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Abstract. As a practical generalization of the job shop scheduling prob-
lem, multi-resource job shop scheduling problem (MRJSSP) is discussed
in this paper. In this problem, operations may be processed by a type
of resources and jobs have individual deadlines. How to design and opti-
mize this problem with DSAFO, a novel multi-agent algorithm, is intro-
duced in detail by a case study, including problem analysis, agent role
specification, and parameter selection. Experimental results show the
effectiveness and efficiency of designing and optimizing MRJSSPs with
multi-agent.

1 Introduction

A practical generalization of the job shop scheduling problem (JSSP), which
we call the multi-resource job shop scheduling problem (MRJSSP), is concerned
in this paper. Informally, the problem can be stated as follows. There are a
set of jobs and a set of resources. Each job consists of a lattice of operations
that must be processed in a given order, and has, individually, a job ready time
and a job deadline. Each operation is given an integeral processing time, and
a longer resource usage time (plan time) for extra traffic (spatial distribution),
preparation, and reset actions. Each operation needs one resource to process, and
the processing is uninterruptible. Each resource can process only one operation
simultaneously. The objective of MRJSSP is to find the best scheduling solution
with minimal resource consumption, i.e. maximal resource utility.

JSSP has been studied by both academic and industrial society for decades [1],
however in many practical situations, (i) an operation can be processed by any
one resource (or machine) from a group; (ii) jobs have individual deadlines; (iii)
the requirement of no tardiness for any jobs is more important than makespan;
and (iv) to reduce consumption as much as possible in order to maximize the
machine utilities. Those are, fitly, the cases of MRJSSPs.

M. Perregaard (1995) proposed multi-processor job shop scheduling problem
(MPJSSP), which concerned multiple processing capacity as well, and A. Cesta,
A. Oddi, and S. F. Smith (2000) developed an iterative improvement search
approach for it. W. P. M. Nuijten and E. H. L. Aarts (1996) [4] presented another
problem: multiple capacitated job shop scheduling problem (MCJSSP), which
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extended MPJSSP by allowing each operation has a size. Nevertheless, both
MPJSSP and MCJSSP ignored the spatial conditions and supporting handling
in real-world engineering processes. Furthermore most of scheduling works are,
practically, pre-scheduled by domain experts, so what we need to optimize is,
usually, to maximize the resource utility to meet a timetable, not the makespan.
All of these are well presented in MRJSSP, which is detailed in Section 2

The remainder of the paper is structured as follows: Section [2 represents a
definition of the multi-resource job shop scheduling problem. Section [3 reviews
the DSAFO algorithm briefly. Section [4 demonstrates the design procedure via
a case study. Experimental results appear in Section [l and a brief conclusion is
given in Section [6

2 The Multi-resource Job Shop Scheduling Problem

Definition 1 (MRJSSP). An instance of multi-resource job shop scheduling
problem is a tuple (F,O,R,T,=,D, F,rt, st,ut, et,tt, 2,7, s) where
jz{jlanu"'ajn} - a set OfnjObS;
O ={o01,02,...,0,} =01 UO2U...UO,,, where V Om, NOp,; =0

#m;
- a set of p operations in m types (partitions);
R ={ri,ro,....1q} = R1 UR2 U...URy, where Vt Ri, "Ry, =0
i#t;
- a set of q resources in t types (partitions);
0:01 XRtlUOQ XRtZU...UOm X’R,tm

- processing capabilities;

<:0—0 - precedence or equality, decomposing O into
lattices (specially, chains) of jobs;

D :Jw— 17§ - deadline of a job;

J:0—J - job belonging to;

rt : O ZS‘ - operation ready time;

st : O— 77" - mon-zero operation service time;

ut : O Zg - operation setup time;

et : O Z(T - operation reset time;

tt : RxO ZS‘ - resource traffic time for an operation;

2 :Rx Za' — O U{@} - which operation is in process at a certain time,
returns () when non-single operations assigned.
The objective is to find two functions: s and v, where

v : O—=TR - assign resources;
s : O 7§ - assign service start time,
R C
st ¥ [(0,7(0)) €
/\rt( ) < s(o

)
As(0) + st(o) < D(F (o)
AV s(o) + st(o) < rt(o)
o=<o’
v 2(v(o0),7) =0
s(o)—ut(o)—tt(y(0),0)<T<s(0)+st(o)+et(o) (’Y( ) ) }
Alran(v)| = min|ran(y;)],
vi€l
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where o < o' is abbreviated from o X o' Ao # o', I is the set of all valid schedules,
[ran()| is the range size of function 7.

