The schedule is to be drawn up so as to minimize the

‘make-span’.

3See http://www.ascent.com
4See http://www.caacsri.com
5See http://www.parkairsystems.com
6See http://www.northropgrumman.com

10

http://www.ascent.com
http://www.caacsri.com
 http://www.parkairsystems.com
http://www.northropgrumman.com

¥I¬Ê�Æa¬Æ Ø©

Besides, a Constraint Satisfaction definition was also given by A. S. Jain and S.

Meeran [18].

There are much many ways to solve general JSSPs. One type of the techniques

is mathematical strategy, sometimes called accurate algorithm, including dynamic pro-

gramming, decomposition strategies, enumerative techniques, Model-Based Optimization

(MBO), etc. [19]. However JSSP is a well known NP-complete problem [1], so the

mathematical strategy has been limited.

Another type is approximate algorithm, including dispatching rules (sequencing rule

or scheduling rule), heuristics7 and Lagrangian relaxation8. The heuristics could be based

on processing times (such as shortest processing time (SPT)), due dates (such as earliest

due date (EDD)), slack (such as minimum slack (MSF)), arrival times (such as earli-

est ready time (ERT, known as first-in-first-out FIFO or first-come-first-serve FCFS as

well)), and kinds of combinations of them [20]. These approaches are quite simple and in

low complexity, however they are approximate and generally cannot output the optimal

solution for a JSSP.

Yet another type is AI technique, generally called intelligent algorithm. Start-

ing in the early 1980s, a series of new technologies were applied to JSSPs, such as

expert/knowledge-based systems [2, 21], Distributed AI (DAI, such as multi-agent system

(MAS) [22, 23, 24, 25]), artificial neural networks (ANN) [26], tabu search [27, 28, 29],

simulated annealing (SA) [30, 31], genetic algorithms (GA) [32, 33], Ant Colony (ACO)

[34], Particle Swarm Optimization (PSO) [35], etc. Each of them has a special way to

find near optimal solutions.

Fuzzy logic might be classified as the last type, and it is a dependent type. Because

fuzzy set theory has only been utilized to develop hybrid scheduling approaches [36, 37].

2.3 Distributed Constraint Satisfaction Problem

Definition 2 (CSP). Formally, a Constraint Satisfaction Problem (CSP) consists of n

variables x1, x2, . . . , xn, whose values are taken from finite, discrete domains D1, D2, . . . , Dn,

respectively, and a set of constraints on their values. In general, a constraint is defined

by a predicate. That is, the constraint pk(xk1 , . . . , xkj
) is a predicate that is defined on the

7It should be noticed that dispatching rules usually is heuristics; but heuristics includes more than

dispatching rules.
8Sometimes Lagrangian relaxation is classified as a mathematical strategy, anyway, it is approximate.

11

¥I¬Ê�Æa¬Æ Ø©

Cartesian product Dk1 × . . .×Dkj
. This predicate is true iff the value assignment of these

variables satisfies this constraint. Solving a CSP is equivalent to finding an assignment

of values to all variables such that all constraints are satisfied [38].

Algorithms for solving Constraint Satisfaction Problems (CSPs) can be divided into

two groups, i.e., search algorithms and consistency algorithms. The search algorithms for

solving CSPs can be further divided into two groups, i.e., backtracking algorithms and

iterative improvement algorithms.

Backtracking A backtracking algorithm is a basic, systematic search algorithm for solv-

ing CSPs, such as min-conflict heuristic [39]. For example, the weak-commitment

search algorithm [40] is based on the min-conflict backtracking;

Iterative improvement In iterative improvement algorithms, as in the min-conflict

backtracking, all variables have tentative initial values. However, no consistent par-

tial solution is constructed. A flawed solution that contains all variables is revised

by using hill-climbing search;

Consistency algorithms Consistency algorithms are preprocessing algorithms that re-

duce futile backtracking [41].

Definition 3 (Dis-CSP). An instance of the Distributed Constraint Satisfaction Problem

(Dis-CSP) is a tuple 〈A, X,D, C〉 where

A = {α1, . . . , αp} -a set of p agents;

X = {Xα1 , . . . , Xαp} -a set of p variables sets,

for each α ∈ A, Xα = {x1
α, . . . , xqα

α } -each variables set α consists of qα variables;

D = {Dα1 , . . . , Dαp} -a set of value domains for each agent,

for each α ∈ A and χ ∈ Xα, χ ∈ Dα(χ) -the range of each variable χ, and the value

may be assigned by (and only by) agent α;

C = {c1, . . . , cr} = Cα1 ∪ . . . ∪ Cαp -a set of constraints on the variables,

for each i ∈ {1, . . . , r}, ci : Dα1(x
1
α1

)× . . .×Dα1(x
qα1
α1)× . . .×Dαp(x

qαp
αp) 7→ {true, false}

-each predict may be related to any variables;

for each agent α ∈ A, Cα = {ci|ci ∈ C ∧ ∃
x∈Xα

ci is relative to x},

-a set of all constraints related to agent α, and

it must be known by α.

The Dis-CSP problem is to find an assignment

a ∈ Dα1(x
1
α1

)× . . .×Dα1(x
qα1
α1)× . . .×Dαp(x

qαp
αp)

12

¥I¬Ê�Æa¬Æ Ø©

such that

∀
1≤i≤r

ci(a) ≡ true.

Well, a similar formulation can also be seen at [42]. And algorithms for solving

Dis-CSPs can be listed as follow:

Asynchronous backtracking The asynchronous backtracking algorithm is a distributed,

asynchronous version of a backtracking algorithm [42, 43];

Asynchronous weak-commitment search Asynchronous weak-commitment search al-

gorithm proposed by M. Yokoo introduces the min-conflict heuristic to reduce the

risk of making bad decisions [42, 44, 45]. Furthermore, the agent ordering is dynami-

cally changed so that a bad decision can be revised without performing an exhaustive

search. This algorithm is also useful to deal with collisions in multi-agent systems;

Distributed breakout algorithm In this algorithm, two kinds of messages (ok? and

improve) are communicated among neighbors to jump out of local minimum;

Distributed consistency algorithm Achieving 2-consistency by multiple agents is rel-

atively straightforward, since the algorithm can be achieved by the iteration of local

processes [46];

ADOPT P. J. Modi, W.-M. Shen, M. Tambe and M. Yokoo have developed an algorithm

called Asynchronous Distributed OPTimization (ADOPT) that can solve more gen-

eral distributed constraint optimization problems [47];

Multi-agent POMDP i.e. Multi-agent Partially Observable Markov Decision Pro-

cesses [48].

2.4 Coordinative multi-agent system

2.4.1 Multi-agent system

Multi-agent system (MAS) is a promising new paradigm in computing. In general, a

multi-agent system is a system in which several interacting and intelligent agents pursue

some set of goals or tasks. An agent is a computational entity such as a software program

or a robot that can be viewed as perceiving and acting upon its environment and that is

13

¥I¬Ê�Æa¬Æ Ø©

autonomous in that its behavior is at least partially depends on its own experience [49].

M. Wooldridge and N. Jennings (1995) presented four characteristics of agent [50]:

• autonomy: Agents operate without the direct intervention of humans or others, and

have some kind of control over their actions and internal state;

• social ability : Agents interact with other agents (and possibly humans) via some

kind of agent-communication language;

• reactivity: Agents perceive their environment, (which may be the physical world,

a user via a graphical user interface, a collection of other agents, the internet, or

perhaps all of these combined), and respond in a timely fashion to changes that

occur in it;

• pro-activeness: Agents do not simply act in response to their environment , they

are able to exhibit goal-directed behavior by taking the initiative.

And different characteristics are required in different application areas [51]. In this thesis,

a common agent is defined as an entity which has characteristics of real-time, intending,

continuous and resource limited .

Though MAS have been widely accepted and implemented in many areas recent

years, some researchers still argue about distinction between agents and Objects. We

distinguish the algorithm presented in this thesis from Objects (especially active Objects)

according to M. Wooldridge’s advice [51]:

• agents embody a stronger notion of autonomy than objects;

• agents are capable of flexible (reactive, proactive, social) behavior;

• a multi-agent system is inherently multi-threaded.

2.4.2 Coordinative multi-agent system

Coordination is the art of managing interactions and dependencies among activities,

that is, among agents, in the context of MASs [52, 53]. A coordination model can be

thought as consisting of three elements: coordinables, coordination media and coordination

laws. H. S. Nwana (1996) pointed out [54] that the hypothesis, rationale, or goal for having

collaborative agent systems is a specification of the goal of DAI (Distributed AI) as noted

14

¥I¬Ê�Æa¬Æ Ø©

Planning

Cooperation Competition

Negotiation

Coordination

Distributed
planning planning

Centralized

Figure 2–1: A taxonomy of agent interaction behavior

by M. N. Huhns and M. P. Singh (1994) [55]. Paraphrasing these authors, it may be

stated as ‘creating a system that interconnects separately developed collaborative agents,

thus enabling the ensemble to function beyond the capabilities of any of its members’.

Formally,

V
(∑

agenti

)
> max

(∑
V(agenti)

)
where function V represents ‘value addedness’. This could have an arbitrary definition

involving attributes such as speed, worst-case performance, reliability, adaptability, accu-

racy, etc., or some combination of these.

Coordination is based on relations among agents. And there are a number of relations

among agent activities, such as equality, enablement, inhibit, interference, etc. [56, 57],

as shown in Figure 2–1 [58]. Consequently we could briefly give definitions of different

type of coordinations as follow:

• Coordination: Coordination is a property of a system of agents performing some

activity in a shared environment [52];

• Cooperation9: Cooperation is coordination among nonantagonistic agents [58];

• Negotiation: Negotiation is coordination among competitive or sinply self-interested

agents [58].

Then we can conclude the characteristics of coordinative agent, i.e. autonomy, in-

teraction, task and benevolence:

9Because this thesis mainly focuses on distributed scheduling, so we use the notion coordination as

cooperation in this thesis, under conditions without misunderstanding.

15

¥I¬Ê�Æa¬Æ Ø©

• autonomy: Agents operate without the direct intervention of humans or others, and

have some kind of control over their actions and internal state;

• interaction: Agents are capable to interact with each other;

• task: An agent is always aimed to some tasks;

• benevolence: When other agents need help, an agent would do its best to facilitate

others.

In other words, coordinative agent is such a kind of autonomous software entity, which

interacts with environment dynamically and cooperate with other agents benevolently

in order to accomplish the task of itself. Therefore, coordinative MAS is a group of

coordinative agents with proper tasks. Since coordinative MAS was proposed, it has been

widely used in kinds of distributed industrial applications and other areas [11, 13, 14, 59,

60, 61, 62, 63, 64, 65, 66, 67].

In this thesis, on the historical mainstream of coordination in MAS, the former in-

vestigations are divided into four categories approximately, i.e. coordination protocol,

coordination application system, strong mathematical coordination model and coordina-

tion extension:

1. Coordination protocol: According to D. Gelernter and N. Carriero (1992) [52] we

know that coordination protocol is very important for successful and effective coor-

dination. Main coordination protocols in MAS are CNET, KQML and FIPA ACL.

(a) CNET: Contract NET [68, 69] is one of the most famous and most effective

coordination protocols, which coordinates agents via contracts among agents;

(b) KQML: Knowledge Query Manipulation Language [70, 71] is a famous knowl-

edge representational standard in agent interaction. It is a structured language

to represent and share knowledge among agents in order to attempt on each

other’s knowledge and goal stores;

(c) FIPA ACL: Agent Communication Language proposed by Foundation for In-

telligent Physical Agents (FIPA) [72, 73] is a widely used language standard in

agent interaction. ACL precisely and completely defined the communication

grammar and implementation.

16

¥I¬Ê�Æa¬Æ Ø©

2. Coordination application system: There are many systems implemented with co-

ordination or coordinative MASs, most of which are in organization or implied

organization:

(a) FA/C system: Functionally accurate, cooperative system is a distributed pro-

cessing system to handle distribution-caused uncertainty and errors as an in-

tegral part of the network problem-solving process [74, 75];

(b) HTN: Hierarchical Task Network, often gives deductive rules a procedural in-

terpretation, such as SIPE (System for Interactive Planning and Execution)

[76];

(c) PGP: Partial Global Planning, provides a framework to coordinating multiple

AI systems that cooperating in a distributed sensor network, by combining a

variety of coordination techniques into a single, unified framework [77];

(d) ARCHON system: ARchitecture for Cooperative Heterogeneous ONline sys-

tem, this project was to build a software architecture that would allow pre-

existing expert systems dealing with different aspects of decision making of a

given complex environment or a system to cooperate in a mutually beneficial

way [78, 79];

(e) Dis-DSS: Distributed Dynamic Scheduling System is a MAS to coordinate dif-

ferent resources among some airlines and airport, as well as a part of the Airline

Resource Management (ARM) system [11, 13];

(f) GPGP: Generalized Partial Global Planning is an extendable family of PGP

based on TÆMS (Task Analysis, Environment Modeling, and Simulation). In

comparison to PGP, GPGP schedules tasks with deadlines, it allows agent

heterogeneity, it exchanges less global information, and it communicates at

multiple levels of abstraction [80];

(g) Dis-HTN: Distributed HTN is a distributed version of HTN, such as DSIPE

(Distributed System for Interactive Planning and Execution). DSIPE firstly

is based on constraints, secondly employs distributed agents to auto-identify

and share information, finally generates global planning from partial plannings

[81];

(h) Resource constraint GPGP: K. Decker and J. J. Li extended a task struc-

ture representation language TÆMS [82, 83] to have the capacity of represent-

ing resource constraints, then extended GPGP to resource constraint GPGP

17

¥I¬Ê�Æa¬Æ Ø©

to process a natural resource constraint distributed problem Hospital Patient

Scheduling (HPS) [84];

(i) Wasp-like: wasp-like is a multi-agent coordination model, which was based on

the natural MAS of the wasp colony, an algorithm similar to ACO but they

are different [64, 85].

3. Strong mathematical coordination model: These models are called “strong” in this

thesis, because the models usually need machines much more superior than Turing

Machine (TM) and current computer to completely solve problems in reasonable

time. M. d’Inverno (1997) argues that these mathematical approaches mainly focus

on game theory and modal or temporal logic [86]:

(a) Joint Intention: Joint Intention is a coordinative function to coordinate agents

to make joint commitment, to have joint responsibility and to perform joint

action [87, 88];

(b) BOID: Beliefs-Obligations-Intentions-Desires architecture was proposed [89] by

J. Broersen, M. Dastani, J. Hulstijn, Z. Huang and L. van der Torre to extend

traditional BDI (Belief-Desire-Intention) architecture [51, 90] with more social

behavior formation;

(c) Coo-BDI: Cooperative BDI is based on the dMARS (Distributed Multi-Agent

Reasoning System) specification [86] and extends the traditional BDI architec-

ture in many respects, such as separation of external events and main desires,

introduction of cooperations among agents,the introduction of default plans,

etc. [91, 92];

(d) RCS: Rolegraph Coordination Strategy is proposed for agent teamwork, which

can operate with only partial information available to each agent at runtime

[93]. This is achieved using graph matching principles to interpret hierarchical

role relationships that represent team intentions;

(e) FSTS: Fuzzy Subjective Task Structure is proposed to abstract the coordina-

tion problems with the essential notions such as methods, tasks, and method

relations [94]. Fuzzy logic techniques [95] are explored in the model to capture

the uncertainties within the descriptions of the task-oriented environment;

(f) MDP: Markov Decision Process is a decision model, which makes decisions by

exploring possible world-states and the probability that an action performed

in any world-state will lead to a transition to any other world-state, and then

18

¥I¬Ê�Æa¬Æ Ø©

they construct optimal policies, which prescribe the optimal action to perform

in each world state. Some of the MDP researches in coordination area are:

i. MMDP : Multiagent MDP [96],

ii. DEC-MDP and DEC-POMDP: Decentralized MDP and Decentralized par-

tially observable Markov decision process (POMDP) [97, 98],

iii. COM-MTDP: COMmunicative Multiagent Team Decision Problem [99],

iv. CMDP and EMTDP: single-agent constrained MDP and Extended Multi-

agent Team Decision Problem [100].

4. Coordination extension: Coordination extension focuses on frontier besides agent-

agent coordinative relations:

(a) P. Scerri, L. Johnson, D. V. Pynadath, P. Rosenbloom, N. Schurr, M. Si and M.

Tambe (2003) discussed the coordination between human-agent and human-

agent-human [101];

(b) A. Omicini, A. Ricci, M. Viroli, C. Castelfranchi, and L. Tummolini presented

a novel concept Coordination Artifacts, which seems like visual, easy-to-use,

industrial development oriented intelligent agents [102].

Having a brief review of coordination technique history, we could have a better un-

derstand of coordinative agents and DSAFO in Chapter 5.

In these progresses, there are some approaches which it is valuable to pay our atten-

tion to. One is GPGP method, which is a general method to solve scheduling problems,

however it is a NEXP-complete algorithm [82, 98]. Additionally, K. Sycara, S. Roth, N.

Sadeh and M. Fox (1991) described a mechanism for transmitting abstractions of resource

requirements (textures) between agents [24]. Each agent uses these texture measures to

form a model of the aggregate system demand for resources. This model is used to allo-

cate resources using various heuristics. And A. Garland and R. Alterman (2004) argued

that agents without autonomy could achieve better coordination via common knowledge

than autonomous agents [103].

2.4.3 Agent organization paradigms

While there is no single definition of organizations that is uniformly agreed to, there

are general tenets that are more or less shared. In general, organizations are characterized

as [49]:

19

¥I¬Ê�Æa¬Æ Ø©

• large-scale problem solving technologies

• comprised of multiple agents (human, artificial, or both)

• engaged in one or more tasks; organizations are systems of activity

• goal directed (however, goals may change, may not be articulable or clear, and may

not be shared by all organizational members)

• able to affect and be affected by their environment

• having knowledge, culture, memories, history, and capabilities distinct from any

single agent

• having legal standing distinct from that of individual agents.

Since M. S. Fox (1979, 1981) presented organization in MAS firstly [104, 105], a num-

ber of organization models are studied and become maturer and maturer. Some of them

are well formalized and possess the qualifications of stand-alone application [106, 107,

108, 109, 110]. As shown in Table 2–1, B. Horling (2004) gave a summary of ten MAS

organizational paradigms [111]: Hierarchy, Holarchy, Coalition, Marketplace, Congrega-

tion, Society, Federation, Matrix, Team and Compound organization. Each of them has

particular benefits and weaknesses:

1. Hierarchy [104, 105, 112, 113] arranges agents in a tree, which is perhaps the

earliest example of structured. It is good at divide-and-conquer, mapping to many

fields and useful in large scale problems. But it is not robust and causes bottle-neck

effect and delay.

2. Holarchy [114, 115] is, through Koestler’s intent to holon10, a notion of a hierarchi-

cal, nested structure does accurately describing the organization of many systems.

It makes fully use of individual autonomy. However it is impossible to model define

problems in Holon and its performance is hard to predict.

3. Coalition [112, 116] has been studied by the game theory community for decades,

and has proved to be a useful strategy in both real-world economic scenarios and

MASs. Coalition exploits strength in agent numbers. However its short term bene-

fits may not outweigh organization construction costs.

10The term holon was first coined by Arthur Koestler in his book The Ghost In The Machine (Koestler,

1967). In this work, Koestler attempts to present a unified, descriptive theory of physical systems based

on the nested, self-similar organization that many such systems possess, such as astronomic galaxy.

20

¥I¬Ê�Æa¬Æ Ø©

Table 2–1: A taxonomy of MAS organizational paradigms

Hierarchy Holarchy

Coalition Marketplace

Congregation Society

Federation Matrix

Team Compound organization

21

¥I¬Ê�Æa¬Æ Ø©

4. Marketplace [117, 118] is a market-based organization. Buying agents (shown

in white) may request or place bids for a common set of items, such as shared

resources, tasks, services, or goods. Markets excel at the processes of allocation

and pricing. However it might cause malevolent competition and it is a complex

allocation process.

5. Congregation [119, 120] are groups of individuals who have banded together into a

typically flat organization in order to derive additional benefits. Unlike these other

paradigms, congregations are assumed to be long-lived and yet not formed with a

single specific goal in mind. This long-lived Congregation facilitates agent discovery.

However the presumed sets may be over restrictive.

6. Society [121, 122] intuitively brings to mind a long-lived, social construct, drawing

from our own experiences with biological societies. Unlike some other organizational

paradigms, agent societies are inherently open systems. Society provides good public

services and has well defined conventions. However it is potentially complex, and

agents may require additional society-related capabilities.

7. Federation [123, 124] comes in many different varieties. All share the common

characteristic of a group of agents which have ceded some amount of autonomy to

a single delegate which represents the group. Federation is good at matchmaking,

brokering, translation services and it facilitates dynamic agent pool. However the

intermediaries become bottlenecks.

8. Matrix [80] relaxes the one-agent, one-manager restriction, by permitting many

managers or peers to influence the activities of an agent. In this way, the agent’s

capabilities may be shared, and the agent’s behaviors (hopefully) influenced so as

to benefit all. However the shared agent becomes a potential point of contention

and the agent might become very complex.

9. Team [105, 124, 125, 126] consists of a number of cooperative agents which have

agreed to work together toward a common goal. Team is addressed to larger grained

problems and it is task-centric. However its communication increases very quickly

when the problem scale grows.

10. Compound organization [77] allow system to include characteristics of several

different styles. A system may have one organization for control, another for data

flow, a third for discovery, and so on. The positive and negative characteristics of a

compound organization are derived primarily from its constituent parts.

22

¥I¬Ê�Æa¬Æ Ø©

2.5 Polyadic π-calculus

The polyadic π-calculus developed by R. Milner (1991) [127] is a very powerful tool

to model parallel systems such as mobile systems, it is based on π-calculus [128, 129].

And because of the parallel nature of MAS [51], the polyadic π-calculus was naturally

introduced into MAS formalization respectively by T. Rorie (1998) [130] and W. Jiao and

company (1999) [131, 132]. Nextly we will have a brief review of definitions of π-calculus

and polyadic π-calculus.

Definition 4 (π-calculus [127]). The most primitive entity in π-calculus is a name.

Names, infinitely many, are x, y, . . . ∈ X ; they have no structure. In the basic version of

π-calculus which we begin with, there is only one other kind of entity; a process. Processes

are P, Q, . . . ∈ P and are built from names by this syntax

P ::= Σ
i∈I

πi.Pi | P |Q | !P | (νx)P

Here I is a finite indexing set; in the case I = Ø, we write the sum as 0. In a summand

π.P the prefix π represents an atomic action, the first action performed by π.P. There are

two basic forms of prefix:

x(y), which binds y in the prefixed process, means

“input some name — call it y — along the link named x”;

xy, which does not bind y, means “output the name y along

the link named x”.

In each case we call x the subject and y the object of the action; the subject is positive

for input, negative for output.

A name refers to a link or a channel. It can sometimes be thought of as naming a

process at “the other end” of a channel; there is a polarity of names, and x — the co-name

of x — is used for output, while x itself is used for input.

P |Q (“P par Q”) simply means that P and Q are concurrently active, so they can

act independently. !P (“bang P”) means P |P | . . .; as many copies as you wish. And

(νx)P (“new x in P”) restricts the use of the name x to P . Finally, Processes like x(y).0

and xy.0 are so common that we prefer to omit the trailing “.0” and write, respectively,

just x(y) and xy.

And polyadic input and polyadic output are introduced from abbreviations:

23

¥I¬Ê�Æa¬Æ Ø©

x(y1 · · · yn) for x(w).w(y1). · · · .w(yn)

xy1 · · · yn for (νw)xw.wy1. · · · .wyn

With these abbreviations, we could go on with definition of polyadic π-calculus.

Definition 5 (polyadic π-calculus [127]). From the monadic to the polyadic calculus, we

add the forms for abstractions F, G, . . . and concretions C, D, . . ., calling them collectively

agents A, B, We use α, β, . . . to range over names and co-names, and −→x ,−→y , . . . to

stand for vectors of names, with length |−→x |, |−→y |,

Normal processes : N ::= α.A | 0 | M + N

Processes : P ::= N | P |Q | !P | (νx)P

Abstractions : F ::= P | (λx)F | (νx)F

Concretions : C ::= P | [x]C | (νx)C

Agents : A ::= F | C

M + N means that either M or N is randomly selected and run, one and only one

process could be executed. (λx)P is a abstraction, which denotes the essence of parametric

definition; i.e.

x(y1 · · · yn).P
def
= x.(λy1 · · · yn)P

And [x]C is a concretion, “[]” is derived from output prefix form:

xy1 · · · yn.P
def
= x.[y1 · · · yn]P

Additionally, we usually, for reading convenience, write prefixed form xy1 · · · yn as

x〈y1 · · · yn〉, by adding a pair of brackets.

24

Chapter 3 AGSS: Formulation and Characteristics

In this chapter, we list assumptions for AGSS formulation and modeling, and for-

malize AGSS problem in constraint satisfaction view, and discuss AGSS characteristics

and adaptation to practical programming.

3.1 Assumptions

In real-life AGSS problem, there are many indeterministic interferes. But in this

thesis, some assumptions are made, in order to establish a computable model. The as-

sumptions are listed as follow:

• traffic condition in airport is optimal (no block);

• resources and their services are optimal (no breakdown);

• relative flight data needed could always be accessed;

• operations could be near precisely estimated according to the flight data above;

• there are no differences in same type of resources;

• each operation needs only one resource to fulfill;

• each resource can be possessed by only one operation at a time;

• each resource serves no more than three 4-hour jobs per day;

• each workforce has two 4-hour jobs per day. And job could be assigned to any time;

• message transmission between agents is costly, but messages arrive in sequence.

25

¥I¬Ê�Æa¬Æ Ø©

3.2 Formulation

Informally, the AGSS problem can be stated as follows. There are a set of flights

F and a set of resources R. Each flight has a fixed deadline (Takeoff) and consists of

a set of operations that must be processed in a given order. Each operation is given

an integer service time, and a longer resource usage time (plan time) including traffic

and preparation. Each operation needs one resource to process, and the processing is

uninterruptible. Each resource can process only one operations simultaneously. A valid

schedule assigns each operation with a resource and a service start time in order to meet

all the deadlines of flights. And AGSS problem is the process to find the schedule with

minimal resource consumption.

Nextly we would give some formal functions to represent the processes which assign

AGSS resources with service operations. As a result, the AGSS related concepts could be

formally described in constraint satisfaction view.

3.2.1 Airport ground service

Lemma 1. The service operations (including landing and takeoff) for one flight (O) and

their temporal “precedence or equality” (or no later than) relation (�) forms a lattice

< O,�>.

Proof. A lattice is a poset (partial ordered set) < S, R > in which each two-element subset

{a, b} has an infimum, denoted inf{a, b}, and a supremum, denoted sup{a, b} [133].

Firstly, < O,�> is a poset, because:

• closure: for each < o1, o2 >∈�, o1, o2 ∈ O. It stands for that if two operations have

“precedence or equality” relation, they must be in a set of service operations for one

flight;

• reflexivity: for each o ∈ O, o � o, which shows each operation is no later than itself;

• transitivity: for each o1, o2, o3 ∈ O, if o1 � o2 and o2 � o3, then o1 � o3, which

represents if o1 is no later than o2 and o2 is no later than o3, then o1 is no later than

o3.

Secondly, there do exists a supremum and an infimum in < O,�>:

26

¥I¬Ê�Æa¬Æ Ø©

• supremum: for each o ∈ O, landing � o, i.e., all operations for one flight can not

begin before the flight landing;

• infimum: for each o ∈ O, o � takeoff , that is to say, operations for one flight are

no later than the flight takeoff .

Hence, what the service operations for one flight and their “precedence or equality”

relation forms, < O,�>, is a lattice.

Definition 6 (Airport ground service). An instance of airport ground service is a tuple

〈F ,O,R, T ,�, D, F, rt, st, ut, et, tt, Ω, γ, s〉 where

F = {ϕ1, ϕ2, . . . , ϕn} - a set of n flights;

O = {o1, o2, . . . , op} - a set of p operations;

R = {r1, r2, . . . , rq} - a set of q resources;

T = {0, 1, 2, . . . , ∆} - a set of discrete integral time, with typical algebraic

operators such as +, −, =, <, ≤, etc;

� : O 7→ O - precedence or equality, decomposing O into lattices

of flights, according to Lemma 1;

D : F 7→ T - deadline of a flight;

F : O 7→ F - flight belonging to;

rt : O 7→ T - operation ready time;

st : O 7→ T − {0} - non-zero operation service time;

ut : O 7→ T - operation setup time;

et : O 7→ T - operation reset time;

tt : R×O 7→ T - resource traffic time for an operation;

Ω : R× T 7→ O ∪ {Ø} - which operation is in process at a certain time,

returns Ø when non-single operations assigned.

3.2.2 AGSS satisfaction

Definition 7 (AGSS satisfaction). An AGSS satisfaction is a process to find two func-

tions:

γ : O 7→ R - assign resources;

s : O 7→ T - assign service starts,

27

¥I¬Ê�Æa¬Æ Ø©

for an instance of airport ground service 〈F ,O,R, T ,�, D, F, rt, st, ut, et, tt, Ω, γ, s〉,

s.t. ∀
o∈O

[rt(o) ≤ s(o)

∧ s(o) + st(o) ≤ D(F (o))

∧ ∀
o≺o′

s(o) + st(o) ≤ rt(o′)

∧ ∀
s(o)−ut(o)−tt(γ(o),o)≤τ<s(o)+st(o)+et(o)

Ω(γ(o), τ) = o],

where o ≺ o′ is abbreviated from o � o′ ∧ o 6= o′.

In other words, AGSS satisfaction is the process to find a valid scheduling within

limited resources to fulfill service operations timely.

Lemma 2. p ∼ O(n), i.e. the number of operations p is bounded at O(n).

Proof. For each flight there are a limited number of operations to fulfill, i.e. ∀ϕ ∈ F ,

OPϕ = {o|o ∈ O ∧ F (o) = ϕ}

denotes the set of operations belonging to ϕ. And such a set must be non-empty and

with a limited number of upper bound, so it is clear that ∀ϕ ∈ F , |OPϕ| = O(1). Hence,

p = |O| =
∑
ϕ∈F

|OPϕ| ∼ O(n).

Lemma 3. q ∼ O(n), i.e. the number of resources q is bounded at O(n).

Proof. Through all operations’ resource usage demand, there must be a global minimal

resource usage time:

rutmin
def
= min

o∈O
[tt(γ(o), o) + ut(o) + st(o) + et(o)]

And if one resource serve only one operation totally, the maximum number of resources

is p. To arrange a number p of resource usages in a period ∆ + 1 (the size of T), the

minimal number of resources must be no less than p×rutmin

∆+1
. Hence,

O(n) ∼ p× rutmin

∆ + 1
≤ q ≤ p ∼ O(n)

Hence, q ∼ O(n).

Theroem 1. AGSS satisfaction is in NP-complete class.

28

¥I¬Ê�Æa¬Æ Ø©

Proof. Firstly, any AGSS satisfaction, obviously, could be verified in polynomial time, so

AGSS satisfaction must be in NP .

In the following proof section, we will, step by step, derive AGSS satisfaction from

Partition, which is one of the well known basic NP-complete problems [1].

An instance of Partition problem consists of a finite set A and a “size” s(a) ∈ Z+ for

each a ∈ A. The Partition problem is to find a subset A′ ⊆ A such that∑
a∈A′

s(a) =
∑

a∈A−A′

s(a).

Then, a problem named Multi-processor scheduling is discussed. An instance of this

problem consists of a finite set A of “tasks”, a “length” l(a) ∈ Z+ for each a ∈ A, a

number of m “processors”, and a “deadline” D ∈ Z+. The problem is to find a partition

A = A1 ∪ A2 ∪ . . . ∪ Am of A into

max

{∑
a∈Ai

l(a) : 1 ≤ i ≤ m

}
≤ D.

Consider such a restriction of Multi-processor scheduling problem: allowing only

instances in which m = 2 and D = 1
2

∑
a∈A l(a). We can clearly see that this problem could

be restricted to a Partition problem, exactly. That is to say, one Partition problem could

be mapped to one Multi-processor scheduling problem, where m = 2 and D = 1
2

∑
a∈A l(a).

Hence,

Partition ≤p Multi-processor scheduling

Therefore Multi-processor scheduling is, generally, a NP-complete problem. Yet its

introduction and another similar proof was done by M. R. Garey, E. G. Coffman Jr., and

D. S. Johnson (1978, 1979) [134, 1].

Nextly, consider such a restriction of AGSS satisfaction: allowing only instances

in which ut(o) = et(o) = tt(o) = 0 for each operation o ∈ O, rt(landing) = 0, and

D(f) = DF for each flight f ∈ F . This restriction means an amount of special cases

(temporarily leave the feasibility aside) of AGSS satisfaction: no variable setup time,

reset time, and traffic time for operations, as well as a uniform landing and takeoff time

for all flights.

Then, every instance of Multi-processor scheduling problem, according to this restric-

tion, could have a homologous AGSS satisfaction, under q = m, p = |A|, DF = D, and

one operation o ∈ O denotes one task a ∈ A. Hence,

Multi-processor scheduling ≤p AGSS satisfaction.

29

¥I¬Ê�Æa¬Æ Ø©

Therefore,

Partition ≤p AGSS satisfaction.

Hence, AGSS satisfaction is in NP-complete class.

Fortunately, this kind of resources are usually sufficient in real-life airports and air-

lines in China, so it is not difficult to find a valid schedule in AGSS. However, how many

resources and man-days consumed are important to airports and airlines. So we need an

optimization on valid AGSS solutions.

Proposition 1. The AGSS satisfaction is a special case of Distributed Constraint Satis-

faction Problem (Dis-CSP).

Proof. (Sketch) According to Definition 3, when considering each resource as an agent,

all operations what one agent could do as its variables, and precedent relation, ready

time and deadline to be constraints. Hence AGSS satisfaction could be formalized in

Distributed Constraint Satisfaction Problem (Dis-CSP).

3.2.3 AGSS problem

Definition 8 (AGSS problem). An AGSS problem is to find a valid AGSS satisfaction

schedule γ0, s0, so that

s.t.|ran(γ0)| = min
γ∈Γ

|ran(γ)|,

where Γ is the set of all valid schedules, and |ran(γ)| is the range size of function γ.

That is to say, AGSS problem is the process to find the optimal scheduling (lowest

cost).

Theroem 2. AGSS problem is in NP-complete class.

Proof. From Definition 7, Definition 8 and Theorem 1, we can clearly reason out that

AGSS problem is no simpler than NP-complete class. Nextly we should bound AGSS

problem up to NP-complete class.

And let us consider a most tightly resource bounded situation: the resources are

so few that there could be only one possible schedule for the AGSS satisfaction. In this

extreme case, the AGSS problem solving process is the very one AGSS satisfaction process,

i.e. this AGSS problem is NP-complete. In this process, all possible value assertions of

binary set B are possibly attempted, hence this brute-force search is NP-complete.

30

¥I¬Ê�Æa¬Æ Ø©

Generally, AGSS problem solving can be transformed to two processes: doing such a

brute-force search and scheduling resource consumption comparisons in case of finding a

new AGSS satisfaction. Though comparison computation varies large in different cases,

number of valid solutions is usually O(2|B|) = O(2b), hence it must be in NP-complete

time.

Hence, by summing up these two processes, the AGSS problem is in NP-complete

class.

Proposition 2. The AGSS problem is a special case of Distributed Constraint Satisfaction

Problem (Dis-CSP).

Proof. (Sketch) According to Definition 8, AGSS problem is a special case of AGSS sat-

isfaction, however with more constraints. And AGSS satisfaction is a special case of

Dis-CSP (Proposition 1). Hence the AGSS problem is a special case of Dis-CSP.

Proposition 3. The AGSS problem is a special case of Job-Shop Scheduling Problem.

Proof. (Sketch) According to Definition 1 and Definition 8, the precedent relation stands

for sequencing requirement, and excessive possession of resources stands for equipment

interference problem. Hence AGSS problem is a special case of JSSP.

3.2.4 Uncertain AGSS satisfaction

Definition 9 (Uncertain AGSS satisfaction). An uncertain AGSS satisfaction is a special

case of AGSS satisfaction, where for each operation o ∈ O, the ready time tr(o) is a

probabilistic function.

For example, it is an uncertain AGSS satisfaction to generate an always valid AGSS

satisfaction schedule for next month flight services within considering every combination

of flight arrivals and departures which might be delayed by kinds of reasons.

Proposition 4. The uncertain AGSS problem is a special case of Dynamic Job-Shop

Scheduling Problem (DJSSP).

Proof. (Sketch) Similar to Theorem 3, uncertain AGSS problem is a special case of Job-

shop scheduling problem (JSSP), however, with uncertain ready time of operations. That

is what exactly is called Dynamic Job-shop scheduling problem (DJSSP) [135].

31

¥I¬Ê�Æa¬Æ Ø©

There is another complexity class PSPACE-complete, which means a class of decision

problems solvable by a Turing machine (TM) in polynomial space [1]. As is well-known,

PSPACE-complete is more difficult than NP-complete.

Theroem 3. Uncertain AGSS satisfaction is in PSPACE-complete class.

Proof. (sketch) According to Proposition 4, uncertain AGSS satisfaction is a special case

of DJSSP. DJSSP can be reduced in polynomial time to a problem of QBF (Quanti-

fied Boolean Formula) [135]. Furthermore, QBF is well-known in PSPACE-complete [1].

Hence uncertain AGSS satisfaction must be in PSPACE-complete.

3.2.5 Uncertain AGSS problem

Definition 10 (Uncertain AGSS problem). An uncertain AGSS problem to find a valid

uncertain AGSS satisfaction schedule γ0, s0,

s.t.|ran(γ0)| = min
γ∈Γ

|ran(γ)|,

where Γ is the set of all valid schedules.

In other words, uncertain AGSS problem is the process to find the optimal scheduling

(lowest cost) for all of uncertain situations.