MRJSSP is a special case of distributed constraint satisfaction problem (Dis-
CSP), according to the definition by [6]. Remark that the decision variant of the
MRJSSP is NP-complete, as (i) it is in NP, because for a given schedule s all
constraints can be checked in polynomial time, and (ii) the decision variant of
the JSSP is an NP-complete special case of the decision variant of MRJSSP [5].

3 DSAFO: Overview and Strategies

DSAFO, i.e. Dynamic Scheduling Agents with Federation Organization, which
had been formalized in [7], is a novel multi-agent approach to Dis-CSP, espe-
cially for MRJSSPs. DSAFO employs blackboard mechanism, federation organi-
zation, meta-level guided resource borrowing and domain knowledge guided plan
backtrack. This algorithm is based on run-and-schedule, a dynamic distributed
scheduling environment, which uninterruptedly observes real-time job data from
enterprise systems. As shown in Fig. Il DSAFO runs as follow:

1. to read real-time job data from run-and-schedule environment;

2. to decompose jobs into operations;

3. to divide the solution space dynamically into rational partitions with multi-
agents;

4. to conquer each partition with local heuristics;

5. to optimize the solution simultaneously via coordination among partitions
from global view;

6. to dispatch the solution to real world environment simultaneously.

Internally, DSAFO algorithm can be viewed as a multi-agent approach with
strategies of local heuristics and global coordination.

Run-and-schedule
environment DSAFO
Resource
Job data dReal—tim;] Blackboard | administrator
ata _ 7| agent
from ERP E’; coliection .- 2 agent

systems

A resource.groups.

' | Coordinator| | Member || Member |: Coordinator| | Member |:

‘| agent 1 agent 1 agent2 |: '| agent m agent n
- R —— .. N 4 N . 4 N L T T 4

' '

o] % ¢

Real world resources

Fig. 1. An overview of DSAFO
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There are two parts of local heuristics in DSAFO, both are EDD (Earliest Due
Date first). One is to select the first operation to do according to weighted latest
finish time, and the other is to assign an operation to a resource from some com-
mitted resources according to the earliest committed service start time. However,
when the problem scale increases, EDD falls, generally, into local minimum. So
DSAFO employs local heuristics (EDD) in dynamic cooperative agents to jump
out of local minimum.

Global coordination is a mechanism that exchanges resource textures of agents
and realizes a complete resource borrow procedure for agents. And there are
two kinds of relationships between two Member agents with the same type of
resources: buddy and competitor. If two Member agents share same type of re-
sources and same type of operations, they are competitors; if they share same
type of resources but different type of operations, they are buddies. A group of
buddies always help each other, by lending its own resource friendly.

4 Design with DSAFO: A Case Study

Airport ground service is the service process from flight landing to takeoff, includ-
ing gate assignment, baggage handling, catering, fueling, cleaning, etc. Airport
ground service scheduling (AGSS) is to schedule many kinds of dynamic ground
resources (baggage trucks, fuel trucks, etc.), to fulfill all constrained service op-
erations of flights timely to meet their arrival and departure deadlines [8]. The
typical operations for a job, transfer flight service, is shown as Fig.

e S
transfer bridge/ |- - remove
[ passenger slz%ir &) F : bridge/

cleaning

o - B -0
Hponable water & lavatory servicH
I i e check !
L = power supply deicing ai condiion -~~~ .

Fig. 2. Typical operations for a transfer flight

The AGSS problem well meets the qualifications of the MRJSSP definition.
For each type of operations shown in Fig. 2l one (or a group) of certain type(s)
of materials, engineers, aviation ground support facilities and equipments, and
transportation equipments are required. For instance, process “cleaning” requires
cleaners (and cleaners’ bus), “catering’ requires catering truck, etc. However,
AGSS problem has one more constraint: resources, i.e. engineers and equipments,
have limited job time, e.g. 8 hours for an engineer per day.
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Then we demonstratively design AGSS problem optimization with DSAFO
in three phases: entity and extra constraint analysis, algorithm specification,
and parameter decision. Similar design procedures could be applied to other
MRJSSPs.

In the analysis phase, in AGSS problem the pre-determined flight schedule and
real-time operation systems (such as Flight Operation Control system, Airport
Operation Data Base) provide efficient input data (ready time and due date) for
jobs (flights). The jobs come, commonly, one by one, and peak not too much in
busy hours. In airports, service support vehicles and engineers must travel along
specific roads, load materials, and unload at job-specific points. These geographic
distance and the maximal airport ground travel speed (5km/h) could provide us
efficient traffic time estimation on service support actions. Some resources are
always bounded together, such as a cleaners’ group, they can be considered as
one resource.