3.3 Notes in practical AGSS programming

Practically in programming for AGSS, we abbreviate R×T to P to represent service

plans, then a schedule becomes sch : O 7→ P. And an operation is a tuple consisting

of a flight number, type of operation, place to park, ready time (RT), latest finish time

(LFT), expected service time (ST), expected setup time (UT), expected reset time (ET).

operation
def
= 〈fno, type, parkNo, RT, LFT, ST, UT, ET〉

And a plan is usually a tuple consisting of a operation to serve, a resource to use, traffic

time (TT), committed service start time(CSST). Plans are usually in multi-step.

plan
def
= 〈op, res, TT, CSST〉

There is no ready-to-wear TT (tt(γ, o)) for a plan, one agent should calculate the ground

traffic distance according to the location of prior operation and the location of current

32

¥I¬Ê�Æa¬Æ Ø©

service target. In some international airports, there would be more than one way to

drive to destination, so agent should have simple spatial reasoning ability to calculate

the shortest (or the most reasonable) path. And then the ground traffic distance should

be divided by 5km/h, which is the maximal ground traffic velocity allowed in airport, to

make proper ground traffic time.

3.4 Characteristics

AGSS satisfaction and AGSS problem is a special case of Dis-CSP according to

Proposition 1 and Proposition 2. However it is nor a pure and simple Dis-CSP. Because

an AGSS satisfaction solution usually is not sufficient for airline industry, a schedule with

least resources, i.e. with lowest cost, is needed.

Though AGSS problem is a special case of JSSP, according to Proposition 3. However

AGSS problem is nor a pure and simple JSSP. AGSS problem, itself, is not aimed to

minimize the makespan of flights, but aimed to find a valid schedule for all flights and

their operations, and secondly to find a valid schedule with least resource consumption.

And the service finish of some operation does not means the resource is free then, e.g.,

in a typical service operation of unload baggage there might be four actions for a baggage

tractor:

• to drive to belt conveyor aside of target flight;

• to load baggage from cargo cabin via belt conveyor;

• to drive to service point of passenger baggage claim belt;

• to dispatch baggage.

33

Chapter 4 Dynamic Distributed Scheduling

Modeling

In this chapter, a dynamic distributed scheduling is offered for the dynamic nature

of AGSS problem. And an dynamic scheduling run-time (environment) run-and-schedule

for AGSS problem is also described.

4.1 Motivation

One major problems in AGSS problem is the dynamic nature of flight schedules. One

flight might be delayed by kinds of reasons, and special service might appear as a result

of special plane, passenger or weather. Therefore, it is incompatible to schedule an AGSS

or uncertain AGSS problem with a fixed flight schedule forecast. So a dynamic scheduling

framework is very essential for AGSS problem.

The other major problem in AGSS problem is variations in aircraft service require-

ments, i.e., a resource or an operation usually has individual requirements or constraints.

For example, dispatching aviation ground support vehicles must fulfill individual opera-

tion requirement, spatially distributed fleet of vehicles, vehicular operation preparation,

and (in some cases) ground traffic jam which is possibly blocked by aircrafts. As a result,

many constraints are taken to centralized optimization models. The quantities of con-

straints make the model very difficult (usually NP-hard or harder). Hence a distributed

scheduling model is also very important for AGSS problem.

M. E. Aydin and E. Öztemel (2000) had employed a dynamic environment for a

dynamic scheduling system with learning agents [136]. They dispose uncertain interfer-

ence with real-time (dynamic) information gathering mechanism. Distributed models and

methods were also naturally proposed to handle individual constraints in local resource/-

operation scopes, such as Dis-CSP [42], market-oriented programming [137], analysis by

G. İnalhan, D. M. Stipanović, and C. J. Tomlin (2002) [138], etc. Thereafter, distributed

34

¥I¬Ê�Æa¬Æ Ø©

computation makes optimization solving more feasible. And G. İnalhan et al (2002)

pointed out that centralized Pareto-optimality can also be guaranteed in decentralized

methods, if there is dominating local convexity in the solution or the interconnections are

weak [138]. Fortunately interconnections and global constraints in AGSS problems are

not strong, according to Definition 8.

In a word, it is beneficial to study dynamic distributed scheduling modeling for AGSS

problem.

4.2 Model overview

As shown in Figure 4–1, we developed such a dynamic distributed scheduling model,

which consists of four modules:

Input aviation systems: the collection of those aviation support information systems

related to AGSS in airports and airlines. These systems could support AGSS prob-

lem optimization or solving timely and accurately with their data, such as flight

schedule time (ready time and deadline), flight distance (cleaning and refueling),

passenger flow (disembark and boarding), cargo inbound and outbound (cargo han-

dling), etc. without these data, an accurate and effective service could not be

scheduled. However, these input system are physically distributed and data from

different systems may be not the same. So a data integration level is needed;

Run-and-schedule environment: the run-time for scheduling algorithm [139]. This

environment collects and integrates flight data, as well as a clock, for the next

module (distributed scheduling algorithm). Run-and-schedule is detailed in the

following Section;

Distributed scheduling algorithm: the algorithm to optimize scheduling. Many al-

gorithms could be adapted here, and in thesis we develop a novel algorithm DSAFO

here, see more details in Chapter 5;

Real world resources: the aircraft service workforce and equipments, such as engineers,

aviation ground support facilities and equipments, material, transportation equip-

ments, etc. Real-time information and operation assignments about real world re-

sources are also exchanges between distributed scheduling algorithm and real world

entities simultaneously. This module is the final stage, where optimized scheduling

is performed to as real manufacturing.

35

¥I¬Ê�Æa¬Æ Ø©

4.3 Run-and-scheduling

Run-and-schedule is a dynamic distributed scheduling environment [139], which un-

interruptedly observes flights arriving and departing in half an hour. It collects flight data

useful for AGSS from some aviation support systems, such as Flight Operations Control

system (FOC), Airport Operation Data Base (AODB), Flight Information Display System

(FIDS), Billing system and other operational and management information systems. The

collected data includes VIP mark, length of flight course, baggage to load and to unload,

cargo and mail information, passengers, special service requirement, etc. After success-

ful collecting the data, run-and-schedule integrates the data into consistent and reliable

formats and values.

As a result, service goals and plans in the distributed scheduling algorithm can be

calculated rationally, dynamically and near precisely, according to these information.

Meanwhile, by unifying a Heartbeat period and an algorithm base time, it provides

a public clock. This clock provides current time for all agents, flight tasks, service plans,

and resources, in order to ensure operation assignment synchronization in distributed

scheduling process.

According to viewpoints from S. J. Russell and P. Norvig [140], combining run-and-

schedule and real-world resources forms an accessible, deterministic, dynamic and discrete

runtime for multi-agent algorithm:

• accessible: an agent’s sensory apparatus give it access to the complete state of

run-and-schedule and resources;

• deterministic: the next state of resources is completely determined by the current

state of resources and the actions selected by the agents;

• dynamic: what run-and-schedule provides can change while an agent is deliberating;

• discrete: there are limited number of distinct, clearly defined percepts and actions.

36

¥I¬Ê�Æa¬Æ Ø©

In
pu

t a
vi

at
io

n
sy

st
em

s

F
O

C

A
O

D
B

F
ID

S

O
th

er
s

B
la

ck
bo

ar
d

ag
en

t

ag
en

t 1
M

em
be

r
ag

en
t 2

M
em

be
r

C
oo

rd
in

at
or

ag
en

t m
M

em
be

r
ag

en
t n

ag
en

t 1

R
es

ou
rc

e
ad

m
in

is
tr

at
or

ag
en

t

D
S

A
F

O

R
ea

l w
or

ld
 r

es
ou

rc
es

C
oo

rd
in

at
or

re
so

ur
ce

 g
ro

up
s

R
ea

l−
tim

e
da

ta
co

lle
ct

io
n

R
un

−
an

d−
sc

he
du

le
en

vi
ro

nm
en

t

C
lo

ck

Figure 4–1: Dynamic distributed model for AGSS

37

Chapter 5 DSAFO: Overview, Design and

Implementation

In this chapter, a multi-agent algorithm DSAFO (Dynamic Scheduling Agents with

Federation Organization) is proposed to solve AGSS satisfaction and problem. Algorithm

formalization and complexity analysis is presented as well.

5.1 An overview

DSAFO, i.e. Dynamic Scheduling Agents with Federation Organization, is a novel

multi-agent approach to optimize AGSS satisfaction and problem [139]. Comparing to

other scheduling techniques in Section 2.2, classification of DSAFO is shown in Figure

5–1.

As shown in Figure 4–1, DSAFO runs as follow:

1. to read real-time flights data from run-and-schedule environment;

2. to decompose flight service goals into operations, according to gathered data;

3. to divide the solution space dynamically into rational partitions with multi-agents;

4. to conquer each partition with local heuristics;

5. to optimize the solution simultaneously via coordination among partitions from

global view;

6. to dispatch the solution to real world environment simultaneously.

Yet it could be observed from Figure 4–1 that there is one agent Blackboard in charge

of decision-making of operation dispatch, one agent ResourceAdmin in charge of decision-

making of resource allocation, and many Member agents in charge of making operation-

38

¥I¬Ê�Æa¬Æ Ø©

Approximate Dispatching
rules

Scheduling
algorithms

Accurate
algorithms bound

planning

Branch−and−

Dynamic

Heuristic
search

Lagrange
relaxation

Intelligent
algorithms

algorithms

Evolution
algorithms

Tabu search

Neural
networks

Simulated
annealing

Ant Colony
system

Partical swarm
optimization

Multi−agent
system DSAFO

Gene
algorithm

planning

strategy
Evolution

Evolution

Figure 5–1: Algorithm category of DSAFO

39

¥I¬Ê�Æa¬Æ Ø©

resource match-up dynamically. The Coordinator agents are designed to facilitate coop-

erations among Member agents.

in addition, DSAFO shares many features with other forerunners:

1. similar spare resource factor synchronization mechanism with approach presented

by K. Sycara, S. Roth, N. Sadeh, and M. Fox (1991) [24],

2. similar resource borrowing mechanism and blackboard system with Dis-DSS [11, 12],

3. similar dynamic environment with simulated environment presented by M. E. Aydin

and E. Öztemel (2000) [136],

4. similar heuristic backtrack with asynchronous weak-commitment search[42, 44, 45].

5.2 DSAFO strategies

Internally, DSAFO algorithm can be viewed as a multi-agent approach with strategies

of local heuristics and global coordination.

5.2.1 Local heuristics

There are two sorts of local heuristics in DSAFO, both are EDD. One is to select

the first operation to do from many operations according to weighted Latest Finish Time,

and the other is to assign an operation to a resource from some resources according to

earliest Committed Service Start Time.

EDD is a sound and efficient way to solve small scale problems with suitable domain

knowledge. It can quickly work out a solution for a NP-complete or even PSPACE-

complete problem in very low polynomial time. But when the scale increases, EDD and

other heuristic algorithms will fall into local minimum. Consequently, DSAFO employs

local heuristics (EDD) in dynamic agents to jump out of local minimum.

This EDD strategy is implemented in the Blackboard and Member roles in Subsect.

5.3.1 and 5.3.3.

40

¥I¬Ê�Æa¬Æ Ø©

5.2.2 Global coordination

Global coordination is a mechanism that exchanges resource textures of agents and

realizes a complete resource borrow procedure for agents.

Usually an agent controls a portion of resources in multi-agent scheduling, so the

best decision may not be made from incomplete information of all resources, e.g. an

agent try to assign an operation to its resource, without knowing a better resource owned

by another agent. As a result, global coordination among agents could solve this trouble

prevailingly.

In DSAFO, global coordination is implemented in Member agents with help of Co-

ordinator agents. And there are two kinds of relationships between two Member agents

with same type of resources: buddy and competitor. If two Member agents share same

type of resources and same type of operations, they are competitors; if they share same

type of resources but different type of operations, they are buddies. A group of buddies

always help each other, by lending its own resource friendly.

5.3 Agent roles in DSAFO

DSAFO consists of four roles of agents in all: Blackboard, ResourceAdmin, Coordi-

nator and Member. Role Blackboard is active to fetch real-time flight data, role Member

is active to achieve operations, check resource’s out-of-date, and synchronize buddy list,

and role Coordinator is active to synchronize resource textures of Members. Rest actions

of all roles are passive, i.e. each of rest actions is driven by one (or some) of these four

action directly or indirectly.

Practically, there are one unique Blackboard, one Unique ResourceAdmin, some Co-

ordinators and more Members. And these agents are organized via message channels

structured as Figure 5–2.

The channels form several organization models of Federation [111]. Federation or-

ganization is formed of a group of agents which have ceded some amount of autonomy

to a single delegate which represents the group. This organization is good at reducing

communications, matchmaking, brokering, translation services and facilitating dynamic

agent pool [107, 111].

In the following subsections, program-like models are also given, role by role, in

41

¥I¬Ê�Æa¬Æ Ø©

ResAdmin Blackbaord

Member

Coordinator

Member Member

Coordinator

r1 r1
1 2 1

rn

r1 rn

...

...

cancelinformquery

invalidreplyrequest
re

lea
se

all
ot

ac
qu

ire

synbuddy
ackbuddy

ackdem
and

syndem
and

borrow

refuse
lend

Figure 5–2: Channel organization for agent communication

pseudo codes at proper level to represent usages of all channels precisely.

5.3.1 Role Blackboard

Role Blackboard is designed to perceive flight data, to decompose flight service tasks

into operations, and to assign operations with plans committed by Member agents. Black-

board has one active behavior

• reading flight data: to fetch date from run-and-scheduling actively in every Heart-

beat;

and three passive behaviors:

• responding operation query: to answer message sender with the top operation in

the type which is uniquely declared in the message;

• responding operation commitment: to answer message sender with “yes” if its plan

is feasible, otherwise “no”;

• responding operation cancellation: to remove a committed service plan.

42

These asynchronous assignments are weak commitments, in fact. Because once the

plan assigned by Blackboard is conflicted with another plan in the scope of related Member

agent, a backtrack message will be received by Blackboard, then the plan will be dismissed.

This type of actions is similar to asynchronous weak-commitment search [44, 45].

According to Figure 5–2, only one unique agent plays this role. With this agent, a

sound, complete and consistent global schedule could be made from many Member agents’

local viewpoints. And all final local plans in these Member agents are always consistent,

because they are always consistent with the Blackboard finally.

The channel utilization and behaviors of Blackboard are shown in Figure 5–3:

procedure Blackboard thread

operations←Ø;

flightdata←Ø;

while(true)

flightdata←get data();

operations←operations∪decomposite(flightdata);

dequeue message(sender, channel, content);

switch (channel)

case QUERY :

sendto(sender, INFORM, weighted EDD(content.opType));

case REQUEST :

if (isfree (content.op))

sendto(sender, REPLY, content);

commit(content.op, sender, content.plan);

adjust succ(content.op, content.plan);

else

sendto(sender, INVALID, content);

end if

case CANCEL :

recursive free (content.op, false);

case NIL :

block(Heartbeat×Blockfactor);

end switch

if (end of time)

terminate algorithm();

output result ();

end if

end while

end procedure

function weighted EDD

input taskType;

p←+∞;

op←NIL;

for t in unsolved op in 30min(taskType)

if (t .priv == VIP)

return t;

else if (t .LFT − now < p)

op←t;

43

p←t.LFT − now;

end if

end for

return op;

end function

procedure recursive free

input op

input notify

if (op.plan!=NIL and op.fixed==false)

unassign(op);

if (notify)

sendto(op.plan.resp, INVALID, op.plan);

end if

end if

for t in Succeed operation(op)

recursive free (t , true);

end for

end procedure

Figure 5–3: Behaviors and channel utilization of agent role Blackboard

5.3.2 Role ResourceAdmin

Role ResourceAdmin is a resource administrator with two passive behaviors:

• responding resource acquirement: to search free resources in certain type and allot

one to message sender if possible;

• responding resource release: to mark one resource available, which is usually four

hours after allocation, i.e. half a man-day (4-hour work).

This role is also played by only one agent, and its channel utilization and behaviors

are shown in Figure 5–4:

procedure ResourceAdmin thread

lastAcq←−∞;

lastOne←NIL;

while(true)

dequeue message(sender, channel, content);

switch (channel)

case ACQUIRE :

r← available res (content.resType);

if (r!=NIL and (lastAcq<now−1 or lastOne!=sender))

r .busy←true;

sendto(sender, ALLOT, r);

lastOne←sender;

lastAcq←now;

44

¥I¬Ê�Æa¬Æ Ø©

end if

case RELEASE :

content.resource.busy←false;

content.resource.used++;

case NIL :

block(Heartbeat×Blockfactor);

end switch

end while

end procedure

Figure 5–4: Behaviors and channel utilization of agent role ResourceAdmin

5.3.3 Role Member

Role Member is in charge of a type (or several types) of operations, it has three active

behaviors

• query for operation: to send operation query to Blackboard actively, because a

Member always has a desire to handle operations;

• out-of-date check: to send resource release to ResourceAdmin if a resource is dis-

patched after 4 hours;

• renewing buddy list: to send buddy list to Coordinator once in a certain time;

and seven passive behaviors:

• preparing for operation plan: after receiving goals of operations from Blackboard, it

tries to make a local plan and send plan request back; after it fails to make a local

plan, Member agent tries to borrow resource from its buddies;

• confirming plan:

– success: after receiving “yes” from Blackboard, it tries to confirm plan locally.

If confirmation is failed, then it sends back plan cancellation. Then, if the

resource in service plan is held by another agent (buddy), then it copies current

message to the holder;

– failure: after receiving “no” from Blackboard, if the resource in service plan is

held by another agent, then it copies current message to the holder;

45

• lending resource: after receiving resource borrow message from one agent, host

Member tries to make plan locally, and then sends plan result (maybe OK or not)

back. Member agent always has an open hand when other buddy needs help;

• confirming borrowing:

– success: to copy plan to Blackboard;

– failure: to send borrow message to next buddy; if no buddy left, send a resource

request to ResourceAdmin;

• adding new resource: to set a new resource with properties declared in the message

from ResourceAdmin;

• responding with resource texture: to send resource texture back to Coordinator;

• renewing buddy list: to renew buddy list with data from Coordinator.

Member agent also has a strategy of asynchronous weak-commitment search in re-

source selection practically, i.e. when Blackboard meets collision of two plans, one plan

will be sent back by channel invalid to dismiss the plan.

And Member’s channel utilization and behaviors are shown in Figure 5–5:

procedure Member thread

buddies←Ø;

lastSyn←−∞;

while(true)

for r in localResources

if (is expired (r))

release (r);

sendto(ResourceAdmin, RELEASE, r);

end if

end for

dequeue message(sender, channel, content);

switch (channel)

case INFORM :

p← earliest finish plan (content.op);

if (p!=NIL)

content.plan←p;

sendto(sender, REQUEST, content);

else if (buddies. size>0)

content.buddylist←buddies;

sendto(buddies. first , BORROW, content);

else

sendto(ResourceAdmin, ACQUIRE, content);

end if

case REPLY :

r←try assign (content.plan.res , content.plan);

46

¥I¬Ê�Æa¬Æ Ø©

if (r==false)

sendto(Blackboard, CANCEL, content);

end if

if (content.plan.resOwner==self)

if (r==true)

lastReq←lastReq+Heartbeat×Delayfactor;

opType←next type();

else if (content.plan.resp!=self)

sendto(content.plan.resp, INVALID, content);

end if

else

sendto(content.plan.resOwner, REPLY, content);

end if

case INVALID :

free assignment(content.plan.res , content.plan);

if (sender==Blackboard and content.plan.resOwner6=self)

sendto(content.plan.resOwner, INVALID, content);

end if

case BORROW :

p←gen plan locally(content.op);

if (p!=NIL)

content.resource←p.res ;

content.plan←p;

sendto(sender, LEND, content);

else

content.buddylist.remove(self);

sendto(sender, REFUSE, content);

end if

case LEND :

sendto(Blackboard, REQUEST, content);

case REFUSE :

if (content.buddylist. size>0)

sendto(content.buddylist. first , BORROW, content);

else

sendto(ResourceAdmin, ACQUIRE, content);

end if

case ALLOT :

addres(content.res);

case REQDEMAND :

sendto(sender, SYNDEMAND, res job free());

case SYNBUDDY :

buddies←content;

case NIL :

if (now−lastReq>Heartbeat×Reqcycle)

sendto(Blackboard, QUERY, opType);

end if

if (now−lastSyn>Heartbeat×Syncycle}
sendto(CoordinatorresType , REQBUDDY, self);

lastSyn←now;

end if

end switch

block(Heartbeat×Blockfactor);

end while

47

end procedure

Figure 5–5: Behaviors and channel utilization of agent role Member

5.3.4 Role Coordinator

Role Coordinator coordinates all Member agents having same resource type as its. It

has one active behaviors on resource texture synchronization

• resource texture synchronization: send resource texture query message to each of

its Member;

and two passive behaviors on resource demand information:

• renewing resource texture: to renew local resource texture with data from every

Member;

• responding buddy list synchronization: to send buddy list sorted by resource texture.

Channel utilization and behaviors of Coordinator are shown in Figure 5–6:

procedure Coordinator thread

nextSyn←−∞;

while(true)

dequeue message(sender, channel, content);

switch (channel)

case SYNDEMAND :

memberDmd[sender]←content.value;

case REQBUDDY :

sendto(sender, SYNBUDDY, buddies in order(sender));

case NIL :

if (memberHash.size>0 and now>nextSyn)

nextSyn←nextSyn+Heartbeat×Syncycle;

for m in memberDmd.candidates

sendto(m, REQDEMAND, NIL);

end for

end if

end switch

block(Heartbeat×Blockfactor);

end while

end procedure

function buddies in order

input mem;

bd←Ø;

for m in members

48

¥I¬Ê�Æa¬Æ Ø©

if (m.opType!=mem.opType)

bd += n;

end if

end for

bd.sortBy(DESCENDING);

return bd;

end function

Figure 5–6: Behaviors and channel utilization of agent role Coordinator

5.4 A formalized summary

Besides former polyadic π-calculus definitions in Section 2.5, in this thesis we usually

abbreviate name sequences (such as a tuple) in polyadic π-calculus to vector names, e.g.

in AGSS problem a operation tuple structure

op
def
=< fno, type, parkNo, RT, LFT, ST, UT, ET >

may be abbreviated to “−→op”. And a name in vector name could be accessed using “.”,

e.g. the LFT (Latest Finish Time) of an operation −→op is “op . LFT”.

In the form of polyadic π-calculus, there are several parameters for DSAFO [139]:

SchOts is a set representing operation types to schedule, for each type t ∈ SchOts, Agentt

is a set representing agent candidates who can work for t, Resource is a set representing

resource types, for each resource type r ∈ Resource, Otinresr is a set representing what

operation types could be served by r, Heartbeat is a time duration representing how much

local machine time represents one real minute, Clockzero is a moment representing when

clock starts. Then we have

DSAFO
def
= (SchOts,Agentst, Resources, Otinresr, Heartbeat, Clockzero)

(ν querya
t , informa

t , requestat , reply
a
t , cancelat , invalida

t , reqbuddya
t , synbuddya

t

, borrowa
t , lenda

t , refusea
t , reqdemanda

t , syndemanda
t , acquirea

t , allotat , releasea
t)

(BLACKBOARD|RESADMIN|MEMBERa
t |COORDINATORr)

(t ∈ SchOts, a ∈ Agentst, r ∈ Resources)

5.4.1 Blackboard

BLACKBOARD perceives information of flights coming in half an hour, decomposes

them into operations and assigns these operations with plans from Member agents.

49

¥I¬Ê�Æa¬Æ Ø©

Parameter Flights is a set of all known flights, and for each f ∈ Flights, t ∈ SchOts,

Opst
f denotes a unique operation (in certain flight’s certain type), which is a structure

representing operation tuple.

BLACKBOARD
def
= (Flights, Opst

f)

(BbFunc|RespQuerya
t |RespReqa

t |RespCancelat)

(t ∈ SchOts, a ∈ Agentst, f ∈ Flights)

BbFunc is a set of useful functions supporting other behaviors of BLACKBOARD.

For example, channel clock is watched at any time. When two parameters (output channel

tch and time time) are received from clock, value (time− Clockzero)/Heartbeat will be

outputted through tch. In other words, function clock(tch, systime) converts time time

from local system form to clock form and returns the result through tch.

BbFunc ≡ !clock(tch, time).tch〈(time− Clockzero)/Heartbeat〉

|!readyopt(rchret).(ν chn)(clock〈chn, systime〉|chn(t)

.(ν c)(mostpreferedopt〈c, t + 5, t + 30〉|c(−→opr).rchret〈−→opr〉))

| · · ·

Obviously the π-calculus model is too verbose to cover details of agent roles’ behav-

iors. So nextly some behaviors of agent would not be modeled as precisely as in Section

5.3. Nevertheless, the main characteristics and portrait of DSAFO is clear in the next

model.

RespQuerya
t ≡ !querya

t .(ν c)(weighted eddt〈c〉|c(−→op).[−→op 6= nil]informa
t 〈−→op〉)

RespReqa
t ≡ !requestat (

−−→
plan).(ν ch)(getplan〈ch, plan . fno, plan . ot〉

|ch(
−−−−−→
myplan).([

−−−−−→
myplan = nil](assign〈

−−→
plan〉.replya

t 〈syn,
−−→
plan〉

.enable succ〈plan . fno, plan . ot〉) + [
−−−−−→
myplan 6= nil]invalida

t 〈
−−→
plan〉))

RespCancelat ≡ !cancelat (
−−→
plan).(ν ch)(getplan〈ch, plan . fno, plan . ot〉|ch(

−−−−−→
myplan)

.[
−−−−−→
myplan =

−−→
plan]recursive free〈plan . fno, plan . ot〉, false)

5.4.2 ResourceAdmin

RESADMIN is a resource administrator. When received resources request, RESAD-

MIN would search free resources and allot one if possible. After 4-hour work, the resource

50

¥I¬Ê�Æa¬Æ Ø©

would be free again. Additionally, one resource serves no more than 12 hours, i.e. one

and a half man-days.

Parameter Reslistr is a set of all known resources in type r, and Historylistt is a

historical record of resource usage which aims at ensuring the number of usage of each

resource in one day is no more than three, which is pre-assumed (12 hours/4 hours) before.

RESADMIN
def
=(Reslistr, Historylistr)(RaFunc|Respreqa

t |Respreleasea
t)

(r ∈ Resources, t ∈ SchOts, a ∈ Agentst)

Respreqa
t ≡ !resreqa

t (begintm).(ν ch)(available rest〈ch, begintm〉|ch(−→res)

.[−→res 6= nil])allotat 〈res . name, begintm〉.set busy〈−→res, true〉

.log allot〈−→res, t, a〉))

Respreleasea
t ≡ !releasea

t (resname).(ν ch)(getresfromhash〈ch, resname〉

|ch(−→res).[−→res 6= nil]log release〈−→res〉.set busy〈−→res, false〉)

5.4.3 Member

A Member agent MEMBERa
t is an agent named a and in charge of operation type t.

It always has a desire to handle operations. After MEMBERa
t received available operation

goals from BLACKBOARD, it intends to make suitable plans and request for them. Every

member agent always has an open hand when its buddies need help.

For each t ∈ SchOts, a ∈ Agentst, MEMBERa
t has some parameters: Syncycle is a

preset integer representing demand synchronization cycle, Resourcea
t is a set of structure

holding local resources’ history and current commitment plans, and Remoteresa
t repre-

sents the remote resources lent to itself.

MEMBERa
t

def
= (Syncycle, Resourcea

t , Remoteresa
t)

(MbFunc|ActQrya
t |MkPlana

t |AckReplya
t |AckInvlda

t |TryLenda
t

|AckLenda
t |CallBda

t |Ackresa
t |AckRDmda

t |DumSyna
t |AckSyBda

t)

(t ∈ SchOts, a ∈ Agentst)

ActQrya
t ≡ (querya

t .block
a
t 〈Heartbeat〉.(ν ch)(getexpiredresa

t 〈ch〉|ch(
−−−−→
reslist)

.[
−−−−→
reslist 6= nil]releaseallat 〈

−−−−→
reslist〉).)+∞

51

¥I¬Ê�Æa¬Æ Ø©

MkPlana
t ≡ !informa

t (
−→op).(ν ch)(makenullplant〈ch, −→op〉|ch(−→n))

.(ν p)(locallyplan〈p, −→n 〉|p(
−−→
plan, res).([res 6= null]requestat 〈

−−→
plan〉

+ [res = null]((νc)(getbuddy〈c〉|c(
−→
bud)

.([
−→
bud 6= nil]try borrow〈bud . top,

−−→
plan〉

+ [
−→
bud = nil]acquirea

t 〈plan . EST − 1〉)))))

AckReplya
t ≡ (!replya

t (syn,
−→
pln).(νch)(try assigna

t 〈ch, pln . res,
−→
pln〉|ch(ret)

.([ret 6= true]cancelat 〈
−→
pln〉|([pln . resOwner 6= self]replypln.resOwner

t

+ [pln . resOwner = self]([ret = true](setlreq〈now〉.enum restype)

+ [ret 6= true][pln . resp 6= self]invalidpln.resp
t 〈

−→
pln〉))))

AckInvlda
t ≡ !invalida

t (
−→
pln).freeresa

t 〈plan . res〉.[pln . sender = BLACKBOARD]

[pln . resOwner 6= self]invalidpln.resOwner
t 〈

−→
pln〉

TryLenda
t ≡ !borrowa

t (
−−−→
uplan,

−→
lst, succ, fail).(ν ch)(locallyplan〈ch,

−−−→
uplan〉

|ch(
−−→
plan).([plan . res 6= null]assigna

t 〈
−−→
plan〉.succ〈

−−→
plan〉

+ [plan . res = null]fail〈
−−−→
uplan,

−→
lst〉))

AckLenda
t ≡ !lenda

t (
−−→
plan).requestat 〈

−−→
plan〉

CallBda
t ≡ !refusea

t (
−−−→
uplan,

−→
lst).(ν c)(topof〈c,

−→
lst〉

|c(next,
−−→
nlist).([next 6= null]next〈

−−−→
uplan,

−−→
nlist, lenda

t , refusea
t 〉

+ [next = null]acquirea
t 〈uplan . EST − 1〉))

Ackresa
t ≡ !allotat (name, begintm).(ν ch)(genrest〈ch, name, begintm, 239〉

|ch(−→res).[−→res 6= nil]addres2locallist〈−→res〉)

AckRDmda
t ≡ !reqdemanda

t .(ν ch)(res freedoma
t 〈ch〉|ch(ret).syndemanda

t 〈ret〉)

DumSyna
t ≡ (reqbuddya

t .block
a
t 〈Syncycle×Heartbeat〉.)+∞

AckSyBda
t ≡ !synbuddya

t (
−→
lst).setbuddy〈

−→
lst〉

5.4.4 Coordinator

A coordinator agent COORDINATORr coordinates all member agents having re-

source r. After elimination of plan backup mechanism, it has several behaviors on infor-

mation synchronization and buddy list making up.

Parameter Syncycle is a preset integer representing demand synchronization cycle.

For each r ∈ Resources, Metainfor is a set of meta-level information of members, such

as resource demand and number of finished operations.

52

¥I¬Ê�Æa¬Æ Ø©

CORDINATORr
def
=(Metainfor, Syncycle)(CooFunc|Synchr|Storea

t |RespBda
t)

(r ∈ Resources, t ∈ Otinresr, a ∈ Agentst)

Synchr ≡ (synallr.blockr〈Syncycle×Heartbeat〉.)+∞

Storea
t ≡ !syndemanda

t (dm).(ν ch)(setval〈ch, dm〉|ch(demandsa
t)

.removelist〈demandsa
t 〉.insertsort〈demandsa

t , DESC〉)

RespBda
t ≡ !reqbuddya

t .(ν ch)(genbuddylistt〈ch〉|ch(
−→
blst).synbuddya

t 〈
−→
blst〉))

5.5 Complexity

There are constant types of different operations in AGSS satisfaction and problem,

and all these operations share same scheduling strategy. In other words, all type of

resources share homogeneous scheduling, and their solutions do look in same modes.

Consequently total time cost is in direct proportion to a certain type of operations such

as unload cargo and mail (UC). Hence,

tDSAFO ∼ Const× tUC .

5.5.1 UC’s Complexity

UC is served by baggage tractors (BTs). Similarly to Lemma 3, the expectation of

BTs

BT ∗ ∼ O(n)

can be proved. It means the expectation of BTs is in direct ratio to the number of flights.

And some parameters of the algorithm affect the complexity, so we assume there are O(n)

BT Member agents and the rest of parameters are reasonable const to compute the upper

bound of complexity tDSAFOUB
.

5.5.1.1 Complexity from agent behaviors

For the UC operations and related algorithm computation, there is one Blackboard,

one ResourceAdmin, one Coordinator, and O(n) BT Member agents. The Blackboard

actively gets flight data in cycles, and response no more than O(n) messages from channels

53

¥I¬Ê�Æa¬Æ Ø©

QUERY, REQUEST and CANCEL. All of these causes agent self-behavior running time:

tbb = tgetInfo + tQUERY + tREQUEST + tCANCEL

. O(n2) + O(n)× [O(n) + O(n) + O(n)]

∼ O(n2)

The ResourceAdmin should response O(n) messages from channels ACQUIRE and

RELEASE, so the time complexity of agent self-behavior is:

tresAdmin = tACQUIRE + tRELEASE . O(n)× [O(n) + O(1)] ∼ O(n2)

Every Member actively checks buddy resource expiration and actively synchronizes

buddies’ resource textures through Coordinator in cycles, and responses messages from

channels IMFORM, REPLY, INVALID, BORROW, LEND, REFUSE, ALLOT, REQDE-

MAND and SYNBUDDY. With multiple Member agents — not single one — it is very

hard to make sure how many operations requests are made through these channels for

each agent. Nevertheless, from a global viewpoint, it is very clear that all Member agents

process O(n) times totally.∑
tmemi

=
∑

(treleaseRes + tIMFORM + tREPLY + tINV ALID + tBORROW + tLEND

+tREFUSE + tALLOT + tREQDEMAND + tSY NBUDDY + tactiveSyn + tactiveReq)

. O(n) + O(n)× [O(n2) + O(n) + O(1) + O(n2) + O(1) + O(n2)

+O(n) + O(n2) + O(n) + O(1) + O(1)]

∼ O(n3)

The Coordinator, which is in charge of BT, actively synchronizes its member’s re-

source texture, and responses messages from channels SYNDEMAND and REQBUDDY.

tcoord = tSY NDEMAND + tREQBUDDY + tactiveSyn

. O(n) + O(n2 × log n) + O(n)

∼ O(n2 × log n)

Summing up the upper bounds of these time complexity, we could have the upper

bound of complexity of UC operations caused by agent behaviors:

tUC behavUB
= tbbUB

+ tresAdminUB
+

∑
tmemiUB

+ tcoordUB

. O(n2) + O(n2) + O(n3) + O(n2 × log n)

∼ O(n3)

54

¥I¬Ê�Æa¬Æ Ø©

5.5.1.2 Complexity from agent communications

The communications among agents are simpler. Totally there are four types of com-

munications in DSAFO: Member–Blackboard, Member–Member, Member–Coordinator and

Member–ResourceAdmin. They should be considered one by one:

Member–Blackboard There are O(n) UC operations in total, so channels INFORM,

REQUEST and REPLY would be triggered by O(n) times normally1. Channels

would be used no more than O(n) times normally. Channel REQUEST would be

used no more than O(n) times, because there are no more than O(n) Member agents

in charge of UC operations in a limited long time, totally.

Member–Member Because each Member agent has no more than O(n) buddies, hence

each UC operation needs no more than O(n) communications for a successful re-

source borrowing.

Member–Coordinator In a limited long scheduling time, there are O(1) times of re-

source texture synchronization in each Member–Coordinator relation. And there no

more than O(n) Member agents, so there are no more than O(n) times of resource

texture synchronization.

Member–ResourceAdmin To solve O(n) UC operations, it has been concisely proved

previously that O(n) resources (BT) are needed. Hence channels ACQUIRE, AL-

LOT and RELEASE would be used for O(n) times normally.

As a summing-up from above analysis, the upper bound of UC processing complexity

caused by communication is:

tUC transUB
= tresAllotUB

+ tsynDemandUB
+ tsynBuddyUB

+ UC op× topReqUB
+ tborrowUB

∼ {O(n) + O(n) + O(n) + O(n)× [O(1) + O(n)]} × ttrans

∼ O(n2)× ttrans

where ttrans denotes the average message transmission time. The ttrans is usually several

milliseconds in real-world local area networks, so it is too large to be ignored.

1“Normally” stands for ignoring extreme cases such as being trapped with frequent requests failure

caused by too little Blockfator or something else

55

¥I¬Ê�Æa¬Æ Ø©

5.5.1.3 UC’s complexity summary

And the rest processes (such as agent initiates and data fetching done by Blackboard)

are less complex, so the upper bound of time complexity of processing UC operations is:

tUCUB
= tUC behavUB

+ tUC transUB
∼ O(n3) + O(n2)× ttrans

5.5.2 Complexity of DSAFO

Accordingly, the upper bound of DSAFO complexity is

tDSAFOUB
∼ Const× tUCUB

∼ O(n3) + O(n2)× ttrans

Also, we can assume there are O(1) Member agents in charge of UC operations, then

have the lower bound of DSAFO complexity is:

tDSAFOLB
∼ O(n2) + O(n)× ttrans

5.6 Implementation

JADE2 (Java Agent DEvelopment Framework) is a software framework [141] to

develop agent-based applications in compliance with the FIPA specifications3 for inter-

operable intelligent multi-agent systems. The goal is to simplify the development while

ensuring standard compliance through a comprehensive set of system services and agents.

JADE can then be considered an agent middle-ware that implements an agent plat-

form and development framework. It deals with all those aspects that are not peculiar

of the agent internals and that are independent of the applications, such as message

transport, encoding and parsing, or agent life-cycle.

JADE is also free software and is distributed by Telecom Italia4, the copyright holder,

in open source software under the terms of the LGPL (Lesser General Public License

Version 2).

We implemented DSAFO in JADE and implemented the channels on FIPA ACL

[72, 73], with grammar of Appendix A. Some of the running user interfaces are shown in

Figure 5–7 and Figure 5–8.

2See http://jade.tilab.com/
3See http://www.fipa.org/
4See http://www.telecomitalia.com/

56

http://jade.tilab.com/
http://www.fipa.org/
http://www.telecomitalia.com/

¥I¬Ê�Æa¬Æ Ø©

For example, The plan of “BT35” for unload cargo and mail of flight CA109 consists

of two travel (marked with compact line), one service and one reset actions (marked with

R), furthermore there are some small buffer gaps (1 minute usually) between actions.

Once the service of operation unload cargo and mail is done, then operation load cargo

and mail could start being served. Furthermore, in Figure 5–7 this unload cargo and

mail operation plan is labeled with “CT-Agt0(CT+Agt1)”, which means the resource,

i.e. the baggage tractor “BT35”, is held by CT-Agt0, however CT+Agt1 borrows it for

this operation; in Figure 5–8 the target flight of this plan, i.e. CA109, is in red, and that

color also stands for a resource borrowing.

Figure 5–7: Gantt chart of typical scheduled plans for a flight (the Blackboard)

Because DSAFO is implemented in JADE and Java, and Java run-time is an OS-

independent virtual machine environment, DSAFO could run in any mainstream operating

systems, such as Windows, UNIX, Linux, MAC OS, etc. From JADE RMA GUI (Remote

Monitoring Agent, Graphical User Interface), DSAFO is a group of agents running as

Figure 5–9. JADE sniffer could also sniff then message transmission among agents in

DSAFO, as shown in Figure 5–10. Also JADE introspector could show us the inner

status of a certain agent in DSAFO, as shown in Figure 5–11.

57

¥I¬Ê�Æa¬Æ Ø©

Figure 5–8: Gantt chart of typical scheduled plans for resources (a BT Member agent)

Figure 5–9: DSAFO on JADE RMA GUI

58

¥I¬Ê�Æa¬Æ Ø©

Figure 5–10: Communication observed by JADE sniffer

Figure 5–11: Agent inner states observed by JADE introspector

59

Chapter 6 Experiments and Analysis on Diverse

Parameters

In this chapter, a kind of resources BTs are selected to test algorithm DSAFO; a

serious of experiments are made to test influences by algorithm factors: Member agent

number, Blockfactor, Delayfactor and Syncycle; a following brief summary is presented.

6.1 The experiment

Our AGSS test data are 252 real-life transfer flights, which are collected from a whole

day records of Beijing Capital International Airport (BCIA) historical data.

As show in Figure 5–7, each transfer flight is assumed to have nine typical operations:

Unload baggage (UB), Unload cargo and mail (UC), Load cargo and mail (LC), Load

baggage (LB), Cleaning, Catering, Watering, Refueling and maintenance. And the rest of

operations are presumed to be fixed, i.e., they would be done perfectly without program

assistance. As a result, there are 2,268 operations to be dispatched to hundreds of aircraft

ground support resources for daily transfer flights.

There are so many types of operations, so it must be troublesome to completely

analyze algorithm in all nine types of resources or to present detailed experiment results.

Nevertheless it should be noticed that all type of resources and their operations share

homogeneous scheduling mechanisms, and their solutions do look in same modes. That

means when a good scheduling is done for one type of resources, all the resource schedules

are good in general.

Among those operations and resources, BT (baggage tractor) related operations

should be the most complex, because only BT can serve multiple kinds of operations

as shown in Table 1–1. Hence one BT, which is different than other resources, could be

assigned to different types of operations successively, e.g. UB–UC–LB–UC. So we choose

BT consumption and relative man-days to algorithm quality test in the below sections.

60

¥I¬Ê�Æa¬Æ Ø©

6.2 The factors

As a dynamic coordination based multi-agent algorithm, DSAFO is naturally unsta-

ble in computing solutions, because of the parallel Member agents’ coordination, unstable

network communications and maybe even some tiny sensitive features from environment

JADE and program language Java. Consequently we have spontaneous 250 runs to get

the distributions of the solutions in each test.

In the description of DSAFO in Section 5.3, there are some parameters listed in

pseudo codes: Blockfactor, Delayfactor, Syncycle and Reqcycle. Besides these four

internal-agent parameters, Member agent number — such as Member agents in charge

of BTs — is another important parameter. Algorithm DSAFO and its output is influ-

enced largely or tinily respectively by different parameters. In following subsections, the

parameters are experimented and analyzed one by one, both through solution comparison

and theoretical analysis.

6.2.1 Member agent number and Reqcycle

Combining Member agent number and Reqcycle stands for how often Member agents

in DSAFO try to request a certain type of operations. Keeping a suitable request fre-

quency by suitable Reqcycle, number of Member agents affects DSAFO largely. And in

all the parameters, number of Member agents should be notably influential. When Block-

factor=1/12, Delayfactor=1/6, Syncycle=5, and Reqcycle is from 1/6 to 2 respectively,

Figure 6–1 and 6–2 show the solution distributions with different BT Member agents in 3D

map and contour map, as well as Figure 6–3 shows the marginal distributions of resource

(BT) and man-day consumptions.

From Figure 6–1, 6–2 and 6–3, We can see an interesting phenomenon:

• When the BT Member agent number increases from 1 to 4, the solutions are going

better: average BT consumption and 4-hour jobs arrangement both are decreasing.

From charts we can see that in 3D maps the heaps of distribution are moving

left-down; in the marginal chart, the distribution polylines are moving left both

in resource consumptions and 4-hour jobs arrangement; meanwhile the shape of

solution distributions are becoming “better1 and better”.

1Ocular witness is not very strong proof, however the good shapes must be proved to fit normal

distribution better, both in 3D charts and 2D polyline charts.

61

¥I¬Ê�Æa¬Æ Ø©

129 130 131 132 133 134 135
136

137
138

0

2

4

6

8

10

12

51

52

53
54

55
56

Ti
m

es
 in

 2
50

 ru
ns

Res
ou

rce
s c

on
su

med

4-hour jobs arranged

129 130 131 132 133 134 135 136 137 138

51

52

53

54

55

56

4-hour jobs arranged

R
es

ou
rc

es
 c

on
su

m
ed

0

1.500

3.000

4.500

6.000

7.500

9.000

10.50

12.00

1 BT Member Agent

126
127

128
129

130
131

0

2

4

6

8

10

12

14

16

18

20

48
49

50
51
52
53
54
55
56

Ti
m

es
 in

 2
50

 ru
ns

Res
ou

rce
s c

on
su

med

4-hour jobs arranged

126 127 128 129 130 131
48

49

50

51

52

53

54

55

56

4-hour jobs arranged

R
es

ou
rc

es
 c

on
su

m
ed

0

2.500

5.000

7.500

10.00

12.50

15.00

17.50

20.00

2 BT Member Agents

123
124

125
126

127
128

129
130

0

2

4

6

8

10

12

14

16

18

20

22

47

48

49

50
51

Ti
m

es
 in

 2
50

 ru
ns

Res
ou

rce
s c

on
su

med

4-hour jobs arranged

123 124 125 126 127 128 129 130

47

48

49

50

51

4-hour jobs arranged

R
es

ou
rc

es
 c

on
su

m
ed

0

2.625

5.250

7.875

10.50

13.13

15.75

18.38

21.00

4 BT Member Agents

Figure 6–1: BT solution distributions with respect to agent number

62

¥I¬Ê�Æa¬Æ Ø©

125
126

127
128

129

0

2

4

6

8

10

12

14

16

18

47
48

49
50
51
52
53
54
55

Ti
m

es
 in

 2
50

 ru
ns

Res
ou

rce
s c

on
su

med

4-hour jobs arranged

125 126 127 128 129
47

48

49

50

51

52

53

54

55

4-hour jobs arranged

R
es

ou
rc

es
 c

on
su

m
ed

0

2.125

4.250

6.375

8.500

10.63

12.75

14.88

17.00

6 BT Member Agents

126
127

128
129

130
131

0

2

4

6

8

10

12

48

49

50
51

52
53

Ti
m

es
 in

 2
50

 ru
ns

Res
ou

rce
s c

on
su

med

4-hour jobs arranged

126 127 128 129 130 131

48

49

50

51

52

53

4-hour jobs arranged

R
es

ou
rc

es
 c

on
su

m
ed

0

1.500

3.000

4.500

6.000

7.500

9.000

10.50

12.00

8 BT Member Agents

131
132

133
134

135
136

0

2

4

6

8

10

50

51

52
53

54
55

Ti
m

es
 in

 2
50

 ru
ns

Res
ou

rce
s c

on
su

med

4-hour jobs arranged

131 132 133 134 135 136

50

51

52

53

54

55

4-hour jobs arranged

R
es

ou
rc

es
 c

on
su

m
ed

0

1.250

2.500

3.750

5.000

6.250

7.500

8.750

10.00

12 BT Member Agents

Figure 6–2: BT solution distributions with respect to agent number (more)

63

¥I¬Ê�Æa¬Æ Ø©

46 48 50 52 54 56 58 60 62
0

10

20

30

40

50

60

70

80
Ti

m
es

 in
 2
50

 ru
ns

Resources consumed

 1 agent
 2 agents
 4 agents
 6 agents
 8 agents
 12 agents

122 124 126 128 130 132 134 136 138 140 142 144 146 148 150
0

10

20

30

40

50

60

70

80

Ti
m

es
 in

 2
50

 ru
ns

4-hour jobs arranged

 1 agent
 2 agents
 4 agents
 6 agents
 8 agents
 12 agents

Figure 6–3: BT solution marginal distributions with respect to agent number

64

¥I¬Ê�Æa¬Æ Ø©

• On the contrary, when the number increases from 4 to 12, the solutions are going

worse: average BT consumption and 4-hour jobs arrangement both are increasing.

From charts we can see that in 3D maps the heaps of distribution are moving

right-up; in the marginal chart, the distribution polylines are moving right both

in resource consumptions and 4-hour jobs arrangement; meanwhile the shape of

solution distributions are becoming “worse and worse”.

Why does it happen? Theoretical analysis could offer some reasons.

It is clear that multiple Member agents in DSAFO are designed to divide global so-

lution space into local partitions, and the number of local partitions is equal to Member

agent number. Then each local partition is handled with heuristics by single Member

agent. Though such a Divide-and-Conquer — a very traditional AI technique — is the

nature of some heuristics, DSAFO has a special mechanism to jump from local mini-

mum of Divide-and-Conquer: some optimizations are processed via coordinations among

partitions (agents). The optimizations provide DSAFO output better than Divide-and-

Conquer heuristics.

Why the solutions are not good with too few agents? It should be because the

coordination strategy takes insufficient effect, or sometimes no effect. If there is only

one BT Member agent, then no coordinations will happen, so DSAFO with only one BT

Member agent must have weak abilities to jump out of local minimum.

Why the solutions are not good with too many agents? It might be because too

many agents divide the global solution into too many fragments, so that local heuristics

in these fragments is lack of enough global viewpoints, and coordination cannot optimize

these fragments very well.

6.2.2 Blockfactor

Blockfactor is another influential parameter. We set Agentnum=1, Delayfactor=1/6,

Syncycle=5 and Reqcycle = 1/6, and then we get solution distribution with respect to

Blockfactor comparison in 3D map and contour map, as shown in Figure 6–4, as well as

marginal distribution comparison with respect to Blockfactor in Figure 6–5.

From Figure 6–4 and 6–5, We can see that:

• The peak in the 3D map and contour map moves a bit downward when Blockfactor

decreases, that means resource consumption stays the same approximately and 4-

65

¥I¬Ê�Æa¬Æ Ø©

129 130 131 132 133 134 135
136

137
138

0

2

4

6

8

10

12

51

52

53
54

55
56

Ti
m

es
 in

 2
50

 ru
ns

Res
ou

rce
s c

on
su

med

4-hour jobs arranged

129 130 131 132 133 134 135 136 137 138

51

52

53

54

55

56

4-hour jobs arranged

R
es

ou
rc

es
 c

on
su

m
ed

0

1.500

3.000

4.500

6.000

7.500

9.000

10.50

12.00

1 BT Member Agent with Blockfactor=1/12

128
129

130
131

132

0

2

4

6

8

10

12

14

16

18

20

22

49

50
51

52
53

54
55
56

Ti
m

es
 in

 2
50

 ru
ns

Res
ou

rce
s c

on
su

med

4-hour jobs arranged

128 129 130 131 132
49

50

51

52

53

54

55

56

4-hour jobs arranged

R
es

ou
rc

es
 c

on
su

m
ed

0

2.625

5.250

7.875

10.50

13.13

15.75

18.38

21.00

1 BT Member Agent with Blockfactor=1/24

128
129

130
131

132

0
2
4
6

8

10

12

14

16

18

20

22

24

26

49

50
51

52
53

54
55
56

Ti
m

es
 in

 2
50

 ru
ns

Res
ou

rce
s c

on
su

med

4-hour jobs arranged

128 129 130 131 132
49

50

51

52

53

54

55

56

4-hour jobs arranged

R
es

ou
rc

es
 c

on
su

m
ed

0

3.125

6.250

9.375

12.50

15.63

18.75

21.88

25.00

1 BT Member Agent with Blockfactor=1/36

Figure 6–4: BT solution distributions with respect to Blockfactor

66

¥I¬Ê�Æa¬Æ Ø©

50 52 54 56 58 60 62
0

10

20

30

40

50

60

70

80

90

100
Ti

m
es

 in
 2
50

 ru
ns

Resource consumed

 Blockfactor=1/12
 Blockfactor=1/24
 Blockfactor=1/36
 0 (Embedded Agent)

128 130 132 134 136 138 140 142 144 146 148 150
0

10

20

30

40

50

60

Ti
m

es
 in

 2
50

 ru
ns

4-hour jobs arranged

 Blockfactor=1/12
 Blockfactor=1/24
 Blockfactor=1/36
 0 (Embedded Agent)

Figure 6–5: BT solution marginal distributions with respect to Blockfactor

67

¥I¬Ê�Æa¬Æ Ø©

hour jobs arranged decreases a bit.

• From 3D shapes and polyline shapes we could see that when the Blockfactor goes

smaller, the solutions distributes more centralized, and the algorithm acts more

similar as a stable algorithm.

In the description of DSAFO in Section 5.3, when an agent has nothing to do further,

it blocks itself in time of Blockfactor× Heartbeat. During this period, this agent will be

awaken immediately when any message arrives. In other words, Blockfactor stands for

how much time to block between agent activity cycles.

If there is only one BT Member agent, it has no buddies trying to to awake it. So it

would keep idle until the time limit usually, unless Coordinator, Blackboard or ResourceAd-

min sends message to it. Hence when Blockfactor is smaller, time to block is shorter, and

the algorithm acts more like centralized heuristics. When Blockfactor is larger, the time

to block is longer, the algorithm acts less like centralized heuristics.

Why one Member agent with tiny Blockfactor (e.g. 1/36) still outputs unstable solu-

tions, anyway? The reason should be the network communications, which is the physical

media of JADE ACL. Specially, we embedded one single Member agent in Blackboard

agent, i.e. without any unstable factors from communication. The new embedded algo-

rithm degraded to a deterministic algorithm as shown in Figure 6–5 (approximately same

as EDD* in Chapter 7).

6.2.3 Delayfactor

Delayfactor stands for how much time Member agent should delay extra after a suc-

cessful operation commitment, which is not a very influential parameter. We set Agent-

num=4, Blockfactor=1/12, Syncycle=5 and Reqcycle = 1/2. Then we get distribution

comparison in 3D map and contour map, as shown in Figure 6–6, as well as marginal

distribution comparison with different Delayfactors in Figure 6–7.

No significant changes are there for 4-hour jobs, however the peaks of 3D map and

contour map move up-down a bit, which usually means resource consumption is influenced.

But the polylines of resource consumptions in Figure 6–7 deny this faint phenomenon:

resources consumptions keep very close when Delayfactor changes.

This delay is designed to prevent one Member agent in a group to request, to try and

to commit operations exclusively, i.e. to keep load balance. If where is no extra delay

68

¥I¬Ê�Æa¬Æ Ø©

124
125

126
127

128
129

130
131

0

2

4

6

8

10

12

14

16

18

20

22

47

48

49
50

51
52

53

Ti
m

es
 in

 2
50

 ru
ns

Res
ou

rce
s c

on
su

med

4-hour jobs arranged

124 125 126 127 128 129 130 131
47

48

49

50

51

52

53

4-hour jobs arranged

R
es

ou
rc

es
 c

on
su

m
ed

0

2.625

5.250

7.875

10.50

13.13

15.75

18.38

21.00

4 BT Member agents with Delayfactor=1/3

123
124

125
126

127
128

129
130

0

2

4

6

8

10

12

14

16

18

20

22

47

48

49

50
51

Ti
m

es
 in

 2
50

 ru
ns

Res
ou

rce
s c

on
su

med

4-hour jobs arranged

123 124 125 126 127 128 129 130

47

48

49

50

51

4-hour jobs arranged

R
es

ou
rc

es
 c

on
su

m
ed

0

2.625

5.250

7.875

10.50

13.13

15.75

18.38

21.00

4 BT Member agents with Delayfactor=1/6

123
124

125
126

127
128

129
130

0

2

4

6

8

10

12

14

16

18

20

22

24

47

48
49

50
51

52
53
54

Ti
m

es
 in

 2
50

 ru
ns

Res
ou

rce
s c

on
su

med

4-hour jobs arranged

123 124 125 126 127 128 129 130
47

48

49

50

51

52

53

54

4-hour jobs arranged

R
es

ou
rc

es
 c

on
su

m
ed

0

3.000

6.000

9.000

12.00

15.00

18.00

21.00

24.00

4 BT Member agents with Delayfactor=1/24

Figure 6–6: BT solution distributions with respect to Delayfactor

69

¥I¬Ê�Æa¬Æ Ø©

46 48 50 52 54 56
0

10

20

30

40

50

60

70
 Delayfactor=1/3
 Delayfactor=1/6
 Delayfactor=1/24

Ti
m

es
 in

 2
50

 ru
ns

Resources consumed

122 124 126 128 130
0

10

20

30

40

50

60

70 Delayfactor=1/3
 Delayfactor=1/6
 Delayfactor=1/24

Ti
m

es
 in

 2
50

 ru
ns

4-hour jobs arranged

Figure 6–7: BT solution marginal distributions with respect to Delayfactor

70

¥I¬Ê�Æa¬Æ Ø©

and operation arrival is smooth, the Member agent, which successfully committed at the

latest, must be the very agent which would gain the next operation in same type, before

its resources running out. So, Delayfactor is designed to keep load balance, not to directly

advance algorithm performance.

6.2.4 Syncycle

Syncycle stands for how much time Member and Coordinator should wait after suc-

cessfully synchronizing remote resource textures, which is nor a very influential parameter.

We set Agentnum=4, Blockfactor=1/12, Delayfactor=1/6 and Reqcycle = 1/2. Then we

get distribution comparison in 3D map and contour map, as shown in Figure 6–8, as well

as marginal distribution comparison with different Syncycles in Figure 6–9.

From these maps and charts, 4-hour jobs seems not significantly influenced by chang-

ing Syncycle; and nor does resource consumption.

The synchronization is designed to exchanging resource textures among Member

agents, with help of Coordinator agent (Coordinator is very useful according to S. Ab-

dallah, N. Darwish, and O. Hegazy (2002)[107]). So when the Syncycle is large, agents

in DSAFO waits more time for next round of resource texture synchronization, i.e. the

information kept by Member and Coordinator agents is more likely out-of-date. To call for

help with a guidance of out-of-date information may not be a good idea. So theoretically,

less Syncycle should aid algorithm better.

However, in real experiments, the cooperations among agents are far less than the

number of total operations, and sometimes out-of-date information might guide the coor-

dination better because of dynamic running. Whatever, this parameter affects algorithm

practically far less than it is estimated theoretically.

6.3 Experimental summary

In this chapter, a number of experiments are presented. These results illustrate that

DSAFO could successfully jump out of local minimum with dynamic agents. From another

point of view, multi-agents split the global resource assignment into multi-partitions, each

partition stands for an agent’s view. To maximize the utilities of resources as much as

possible, dynamic resource borrowing acts a key role after local heuristics. Each partition

is dynamic and each resource in a partition is with near maximum utility, hence DSAFO

71

¥I¬Ê�Æa¬Æ Ø©

123
124

125
126

127
128

129
130

131

0

2

4

6

8

10

12

14

16

18

20

22

47
48

49
50
51
52
53
54
55

Ti
m

es
 in

 2
50

 ru
ns

Res
ou

rce
s c

on
su

med

4-hour jobs arranged

123 124 125 126 127 128 129 130 131
47

48

49

50

51

52

53

54

55

4-hour jobs arranged

R
es

ou
rc

es
 c

on
su

m
ed

0

2.625

5.250

7.875

10.50

13.13

15.75

18.38

21.00

4 BT Member agents with Syncycle=3

123
124

125
126

127
128

129
130

0

2

4

6

8

10

12

14

16

18

20

22

47

48

49

50
51

Ti
m

es
 in

 2
50

 ru
ns

Res
ou

rce
s c

on
su

med

4-hour jobs arranged

123 124 125 126 127 128 129 130

47

48

49

50

51

4-hour jobs arranged

R
es

ou
rc

es
 c

on
su

m
ed

0

2.625

5.250

7.875

10.50

13.13

15.75

18.38

21.00

4 BT Member agents with Syncycle=5

123
124

125
126

127
128

129
130

0

2

4

6

8

10

12

14

16

18

20

22

47

48
49

50
51

52
53
54

Ti
m

es
 in

 2
50

 ru
ns

Res
ou

rce
s c

on
su

med

4-hour jobs arranged

123 124 125 126 127 128 129 130
47

48

49

50

51

52

53

54

4-hour jobs arranged

R
es

ou
rc

es
 c

on
su

m
ed

0

2.750

5.500

8.250

11.00

13.75

16.50

19.25

22.00

4 BT Member agents with Syncycle=15

Figure 6–8: BT solution distributions with respect to Syncycle

72

¥I¬Ê�Æa¬Æ Ø©

46 48 50 52 54 56
0

10

20

30

40

50

60

70

Ti

m
es

 in
 2
50

 ru
ns

Resources consumed

 Syncycle=3
 Syncycle=5
 Syncycle=15

122 124 126 128 130 132
0

10

20

30

40

50

60

70

80

Ti
m

es
 in

 2
50

 ru
ns

4-hour jobs arranged

 Syncycle=3
 Syncycle=5
 Syncycle=15

Figure 6–9: BT solution marginal distributions with respect to Syncycle

73

¥I¬Ê�Æa¬Æ Ø©

could successfully avoid being trapped in local minimum. And it is more natural to solve

dynamic problem with dynamic agents. It is also able to adjust the indeterminacy of

DSAFO by changing some parameters.

Many other difficult problems used to be troubled in local minimum, and they have

been successfully optimized by many intelligent algorithms, such as Ant Colony, Parti-

cle Swarm Optimization, etc. DSAFO and other multi-agent algorithms may stand for

another applicable direction to help these problems jump out of local minimum.

74

Chapter 7 Comparison

In this chapter, three opponent algorithms for AGSS problem are introduced in total:

MMAS, EDD* and ERT*; a solution comparison is given to compare DSAFO with them

in solving AGSS problem.

7.1 Opponents

Three opponent algorithms for AGSS problem are introduced in the following sub-

sections, they are MMAS, EDD* and ERT*. MMAS is an intelligent optimization

algorithm which is implemented here to optimize AGSS problem statically, not dynami-

cally; it is derived from ant system. And EDD* and ERT* are two traditional heuristics

implemented in our dynamic scheduling environment run-and-schedule.

7.1.1 MMAS

Ant system (AS) was proposed by M. Dorigo, V. Maniezzo and A. Colorni (1991) [142,

143]. Ant system was inspired by positive feedbacks in natural ant colony, in which each

ant lays pheromone in its trail to help other company to choose correct path. Consequently

ant systems are usually object to spatial problem such as Travel Salesman Problem (TSP).

Formally, an ant system for TSP consists of Nant limited agents called “ant”, and a

complete graph <V, E> and intensity of trails T (simulated pheromone) on whole E. In

the <V, E> graph, V is a set of m vertices and E is the set of all edges between vertices.

Every ant crawls from edge to edge to build a Hamilton circle1 every time. To ensure a

Hamilton circle, every ant has a tabu list to mark the visited vertices. And τij(t) is the

intensity of trail on edge <i,j>,

τij(t + 1) = ρ · τij(t) + ∆τij

1A Hamilton circle is a close circle containing every vertex of a graph once and only once.

75

¥I¬Ê�Æa¬Æ Ø©

where ρ is a coefficient such that (1− ρ) represents the evaporation of trail,

∆τij(t, t + 1) =
Nant∑
k=1

∆τ k
ij

where ∆τ k
ij is the quantity per unit of length of trail substance (pheromone in real ants)

laid on edge <i,j> by the k-th ant between time t and t+1; it is given by

∆τ k
ij =

Q/Lk if k-th ant uses edge < i, j > in its tour (between time t and t + 1);

0 otherwise.

Visibility ηij is defined as the quantity 1/dij, where dij is the distance from vertex i to j.

Finally, the transition probability from town i to town j for the k-th ant is:

pk
ij =

[τij(t)]

α
·[ηij]

β∑
p 6∈tabuk

[τip(t)]
α
·[ηip]

β if j 6∈ tabuk;

0 otherwise.

where α and β are parameters that control the relative importance of trail versus visibility.

Ant system have succeeded in many areas [143, 144] andMMAS (MAX -MIN ant

system) is an improved ant system which gives an upper and a lower bound to intensity

quantity of trails in ant system [145, 146]. MMAS has been adopted to JSSPs since its

proposal.

We implemented aMMAS for BT arrangement to compare. We transform 1,008 BT

related operations from 252 flights into 1,008 points. A distance between two operations

ri and rj is represented as

drirj

def
=

(Duerj

−Dueri
)/10, Duerj

> Dueri
,

0.01, Duerj
= Dueri

,

(Dueri
−Duerj

)/30, Duerj
< Dueri

.

This MMAS is a little different from those for common TSP, because four types

of BT related operations should be processed in sequential order. So we arrange every

dependent UB–UC–LC–LB in order, as a result, the 1,008 points are arranged as Table

7.1.1:

And we define a boolean state readyi for each point i ∈V. Apparently, only UB

operations (ready4k+1, k ∈ {0, . . . , 251}) are marked with true at first. Then we apply an

extra recursive validate rule for ant after selecting edge < i, j >:

validate(i, j) =

j, if readyj = true;

validate(i, j − 1), otherwise.

76

¥I¬Ê�Æa¬Æ Ø©

Table 7–1: Mapping BT operations to TSP points

Operations UB1 UC1 LC1 LB1 . . . UBk UCk LCk LBk . . .

Vertices 1 2 3 4 . . . 4k + 1 4k + 2 4k + 3 4k + 4 . . .

(k ∈ {0, . . . , 251})

Because validate(i, j) is a recursive function, so the current ready operation in se-

quence UB–UC–LC–LB must be properly assigned before unready ones. And after choos-

ing a point j, readyj+1 becomes true unless j stands for a LB operation. As a result, the

whole service scheduling could be performable.

And rest parameters of MMAS are: α = 1.5, β = 2, ρ = 0.05, τinit = 1, τmax = 100,

τmin = 0.01, Nant = 200, NCmax = 150. And for each successful ant run R done by ant i,

all of edges in Hamilton circle of R get a positive feedback

∆τ i
rirj

=

10

(resR+jobR/3)2
, < ri, rj >∈ circle of R;

0, otherwise.

to reinforce fewer resources and jobs.

7.1.2 EDD* and ERT*

EDD* here is simply to adapt Earliest Due Date first (EDD) to run-and-schedule

environment. And ERT* is simply to adapt Earliest Ready Time first (ERT) to run-

and-schedule environment as well. Main ideas of EDD and ERT are show in Figure 7–1.

7.2 Comparison

Then DSAFO (with parameters: agentNumberBT=4, Blockfactor=1/12, Delayfac-

tor=1/6, Syncycle=5), EDD*, ERT* and MMAS were tested with 252 transfer flight

data in Chapter 6. Once more we select BT related operations to test performances of

these algorithms. A comparison in BT consumption and 4-hour BT jobs arrangement is

shown in Table 7–2. Additionally we put time cost and average CPU rate in the table.

The best value in each group is bolded.

From Table 7–2, it can be concluded that DSAFO and MMAS both do well in

resource consumption, and DSAFO do better in BT jobs arrangement. Furthermore,

DSAFO cost not too much time (several minutes) and very low CPU rate, in fact most

77

¥I¬Ê�Æa¬Æ Ø©

0 4 6 82

B

A

0 4 6 82

A

B

EDD

0 4 6 82

A

B

ERT (FIFO/FCFS)

Original problem

Due date
job time

Ready time

Figure 7–1: A simple illustration of EDD and ERT

78

¥I¬Ê�Æa¬Æ Ø©

Table 7–2: Optimization algorithm comparison

Algorithm Time CPU Resources 4-hour jobs

MIN MAX AVG MIN MAX AVG

DSAFO ≈144 sec <1% 47 56 49.9 123 130 126.3

MMAS ≈ 12 hours ≈100% 47 — — 141 — —

EDD* ≈43 sec <1% 53 53 53 129 129 129

ERT* ≈43 sec <1% 52 52 52 130 130 130

time is used to maintain effective message transmission. On the contrary, MMAS costs

very much time and near 100% CPU rate.

79

Chapter 8 Conclusion and Future Works

8.1 Conclusion

AGSS problem is a typical difficult scheduling problem. Although it is NP-hard to

optimize consumptions of resources and man-days, AGSS problem is economically very

important to airlines and airports, as well as passenger satisfaction.

DSAFO, a novel multi-agent constraint satisfaction algorithm for AGSS problems, is

proposed in the thesis based on a dynamic distributed model and a dynamic scheduling en-

vironment run-and-scheduling. The complexity of DSAFO is bounded between quadratic

and cubic polynomial time. So DSAFO is capable to solve large scale AGSS problem.

Though experiments show that DSAFO is unstable and influenced by several parameters,

this algorithm is good at satisfying all constraints, jumping out of local minimum, and

finding near optimal solutions for consumption of resources and man-days.

Analysis shows that distributed heuristics with global coordination and dynamic

multi-agent viewpoint in DSAFO is effective and promising in optimizing difficult prob-

lems in real applications.

8.2 Future works

One of the future works is to put forward an easy-to-use schedule software to make

full use of algorithm DSAFO. A preliminary development environment AGSAP has been

developed to apply DSAFO to aid common AGSS optimization by W. Fan, G. C. Zhang

and F. Xue [147].

Furthermore, considering real-world management in airlines and airports, it is valu-

able to make scheduling with uncertainty of flights [148], such as uncertain AGSS satis-

faction and problem. So how to generate robust (forecast) scheduling for uncertain flights

(i.e. uncertain AGSS satisfaction and problem) should be investigated in the future.

80

Appendix A: Agent Communication Grammar in

DSAFO

All agent messages in communications in DSAFO is based on strings which are sent

via FIPA ACL. And each message consists of a channel mark, a formal comma, and

message content, i.e.,

Message
def
= ChannelMark, Content

When a Message is going to be sent, proper FIPA ACL Protocol should be chosen for it

according to its ChannelMark, in order to avoid message collision. The mapping from

ChannelMark to FIPA ACLs is pre-assumed as follow:

Table A–1: ACL protocols and agent communication grammar in DSAFO

ChannelMark Protocol Content

QUERY INFORM OpType

INFORM INFORM FlightNo, TaskType, ERT, LED, jobTime, Apron

REQUEST INFORM FlightNo, TaskType, MetaPlan(arg1; arg2; . . .)

REPLY INFORM FlightNo, TaskType, MetaPlan(arg1; arg2; . . .), ERT

CANCEL INFORM MetaPlan(arg1; arg2; . . .)

INVALID INFORM MetaPlan(arg1; arg2; . . .), isFromBB

BORROW INFORM ResType, MetaPlan(arg1; arg2; . . .), BuddyList(Name1; . . .)

LEND INFORM ResType, MetaPlan(arg1; arg2; . . .)

REFUSE INFORM ResType, MetaPlan(arg1; arg2; . . .), BuddyList(Name1; . . .)

ACQUIRE INFORM ResType, StartTime

ALLOT INFORM ResName, StartTime

RELEASE INFORM ResType, ResName, ReleaseTime

SYNBUDDY PROXY < null >

ACKBUDDY PROXY BuddyList(Name1; Name2; . . .)

SYNDEMAND REQUEST < null >

ACKDEMAND REQUEST myResFreedom

81

References

[1] M. R. Garey, D. S. Johnson. (1979). Computers and intractability - a guide to the theory

of NP-completeness[M]. W.H. Freeman and Company, New York.

[2] M. S. Fox. (1983). Constraint-Directed Search: A case study of job-shop scheduling[D].

Doctoral dissertation, tech. report CMU-RI-TR-83-22, Robotics Institute, Carnegie Mel-

lon University, Pittsburgh, PA, December, 1983.

[3] D. Applegate, and W. Cook. (1991). A computational study of the job-shop scheduling

problem[J]. ORSA Journal On Computing, 3:149õ156, 1991.

[4] H. Hartmann. (2001). CARE action innovation: final report of preliminary study total

airport management[R]. Technical Report, German Aerospace Center, IB 112-2001/21,

DLR, Institut für Flugführung, Germany November 2001.

[5] J. Xing, S. Liu, W. Fan, L. Ji. (2006). Design of airport ground service system based on

multi-agent[J]. Journal of Civil Aviation University of China. 24 (3) (2006) pp. 24–27 (0

ï¬, 4�u, �U, OX. ÄuõAgent��Å/¡��XÚ�O[J]. ¥I¬ÊÆ�Æ�,

24(3): 24–27.)

[6] P. Baptiste, C. Le Pape, and W. Nuijten. (1995). Incorporating efficient operations re-

search algorithms in constraint-based scheduling[C]. In First International Joint Workshop

on Artificial Intelligence and Operations Research, 1995.

[7] General Administration of Civil Aviation of China. (2006). First season

flight normal rate in China civil aviation[R/OL]. http://www.caac.gov.cn,

/E PubWebApp/Doc/04/20060427154753.doc. 27th, Apr. 2006. (¥I¬ÊoÛ. ¬

Ê1�GÝÊ��~Ç[R/OL]. http://www.caac.gov.cn. 2006c4�27F.)

[8] L. Shi. (2005). Cost control in fleet planning. Chinese Civil Aviation Management, 2005

No 2, pp. 24–25. (�wA. Åè5y¥�¤���[J]. ¬Ê+n, 2005(2): 24–25.)

[9] S.-H. Tsaur, T.-Y. Chang and C.-H. Yen. (2002) The evaluation of airline service quality

by fuzzy MCDM[J]. Tourism Management, Vol. 23, No.2, pp. 107–155, 2002.

82

¥I¬Ê�Æa¬Æ Ø©

[10] Y. Hu. (2002). Academician Guojie Li: a talk on computer development strategy in

China[N]. Guangming Daily, 4th, Jan. 2002. (�[). oI#�¬µ·IO�ÅuÐÔÑ

pî![N]. 1²F�, 2002c1�4F.)

[11] D. E. Neiman, D. W. Hildum, V. R. Lesser, T. W. Sandholm. (1994). Exploiting meta-

level information in a distributed scheduling system[C]. In Proceedings of the Twelfth

National Conference on Artificial intelligence (AAAI-94) Vol.1 Seattle, Washington, US.

American Association for Artificial Intelligence, Menlo Park, CA (1994) 394–400.

[12] D. W. Hildum. (1994). Flexibility in a knowledge-based system for solving dynamic

resource-constrained scheduling problems[D]. PhD dissertation, Computer Science Dept.,

University of Massachusetts, Amherst, MA 01003, May 1994. UMI Order No. GAX95-

10483.

[13] D. E. Neiman, V. R. Lesser. (1996). A cooperative repair method for a distributed schedul-

ing system[C]. In Proceedings of the Third International Conference on Artificial Intelli-

gence Planning System (AIPS-96), Edinburgh, Scotland. (1996) 174–181.

[14] M. Chia, D. E. Neiman, V. R. Lesser. (1998). Coordinating asynchronous agent activ-

ities in a distributed scheduling system[C]. In Proceedings of the Second International

Conference on Autonomous Agents (Agents98), January, 1998.

[15] A. Chenung, W. H. Ip, D. Lu, C. L. Lai. (2005). An aircraft service scheduling model using

genetic algorithms[J]. Journal of manufacturing technology management. 16(1): 109–119

[16] M. Xu and Z. X. Wang. (2003). A noval intelligent vehicle displaying and scheduling

system[J]. Chinese Automation Information, 2003(1), No.31, pp. 29–31. (M�,�mÆ.#

.�U�ýi�NÝXÚ[J]. gÄz&E, 2003(1), o1 31þ: 29–31.)

[17] A. S. Manne. (1960). On the job shop scheduling problem[J]. Operations Research, Vol.

8(2) March, 1960. pp. 219–223.

[18] A. S. Jain and S. Meeran. (1999). Deterministic job-shop scheduling: past, present and

future[J]. European Journal of Operational Research, Vol. 113(2), pp. 390–434.

[19] A. Jones and L. C. Rabelo. (1998). Survey of job shop scheduling techniques[R]. Technical

Reports. NISTIR, National Institute of Standards and Technology, Gaithersburg, MD,

1998.

[20] D. Wu. (1987). An Expert Systems Approach for the Control and Scheduling of Flexible

Manufacturing Systems[D]. Ph.D. Dissertation, Pennsylvania State University, PA, US.

83

¥I¬Ê�Æa¬Æ Ø©

[21] S. F. Smith. (1994). OPIS: A methodology and architecture for reactive scheduling[M].

In M. Zweben and M. Fox (Eds.), Intelligent scheduling, San Francisco, CA: Morgan

Kaufmann.

[22] H. V. D. Parunak, B. W. Irish, J. Kindrick, and P. W. Lozo. (1985). Fractal actors for

distributed manufacturing control[C], in The Second Conference on Artificial Intelligence

Applications, Miami, December 1985, pp. 653–660.

[23] P. S. Ow, S. F. Smith, R. Howie. (1988). A cooperative scheduling system[M], in: M.D.

Oliff (ed.), Expert System and Intelligent Manufacturing, pp. 43–56.

[24] K. Sycara, S. Roth, N. Sadeh, and M. Fox. (1991). Distributed constrained heuris-

tic search[J]. IEEE Transactions on Systems, Man, and Cybernetics, 21(6):1446–1461,

November/December 1991.

[25] J. Butler, H. Ohtsubo. (1992). ADDYMS: architecture for distributed dynamic manufac-

turing scheduling[M], in: A. Famili, D. S. Nau, S. H. Kim, eds., Artificial Intelligence

Applications in Manufacturing, AAAI Press/MIT Press, pp. 199–213.

[26] L. C. Rabelo. (1990). A hybrid artificial neural networks and knowledge-based expert

systems approach to flexible manufacturing system scheduling[D]. Doctoral Thesis. Uni-

versity of Missouri-Rolla.

[27] F. Glover. (1989). Tabu search: part I[J]. ORSA Journal on Computing, Vol. 1(3), pp.

190–206.

[28] F. Glover. (1990). Tabu search: part II[J]. ORSA Journal on Computing Vol. 2(1), pp.

4–32.

[29] F. Glover. (1996). Tabu search and adaptive memory programming: advances, applica-

tions and challenges[M], in Interfaces in Computer Science and Operations Research, Barr,

Helgason and Kennington (eds.) Kluwer Academic Publishers, pp. 1–75. 1996.

[30] A. Vakharia and Y. Chang. (1990). A simulated annealing approach to scheduling a man-

ufacturing cell.[J] Naval Research Logistics. Vol. 37, pp. 559–577.

[31] P. J. van Laarhoven, E. H. Aarts, J. K. Lenstra. (1992). Job shop scheduling by simulated

annealing[J]. Operations Research. 40(1) (Jan. 1992), pp. 113–125.

[32] L. Davis. (1985). Job shop scheduling with genetic algorithms[C]. In Proceedings of the

1st international Conference on Genetic Algorithms. J. J. Grefenstette, Ed. Lawrence

Erlbaum Associates, Mahwah, NJ, pp. 136–140.

84

¥I¬Ê�Æa¬Æ Ø©

[33] T. Starkweather, D. Whitley and B. Cookson. (1993). A Genetic Algorithm for scheduling

with resource consumption[C]. in the Joint German/US Conference on Operations Re-

search in Production Planning and Control, G. Fandel, T. Gulledge and A. Jones (Eds.)

Operation Research in Production Planning and Control, Springer-Verlag, Berlin, 1993,

pp. 567–583.

[34] A. Colorni, M. Dorigo, V. Maniezzo, M. Trubian. (1994). Ant system for job-shop schedul-

ing[J]. Belgian Journal of Operations Research, Statistics and Computer Science, 34(1),

pp. 39–53.

[35] W. J. Xia, Z. M. Wu, W. Zhang, G. Yang. (2004). Applying particle swarm optimization

to job-shop scheduling problem[J]. Chinese Journal of Mechanical Engineering, 17(3),

pp.437–441.

[36] Y. Tsujimura, S. H. Park, I. S. Chang, and M. Gen. (1993). An effective method for

solving flow shop scheduling problems with fuzzy processing times[C]. In Proceedings

of the 15th Annual Conference on Computers and industrial Engineering, Blacksburg,

Virginia, United States. C. P. Koelling, Ed. Pergamon Press, Elmsford, NY, pp. 239–242.

[37] W. Slany. (1996). Scheduling as a fuzzy multiple criteria optimization problem[J]. Fuzzy

Sets and Systems. Vol 78(2), March 1996, pp. 197–222. Issue 2. Special Issue on Fuzzy

Multiple Criteria Decision Making.

[38] M. Yokoo and K. Hirayama. (2000). Algorithms for distributed constraint satisfaction: a

review[J]. Autonomous Agents and Multi-Agent Systems, Vol 3(2), pp. 185–207, 2000.

[39] S. Minton , M. D. Johnston , A. B. Philips , P. Laird. (1992). Minimizing conflicts: a

heuristic repair method for constraint satisfaction and scheduling problems[J], Artificial

Intelligence, Vol.58(1-3), pp.161–205, Dec. 1992.

[40] M. Yokoo. (1994). Weak-commitment search for solving constraint satisfaction prob-

lems[C]. In Proceedings of the 12th National Conference on Artificial Intelligence (AAAI

’94), AAAI press, Vol. 1, pages 313–318, Seattle, WA, USA, July 31 - August 4 1994.

[41] A. K. Mackworth. (1992). Constraint satisfaction[M]. In: S. C. Shapiro (ed.): Encyclope-

dia of Artificial Intelligence. New York: Wiley-Interscience Publication, pp. 285–293.

[42] M. Yokoo, E. H. Durfee, T. Ishida, K. Kuwabara. (1998). The distributed constraint

satisfaction problem: formalization and algorithms[J]. IEEE Transactions on Knowledge

and Data Engineering 10(5) (Sep. 1998), pp. 673–685.

85

¥I¬Ê�Æa¬Æ Ø©

[43] M. Yokoo, E. Durfee, T. Ishida, and K. Kuwabara. (1992). Distributed constraint sat-

isfaction for formalizing distributed problem solving[C], in Proceedings of the Twelfth

IEEE International Conference on Distributed Computing Systems (ICDCS-92), Yoko-

hama, Japan, June 1992. pp. 614–621.

[44] M. Yokoo. (1995). Asynchronous weak-commitment search for solving constraint satisfac-

tion problems[C]. In First International Conference on Principles and Practice of Con-

straint Programming (CP-95) Cassis, France. U. Montanari, F. Rossi. Eds, Lecture Notes

in Computer Science Vol.976 Springer, (1995) pp. 407–422.

[45] M. Yokoo. (2001). Distributed constraint satisfaction: foundation of cooperation of multi-

agent system[M]. Springer Verlag, Berlin.

[46] P. Prosser, C. Conway, and C. Muller. (1992). A constraint maintenance system for the

distributed allocation problem[J]. Intelligent Systems Engineering Vol.1(1), pp. 76–83.

[47] P. J. Modi, W.-M. Shen, M. Tambe, and M. Yokoo. (2005). An asynchronous com-

plete method for distributed constraint optimization[J]. Artificial Intelligence Journal,

vol.161(1-2), pp.149–180, 2005.

[48] Yokoo, M. (2004). Protocol/mechanism design for cooperation/competition[C]. In Pro-

ceedings of the Third international Joint Conference on Autonomous Agents and Multia-

gent Systems - Vol. 1 (New York, New York, July 19 - 23, 2004). International Conference

on Autonomous Agents. IEEE Computer Society, Washington, DC, pp. 3–7.

[49] G. Weiss, (ed.). (1999). Multiagent systems: a modern approach to distributed artificial

intelligence[M]. The MIT Press, Cambridge, Massachusetts, 1999

[50] M. Wooldridge, and N. Jennings. (1995). Intelligent agents: theory and practice[J]. Knowl-

edge Engineering Review, Vol.10, No. 2, 1995. Cambridge University Press, pp. 115–152

[51] M. J. Wooldridge. (2001). Introduction to multiagent systems[M]. John Wiley & Sons,

Inc. (See also: õAgentXÚÚØ[M]. �X�,�È. �®:>fó�Ñ��, 2003.10.)

[52] D. Gelernter and N. Carriero. (1992). Coordination languages and their significance[J].

Communication of the ACM, Vol.35(2) (Feb. 1992), pp. 97–107.

[53] P. Ciancarini, A. Omicini, and F. Zambonelli. (2000). Multiagent system engineering: the

coordination viewpoint[C]. In 6th international Workshop on intelligent Agents Vi, Agent

theories, Architectures, and Languages (Atal), (July 15 - 17, 1999). N. R. Jennings and Y.

LespWrance, Eds. Lecture Notes In Computer Science, vol. 1757. Springer-Verlag, London,

250–259.

86

¥I¬Ê�Æa¬Æ Ø©

[54] H. S. Nwana. (1996). Software agents: an overview[J]. The Knowledge Engineering Re-

view, 11(3): 205–244, October/November 1996.

[55] M. N. Huhns, and M. P. Singh. (1994). Distributed Artificial Intelligence for Information

Systems[R]. CKBS-94 Tutorial, June 15, University of Keele, UK.

[56] K. S. Decker and V. R. Lesser. (1993). Analyzing a quantitative coordination relation-

ship[J]. Group Decision and Negotiation, Vol. 2(3):195–217, 1993.

[57] K. Decker, and J. Li. (1998). Coordinated Hospital Patient Scheduling[C]. In Proceedings

of the 3rd international Conference on Multi Agent Systems (July 03 - 07, 1998). ICMAS-

98. IEEE Computer Society, Washington, DC, 104.

[58] M. N. Huhns, and L. M. Stephens. (1999). Multiagent systems and societies of agents[M].

In Multiagent Systems: A Modern Approach To Distributed Artificial intelligence, G.

Weiss, Ed. MIT Press, Cambridge, MA, 79–120.

[59] J. S. Liu. (1996). Coordination of multiple agents in distributed manufacturing schedul-

ing[D]. Doctoral Thesis , The Robotics Institute, Carnegie Mellon University, Pittsburgh,

PA, April 1996.

[60] N. R. Jennings. (1991). Cooperation in industrial systems[C]. In Proceedings of ESPRIT

Conference, pp. 253–263, Brussels, Belgium.

[61] N. R. Jennings. (1994). The ARCHON system and its applications[C]. In Proceedings of

2nd Int. Conf. on Cooperating Knowledge Based Systems (CKBS-94), pages pp. 13–29,

Keele, UK.

[62] R. Nair, and M. Tambe. (2005). Hybrid BDI-POMDP framework for multiagent team-

ing[J]. Journal of AI Research (JAIR), 23:367–413, 2005.

[63] N. Schurr, P. Scerri, and M. Tambe. (2004). Coordination advice: a preliminary investiga-

tion of human advice to multiagent teams[C]. in AAAI Spring Symposium on Interaction

between Humans and Autonomous Systems over Extended Operation, Invited Paper, 2004.

[64] V. A. Cicirello and S. F. Smith. (2001). Wasp-like agents for distributed factory coor-

dination[R]. Technical Report CMU-RI-TR-01-39, Robotics Institute, Carnegie Mellon

University, Pittsburgh, PA, December 2001.

[65] L. Panait, and S. Luke. (2005). Cooperative multi-agent learning: the state of the art[J].

Autonomous Agents and Multi-Agent Systems, Vol. 11, No. 3. (November 2005), pp.

387–434.

87

¥I¬Ê�Æa¬Æ Ø©

[66] P. E. Utgoff, D. Jensen, and V. Lesser. (2000). Inferring Task Structure from Data[R].

Technical Report. UMI Order Number: UM-CS-2000-054., University of Massachusetts.

[67] Reis, L. P., Lau, N., and Oliveira, E. (2001). Situation based strategic positioning for

coordinating a team of homogeneous agents[J]. In Balancing Reactivity and Social De-

liberation in Multi-Agent Systems, From Robocup To Real-World Applications (Selected

Papers From the ECAI 2000 Workshop and Additional Contributions) M. Hannebauer,

J. Wendler, and E. Pagello, Eds. Lecture Notes In Computer Science, vol. 2103. Springer-

Verlag, London, pp. 175–197.

[68] R. G. Smith. (1977). The CONTRACT NET: a formalism for the control of distributed

problem solving[C]. In Proceedings of the 5th International Joint Conference on Artificial

Intelligence (IJCAI-77), Cambridge, MA, Febrary 1977. pp. 338–343.

[69] R. G. Smith. (1980). The contract net protocol: high-level communication and control

in a distributed problem solver[J]. IEEE Transactions on Computers, vol. C-29(12), pp.

1104–1113, Dec. 1980.

[70] H. Chalupsky, T. Finin, R. Fritzson, D. McKay, S. Shapiro, and G. Wiederhold. (1992). An

overview of KQML: a knowledge query and manipulation language[R]. Technical report,

KQML Advisory Group, April 1992.

[71] T. Finin, R. Fritzson, D. McKay, and R. McEntire. (1994). KQML as an agent communi-

cation language[C]. In Proceedings of the Third international Conference on information

and Knowledge Management (Gaithersburg, Maryland, United States, November 29 - De-

cember 02, 1994). N. R. Adam, B. K. Bhargava, and Y. Yesha, Eds. CIKM ’94. ACM

Press, New York, NY, pp. 456–463.

[72] FIPA. (1997). FIPA 1997 specification part 2: agent communication language[S/OL].

Document No. 00003. Geneva:FIPA Foundation for Intelligent Physical Agents, October

1997. http://www.fipa.org/specs/fipa00003/OC00003A.pdf

[73] FIPA. (2002). FIPA ACL message structure specification[S/OL]. Document No. 00061.

Geneva: FIPA Foundation for Intelligent Physical Agents.

http://www.fipa.org/specs/fipa00061/SC00061G.pdf

[74] V. R. Lesser, and D. D. Corkill. (1981). Functionally accurate, cooperative distributed

problem-solving systems[J]. IEEE Transactions on Systems, Man and Cybernetics, SMC-

11(1): 81–96, January 1981.

88

http://www.fipa.org/specs/fipa00003/OC00003A.pdf
http://www.fipa.org/specs/fipa00061/SC00061G.pdf

¥I¬Ê�Æa¬Æ Ø©

[75] V. R. Lesser. (1991). A retrospective view of FA/C distributed problem solving[J]. IEEE

Transactions on Systems, Man, and Cybernetics, Special Issue on Distributed Artificial

Intelligence, 21(6):1347–1362, December 1991.

[76] D. E. Wilkins. (1988). Practical planning: extending the classical AI planning

paradigm[M]. Morgan Kaufmann Publishers Inc., San Mateo, CA, 1988.

[77] Durfee, E. H. and Lesser, V. R. September. (1991). Partial global planning: a coordination

framework for distributed hypothesis formation[J]. IEEE Transactions on Systems, Man,

and Cybernetics, Special Issue on Distributed Sensor Networks, SMC-21(5):1167–1183.

[78] T. Wittig, Ed. (1992). Archon: an architecture for multi-agent systems[M]. Ellis Horwood

Series in Artificial Intelligence. Ellis Horwood.

[79] N. R. Jennings, J. Corera, I. Laresgoiti, E. H. Mamdani, F. Perriolat, P. Skarek, and L.

Z. Varga. (1996). Using ARCHON to develop real-world DAI applications for electricity

transportation management and particle acceleration control[J]. IEEE Expert, Vol. 11(6)

pp. 60–88, December 1996. Special Issue on Real World Applications of DAI systems.

[80] K. Decker, and V. R. Lesser. (1995). Designing a family of coordination algorithms[C]. In

Proceedings of the First International Conference on Multi-Agent Systems (ICMAS-95),

pages 73–80, San Francisco, CA, June 1995.

[81] M. desJardins, M. Wolverton. (1999). Coordinating a Distributed Planning System, Ar-

tificial Intelligence Magazine, 20(4), pp.45–53, Winter, 1999.

[82] K. Decker, and V. R. Lesser. (1993). Quantitative modeling of complex environments[C].

In International Journal of Intelligent Systems in Accounting, Finance and Management.

Special Issue on Mathematical and Computational Models and Characteristics of Agent

Behavior., Vol. 2, pp. 215–234, 1993.

[83] T. Wagner, A. Garvey, and V. Lesser. (1997). Complex goal criteria and its application

in design-to-criteria scheduling[R]. Technical Report. UMI Order Number: UM-CS-1997-

010., University of Massachusetts.

[84] K. Decker, and J. Li. (2000). Coordinating mutually exclusive resources using GPGP[J].

Autonomous Agents and Multi-Agent Systems, Vol. 3(2) (Jun. 2000), 133–157.

[85] V. A. Cicirello, and S. F. Smith. (2004). Wasp-like agents for distributed factory coordi-

nation[J]. Autonomous Agents and Multi-Agent Systems 8(3): 237–266.

[86] M. d’Inverno, D. Kinny, M. Luck, and M. Wooldridge. (1997). A formal specification of

dMARS[C]. In Proceedings of the 4th international Workshop on intelligent Agents Iv,

89

¥I¬Ê�Æa¬Æ Ø©

Agent theories, Architectures, and Languages (July 24 - 26, 1997). M. P. Singh, A. S. Rao,

and M. Wooldridge, Eds. Lecture Notes In Computer Science, vol. 1365. Springer-Verlag,

London, 155–176.

[87] P. R. Cohen, and H. J. Levesque. (1991). Teamwork[J]. Nous, 25(4): 487–512. Special

Issue on Cognitive Science and Artificial Intelligence.

[88] N. R. Jennings. (1993). Controlling cooperative problem solving using joint intentions[J].

AI Communications, Vol. 6(3-4): 247–428.

[89] J. Broersen, M. Dastani, J. Hulstijn Z. Huang and L. van der Torre. (2001). The BOID

architecture: conflicts between beliefs, obligations, intentions and desires[C]. In Proceed-

ings of the Fifth international Conference on Autonomous Agents (Montreal, Quebec,

Canada). AGENTS ’01. ACM Press, New York, NY, 9–16.

[90] M. E. Bratman. (1987). Intention plans and practical reason[M]. Harvard University Press,

Cambridge, MA, 1987.

[91] D. Ancona, and V. Mascardi. (2003). Coo-BDI: Extending the BDI Model with Coop-

erativity, in Leite, J. Omicini, A.. L. Sterling, and P. Torroni editors, Declarative agent

languages and techniques[C], First International Workshop, DALT 2003, Revised Selected

and Invited Papers, Lecture Notes in Computer Science 2990, pages 109–134, Springer-

Verlag, 2004.

[92] D. Ancona, V. Mascardi, J. F. Hubner, and R. H. Bordini. (2004). Coo-AgentSpeak: coop-

eration in agentspeak through plan exchange[C]. In Proceedings of the Third international

Joint Conference on Autonomous Agents and Multiagent Systems - Volume 2 (New York,

New York, July 19 - 23, 2004). International Conference on Autonomous Agents. IEEE

Computer Society, Washington, DC, pp. 696–705.

[93] S. Soon, A. Pearce, and M. Noble. (2004). Adaptive teamwork coordination using graph

matching over hierarchical intentional structures[C]. In Proceedings of the Third interna-

tional Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS04) -

Volume 1 (New York, New York, July 19 - 23, 2004). International Conference on Au-

tonomous Agents. IEEE Computer Society, Washington, DC, pp. 294–301.

[94] G. Chen, Z. Yang, H. He, K. M. Goh. (2005). Coordinating multiple agents via reinforce-

ment learning[J]. In Autonomous Agents and Multi-Agent Systems, 10(2): 273–328, May,

2005.

[95] L. A. Zadeh, R. R. Yage, and R. M. Ton (eds.). (1987). Fuzzy sets and applications:

Selected Papers[M], John Wiley and Sons, New York, 1987.

90

¥I¬Ê�Æa¬Æ Ø©

[96] C. Boutilier. (1999). Sequential optimality and coordination in multiagent systems[C]. In

Proceedings of the Sixteenth international Joint Conference on Artificial intelligence (July

31 - August 06, 1999). T. Dean, (Ed.) Morgan Kaufmann Publishers, San Francisco, CA,

pp. 478–485.

[97] D. S. Bernstein, S. Zilberstein, and N. Immerman. (2000). The complexity of decentralized

control of markov decision processes[C]. In Proceedings of the 16th Conference on Uncer-

tainty in Artificial intelligence (June 30 - July 03, 2000). C. Boutilier and M. Goldszmidt,

Eds. Morgan Kaufmann Publishers, San Francisco, CA, pp. 32–37.

[98] R. Becker, S. Zilberstein, and V. Lesser. (2004). Decentralized Markov decision processes

with event-driven interactions[C]. In Proceedings of the Third international Joint Confer-

ence on Autonomous Agents and Multiagent Systems - Volume 1 (New York, New York,

July 19 - 23, 2004). International Conference on Autonomous Agents. IEEE Computer

Society, Washington, DC, 302–309.

[99] D. Pynadath and M. Tambe. (2002). The communicative multiagent team decision prob-

lem: analyzing teamwork theories and models[J]. Journal of Artificial Intelligence Re-

search, Vol.16, pp. 389–4232.

[100] P. Paruchuri, M. Tambe, F. Ordonez, S. and Kraus. (2004). Towards a formalization of

teamwork with resource constraints[C]. In Proceedings of the Third international Joint

Conference on Autonomous Agents and Multiagent Systems - Volume 2 (New York, New

York, July 19 - 23, 2004). International Conference on Autonomous Agents. IEEE Com-

puter Society, Washington, DC, pp. 596–603.

[101] P. Scerri, L. Johnson, D. V. Pynadath, P. Rosenbloom, N. Schurr, M. Si, and M. Tambe.

(2003). Getting robots, agents and people to cooperate: an initial report[C/OL]. American

Association Artificial Intelligence (AAAI) Spring Symposium on Human Interaction with

Autonomous Systems in Complex Environments, 2003.

http://www.cs.cmu.edu/~pscerri/papers/RAP-SS.pdf

[102] A. Omicini, A. Ricci, M. Viroli, C. Castelfranchi, and L. Tummolini. (2004). Coordination

artifacts: environment-based coordination for intelligent agents[C]. In Proceedings of the

Third international Joint Conference on Autonomous Agents and Multiagent Systems

- Volume 1 (New York, New York, July 19 - 23, 2004). International Conference on

Autonomous Agents. IEEE Computer Society, Washington, DC, 286–293.

[103] A. Garland, and R. Alterman. (2004). Autonomous agents that learn to better coordi-

nate[J]. Autonomous Agents and Multi-Agent Systems, Vol. 8(3) (May. 2004), 267–301.

91

http://www.cs.cmu.edu/~pscerri/papers/RAP-SS.pdf

¥I¬Ê�Æa¬Æ Ø©

[104] M. S. Fox. (1979). Organization structuring: Designing large complex software[R]. Tech-

nical Report. CMU-CS-79-155, Computer Science, Carnegie-Mellon University, December

1979.

[105] M. S. Fox. (1981). An organizational view of distributed systems[J]. In IEEE Transactions

on systems, Man, and Cybernetics, 11(1): 70–80, January 1981.

[106] W. Jiao, J. Debenham, B. Henderson-Sellers. (2005). Organizational models and interac-

tion patterns for use in the analysis and design of multi-agent systems[J]. Web Intelligence

and Agent Systems. Vol.3, No.2, 2005, pp. 67–83, IOS Press.

[107] S. Abdallah, N. Darwish, O. Hegazy. (2002). Monitoring and synchronization for teamwork

in GPGP[C]. In Proceedings of the 2002 ACM symposium on Applied computing(Madrid,

Spain, March 11 - 14, 2002). SAC ’02. ACM Press, New York, NY, 288–293.

[108] W. Fan, X. Zuo. (2004). Instance of abstract performance of multi-agent organizational

coordination[J]. Journal of Civil Aviation University of China. June, 2004, 22(3). pp.60–

64. (�U. �¡=. ��õAgent|����Ä�íü¢~[J]. ¥I¬ÊÆ�Æ�. 2004.

22(3): 60–64.)

[109] W. Fan, H. Chi, and L. Ji. (2005). Multi-agent cooperation based on organizational struc-

ture[J]. Chinese Computer Applications. Vol. 25(5), pp. 1045–1048. (�U, ³÷, OX. Ä

u|�(��õÌN��[J]. O�ÅA^. 25(5): 1045–1048.)

[110] B. Horling. (2006). Quantitative organizational modeling and design for multi-agent sys-

tems[D]. PhD disseration, University of Massachusetts at Amherst, February 2006.

[111] B. Horling, and V. Lesser. (2004). A survey of multi-agent organizational paradigms[J].

The Knowledge Engineering Review, Vol. 19(4) (Dec. 2004), pp. 281–316.

[112] M. Sims, C. Goldman, and V. Lesser. (2003). Self-organization through bottom-up

coalition formation[C]. In Proceedings of Second International Joint Conference on Au-

tonomous Agents and MultiAgent Systems (AAMAS 2003), pages 867–874, Melbourne,

AUS, July 2003. ACM Press.

[113] K. Decker. (1996). TAEMS: a framework for environment centered analysis and design of

coordination mechanisms[M]. In Foundations of Distributed Artificial Intelligence, Chap-

ter 16, pages 429–448. G. O’Hare and N. Jennings (eds.),Wiley Inter-Science, January

1996.

[114] K. Fischer. (1999). Agent-based design of holonic manufacturing systems[J]. Journal of

Robotics and Autonomous Systems, 27(1-2): 3–13, 1999.

92

¥I¬Ê�Æa¬Æ Ø©

[115] X. Zhang and D. Norrie. (1999). Holonic control at the production and controller levels[C].

In Valckenaers, P., Van Brussel, H. (Eds), Proceedings of the 2nd International Workshop

on Intelligent Manufacturing Systems (IMS 99), pages 215–224, 1999.

[116] T. Sandholm and V. Lesser. (1997). coalitions among computationally bounded agents[J].

Artificial Intelligence, Special Issue on Economic Principles of Multi-Agent Systems,

94(1):99–137, January 1997.

[117] A. Chavez and P. Maes. (1996). Kasbah: an agent marketplace for buying and selling

goods[C]. In First International Conference on the Practical Application of Intelligent

Agents and Multi-Agent Technology (PAAM’96), pages 75–90, London, UK, 1996. Prac-

tical Application Company.

[118] M. Wellman. (2004). Online marketplaces[M]. In M. P. Singh (ed.), Practical Handbook

of Internet Computing. Chapman Hall & CRC Press, Baton Rouge, 2004.

[119] C. Brooks, E. Durfee, and A. Armstrong. (2000). An introduction to congregating in mul-

tiagent systems[C]. In Proceedings of the Fourth International Conference on Multiagent

Systems, pp. 79–86, 2000.

[120] C. Brooks and E. Durfee. (2003). Congregation formation in multiagent systems. Journal

of Autonomous Agents and Multiagent Systems, 7(1-2):145–170, 2003.

[121] Y. Shoham and M. Tennenholtz. (1995). On social laws for artificial agent societies: off-

line design[J]. Artificial Intelligence, 73(1-2): 231–252, 1995.

[122] M. Colombetti, N. Fornara, and M. Verdicchio. (2004). A social approach to communica-

tion in multiagent systems. In J. A. Leite, A. Omicini, L. Sterling, and P. Torroni, editors,

Declarative Agent Languages and Technologies, volume 2990 of Lecture Notes in Artificial

Intelligence, pages 191–220. Springer-Verlag, May 2004.

[123] G. Wiederhold, P. Wegner, and S. Cefi. (1992). Toward megaprogramming[J]. Communi-

cations of the ACM, 33(11): 89–99, 1992.

[124] K. Sycara, K. Decker, and M.Williamson. (1997). Middle-agents for the Internet[C]. In

Proceedings of the 15th International Joint Conference on Artificial Intelligence, pages

578–583, January 1997.

[125] G. Beavers and H. Hexmoor. (2001). Teams of agents[C]. In Proceedings of the IEEE

Systems, Man, and Cybernetics Conference, pages 574–582, 2001.

[126] N. R. Jennings. (1995). Controlling cooperative problem solving in industrial multi-agent

systems using joint intentions[J]. Artificial Intelligence. 75(2) (Jun. 1995), 195–240.

93

¥I¬Ê�Æa¬Æ Ø©

[127] R. Milner. (1991). The polyadic Pi-calculus: a tutorial[R]. Technical Report ECS-LFCS-

91-180, Computer Science Department, University of Edinburgh, UK, October 1991. (See

also: F. L. Bauer, W. Brauer, and H. Schwichtenberg, (eds.) Logic and Algebra of Speci-

fication, pages 203–246. Springer-Verlag, 1993.)

[128] R. Milner, J. Parrow, and D. Walker. (1989). A calculus of mobile processes: part I[R].

Technical Report ECS-LFCS-89-85. Laboratory for Foundations of Computer Sciences,

Department of Computer Science, University of Edinburgh, June 1989. (See also: Infor-

mation and Computation, Vol. 100(1) pp. 1–40. September, 1992.)

[129] R. Milner, J. Parrow, and D. Walker. (1989). A calculus of mobile processes: part II[R].

Technical Report ECS-LFCS-89-86. Laboratory for Foundations of Computer Sciences,

Computer Science Department, University of Edinburgh, June 1989. (See also: Informa-

tion and Computation, Vol. 100(1) pp. 41–77. September, 1992.)

[130] T. Rorie. (1998). Formal modeling of multi-agent systems using the π-calculus[D]. Master

thesis, Department of Computer Science, North Carolina A&T State University, Greens-

boro, NC.

[131] W. Jiao, and Z. Shi. (1999). Formalizing agent’s attitudes with the polyadic π-calculus[C].

In Proceedings of the 4th Workshop on Practical Reasoning and Rationality, Stockholm,

Sweden, 31st, July 1999. pp. 21–27.

[132] W. Jiao, and Z. Shi. (2000). Modeling Dynamic Architectures for Multi-Agent Systems[J].

Chinese journal of computers, (�©¬, ¤§�. �EMAS�Ä�NX(���.[J]. O�

ÅÆ�. 2000, 23(7): 732–737.)

[133] B. Yin, Z. He, G. Xu, F. Tan, et al. (2004). Discrete mathematics[M]. 2nd Edition. Beijing,

PR China: Higher Education Press, 2004. Chapter 19. (Ù��, Ûgr, N1Ç, �Â�,

�. lÑêÆ[M]. 1��. �®: p���Ñ��, 2004. 119Ù.)

[134] E. G. Coffman Jr., M. R. Garey, D. S. Johnson. (1978). An Application of Bin-Packing to

Multiprocessor Scheduling[J]. SIAM Journal on Computing, Vol. 7, No. 1, February 1978.

pp. 1–17.

[135] A. D. Mali, (2005) On quantified weighted MAX-SAT[J]. Decision Support Systems 40(2)

(Aug. 2005), pp. 257–268.

[136] M. E. Aydin, E. Öztemel. (2000). Dynamic job-shop scheduling using reinforcement learn-

ing agents[J]. Robotics and Autonomous Systems, 33(3), pp. 169–178. Chap. 2.

94

¥I¬Ê�Æa¬Æ Ø©

[137] M. P. Wellman, (1993). A market-oriented programming environment and its applica-

tion to distributed multicommodity flow problems[J]. Journal of Artificial Intelligence

Research. Vol. 1, pp. 1–23.

[138] G. İnalhan, D. M. Stipanović, and C. J. Tomlin. (2002). Decentralized optimization with

application to multiple aircraft coordination[C]. In Proc. IEEE Int. Conf. on Decision and

Control, Las Vegas, Nevada, 2002.

[139] W. Fan, F. Xue. (2006). Optimize cooperative agents with organization in distributed

scheduling system[C]. in Second International Conference on Intelligent Computing (ICIC

2006), Kunming, China, 2006. D.-S. Huang, K. Li, and G.W. Irwin (Eds.): Lecture Notes

in Artificial Intelligence Vol.4114, pp. 502–509.

[140] S. J. Russell, P. Norvig. (1995). Artificial intelligence: a modern approach[M]. Prentice-

Hall, Inc. Chap. 2. pp. 45–49.

[141] F. Bellifemine, A. Poggi, G. Rimassa. (2001). JADE: a FIPA2000 compliant agent develop-

ment environment[C]. In Proceedings of the Fifth international Conference on Autonomous

Agents (AGENT01), 216–217, Montreal, Canada. ACM Press, New York, NY.

[142] M. Dorigo, V. Maniezzo, and A. Colorni. (1991). Positive feedback as a search strategy[R].

Technical Report 91–016, Dipartimento di Elettronica, Politecnico di Milano, Italy, 1991.

[143] E. Bonabeau, M. Dorigo, and G. Theraulaz. (2000). Inspiration for optimization from

social insect behavior[J], Nature, Vol. 406 No 6, pp.39–42.

[144] M. Dorigo and T. Stützle. (2004). Ant Colony Optimization[M]. Bradford Books (MIT

Press).

[145] T. Stützle, and H. Hoos. (1997). The MAX–MIN ant system and local search for the

traveling salesman problem[C]. In Proceedings of the Fourth International Conference on

Evolutionary Computation (ICEC’97), pp. 308–313. IEEE Press.

[146] T. Stützle, and H. Hoos. (1997). Improvements on the ant system: Introducing MAX–

MIN ant system[C]. In Proceedings of the International Conference on Artificial Neural

Networks and Genetic Algorithms, pages 245–249. Springer Verlag, Wien, 1997.

[147] W. Fan, G. C. Zhang, and F. Xue. (2006). Design and implementation of airline ground

services mas development platform[C]. In First Conference on Multi-agent Theory and

Application, Yantai, China, 2006. C. Y. Shi, Z. Z. Shi, et al (Eds.): Journal of Computer

Research and Development Vol 43(suppl.I), pp 414–419 (�U, Ü2â, Å~. �Å/¡�

�NÝMASmu²���O�¢y[C]. 1�3AgentnØ�A^Æâ¬Æ. 2006c8�, ì

Àë�. �X�, ¤§�, �?. O�ÅïÄ�uÐ. 42(suppl.I): 414–419.)

95

¥I¬Ê�Æa¬Æ Ø©

[148] A. J. Davenport, and J. C. Beck. (2000). A survey of techniques for scheduling with un-

certainty[Z/OL]. http://www.eil.utoronto.ca/profiles/chris/chris.papers.html.

96

http://www.eil.utoronto.ca/profiles/chris/chris.papers.html

Publications During M.Sc. Study

Aug 2006 W. Fan, and F. Xue. Optimize Cooperative Agents with Organization in Dis-

tributed Scheduling System. in Second International Conference on Intelligent Computing

(ICIC 2006), Kunming, China, 2006. D.-S. Huang, K. Li, and G. W. Irwin (Eds.): Lecture

Notes in Artificial Intelligence Vol 4114, pp 502–509. (SCI(BEY13), Ei(064210172483))

Aug 2006 S. X. Zhu ,and F. Xue. Reinforced Circle Architecture and Implementation

in Information System of Civil Aviation Fleet of China. Computer Engineering and De-

sign. Vol 27(16) pp 3076–3077 (6,, Å~. Äu�G\re��¥I¬ÊÅè&EX

Ú. O�Åó§��O: 27(16): 3076–3077.(¥©Ø%))

Aug 2006 W. Fan, G. C. Zhang, and F. Xue. Design and Implementation of Airline

Ground Services MAS Development Platform. In First Conference on Multi-agent Theory

and Application, Yantai, China, 2006. CY Shi, ZZ Shi, et al (Eds.):Journal of Computer

Research and Development Vol 43(suppl.I), pp 414–419 (�U, Ü2â, Å~. �Å/¡

��NÝMASmu²���O�¢y. 1�3AgentnØ�A^Æâ¬Æ. 2006c8�,

ìÀë�. �X�, ¤§�, �?. O�ÅïÄ�uÐ. 42(suppl.I): 414–419) (¥©Ø%)

Oct 2004 F. Xue, Z. J. Gu, J. Wang, and J. Zhang. A Search Engine Applying to

Campus Network: CAUCIIC. in First Postgraduate Seminar, Civil Aviation University

of China, XH Xu (eds.):Journal of Civil Aviation University of China Vol 23(suppl.), pp

134–136 (Å~, �î�, �. ¡��	��|¢Ú�CAUCIIC. ¥I¬ÊÆ�1�3ïÄ

)Ø�. ¥I¬ÊÆ�Æ�. 23(suppl.): 134–136.(�EØ%))

Under view F. Xue, and W. Fan. DSAFO: A Multi-agent Algorithm for Airport

Ground Service Scheduling. submitted to Journal of Information and Computational

System. (Ei)

97

Curriculum Vitæ

Vita

Fan Xue (Å~) was born in Baishui County, Shaanxi on September 28, 1982, the

first son of Xinjie Xue and Qiaoxia Jing. After completing his study at Xianlin Senior

Middle School, Huaxian County, Shaanxi, in 2000, he entered Civil Aviation University

of China in Tianjin. He received the degree of Bachelor of Engineering in Automation

from College of Traffic Engineering, Civil Aviation University of China in July, 2004. In

September, 2004, he entered College of Computer Science and Technology, Civil Aviation

University of China for a Master’s degree study. He now is a M.Sc. student, interested in

Intelligent Information Process, Multi-agent Systems and Artificial Intelligence.

M.Sc. Courses

During his M.Sc. study, 17 theoretical courses and 4 practices have been finished, and

37 credits have been gained totally (33 credits are required for M.Sc. degree), including

21 compulsory credits, 12 optional credits and 4 practical credits. The average score of

the theoretical courses is 86.0, and the average score of major courses is 90.0. Six more

undergraduate major courses in computer science are also studied as a complement.

Selected Project and Research Experiences

2005–2006 Algorithm developer of Airport Ground Service Scheduling Optimization

Based on Multi-agent Coordination and Data Fusion (National)

collaborated with Air China and Chinese Academy of Sciences, granted by NSFC (No.60472123).

2004–2005 Developer of Xiamen Airline Revenue Management System 2nd Edition

collaborated with Xiamen Airline

2003–2006 Developer of Information System of Civil Aviation Fleet of China

collaborated with General Administration of Civil Aviation of China

98 View publication statsView publication stats

https://www.researchgate.net/publication/261638262

	Dedication
	Acknowledgements
	Chinese Abstract and Keywords
	Abstract and Keywords
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction and Motivation
	What is AGSS
	Motivation
	Economic importance
	Existing management problems
	Benefits of effective AGSS

	Thesis contributions
	Thesis outline

	Background and Related works
	AGSS investigations
	Job-Shop Scheduling Problem
	Distributed Constraint Satisfaction Problem
	Coordinative multi-agent system
	Multi-agent system
	Coordinative multi-agent system
	Agent organization paradigms

	Polyadic -calculus

	AGSS: Formulation and Characteristics
	Assumptions
	Formulation
	Airport ground service
	AGSS satisfaction
	AGSS problem
	Uncertain AGSS satisfaction
	Uncertain AGSS problem

	Notes in practical AGSS programming
	Characteristics

	Dynamic Distributed Scheduling Modeling
	Motivation
	Model overview
	Run-and-scheduling

	DSAFO: Overview, Design and Implementation
	An overview
	DSAFO strategies
	Local heuristics
	Global coordination

	Agent roles in DSAFO
	Role Blackboard
	Role ResourceAdmin
	Role Member
	Role Coordinator

	A formalized summary
	Blackboard
	ResourceAdmin
	Member
	Coordinator

	Complexity
	UC's Complexity
	Complexity from agent behaviors
	Complexity from agent communications
	UC's complexity summary

	Complexity of DSAFO

	Implementation

	Experiments and Analysis on Diverse Parameters
	The experiment
	The factors
	Member agent number and Reqcycle
	Blockfactor
	Delayfactor
	Syncycle

	Experimental summary

	Comparison
	Opponents
	MMAS
	EDD* and ERT*

	Comparison

	Conclusion and Future Works
	Conclusion
	Future works

	Appendix A: Agent Communication Grammar in DSAFO
	References
	Publications During M.Sc. Study
	Curriculum Vitæ