As to the job time limitation of resources, we should modify the resource allo-
cation mechanism in DSAFO. Another constraint is that in minor cases several
operations around a physical airplane may conflict with each other, we should
conclude the cases and properly relax these operations in operation dispatching
process.

In the specification phase, agent roles in DSAFO are assigned with capabilities
and meanings. We design the Blackboard role to be in charge of decision-making
of operation dispatch, the Resource Admin role to be in charge of decision-making
of resource allocation, and Member roles to be in charge of making operation-
resource match-up dynamically. The Coordinator role is, invariably, assigned to
facilitate cooperations among Member agents.

The real-time job data are gathered and decomposed into operations by the
Blackboard role, with considering the possible spatial collision among operations.
the job time limitation of resources is monitored by the ResourceAdmin role, for
it controls the allocation of resource. Proper processing plans for resources are
made by the Member role, according to airport geographic information.

In the last phase, the parameters are designed, experimented, and analyzed
one by one. In DSAFO, there are some main parameters: (Member) AgentNum-
ber Blockfactor, Delayfactor, and Syncycle. We choose baggage tractor (BT)
consumption and related drivers’ 4-hour job optimization to test the parame-
ters, and have spontaneous 250 runs to get the distributions of the solutions in
each test.

Parameter Member agent number (accompanied with Reqcycle) stands for
how many Member agents in DSAFO are maintained for a certain type of re-
sources. And in all the parameters, this number should be notably influential.
When Blockfactor=1/12, Delayfactor=1/6, and Reqcycle is from 1/6 to 2 respec-
tively, Fig.[Bland Fig.[dshow the solution distributions with different BT Member
agents in 3D map and contour map, as well as marginal distributions. When the
number increases from 1 to 4, the solutions are going better, because the coordi-
nation strategy makes more insufficient effect when the number increases from
only one (no coordination). On the contrary, when the number increases from 4
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Fig. 3. BT solution distributions with respect to AgentNumber
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to 12, the solutions are going worse, because too many agents divide the global
solution into too many fragments, so that local heuristics in these fragments lack
of enough global viewpoints, and coordination cannot optimize these fragments
very well.

Blockfactor is another influential parameter. We set AgentNumber=1, Delay-
factor=1/6, Syncycle=5 and Reqcycle = 1/6, and then we get solution distri-
butions with respect to Blockfactor in 3D map and contour map, and marginal
distributions, as shown in Fig. [l and Fig. Bl From the figures we can conclude
that when Blockfactor decreases, resource consumption stays the same approxi-
mately and 4-hour jobs arranged decrease a bit; and when the Blockfactor goes
smaller, the solutions distributes turn more centralized, and the algorithm acts
more similar as a stable algorithm. Specially, we embedded one single Member
agent in Blackboard agent, i.e. without any unstable factors from communica-
tion, to eliminate the interference from network message communication. The
new embedded algorithm degrades to a deterministic algorithm as shown in
Fig. [f] (approximately the same as EDD* in Section [)).

Delayfactor stands for how much time Member agent should delay extra after
a successful operation commitment, and it is not a very influential parameter. We
set AgentNumber=4, Blockfactor=1/12, Syncycle=5 and Reqcycle = 1/2. Then
we get distributions in 3D map and contour map, and marginal distributions,
as shown in Fig. [[ and Fig. Bl No significant changes are there for 4-hour jobs,
however the peaks of 3D map and contour map move up-down a bit, which
means resource consumption is influenced, faintly.
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Fig. 8. BT solution marginal distributions with respect to Delayfactor

5 Experimental Comparison

Ant system have succeeded in many optimization and scheduling areas, and
MMAS (MAX-MIN ant system) is an improved ant system which gives an
upper and a lower bound to intensity quantity of trails in ant system [9/T0].
We implemented a MMAS for BT arrangement to compare. m BT related
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operations in AGSS problem are transformed into m nodes in trade salesman
problem (TSP). A distance between two nodes (operations) r; and r; is repre-
sented as

(DueDate,, — DueDate,,)/10, DueDate,; > DueDate,,,
dyir, def 0.01, DueDate,; = DueDate,.,,
(DueDate,, — DueDate,,)/30, DueDate,, < DueDate,,.

And rest parameters of MMAS are: a = 1.5, f = 2, p = 0.05, 7piy = 1,
Tmax = 100, Tmin = 0.01, Nany = [n/5] (upper integer), NCyax = 150. And for
each successful ant run R done by ant 7, all of edges in Hamilton circle of R get
a positive feedback

TiTyj

10 . )
i (resp+joby/3)? < 1, r; >€ circle of R;
0, otherwise.

to reinforce the whole algorithm for fewer resources and jobs.

Then DSAFO (with parameters: AgentNumbergr=4, Blockfactor=1/12, De-
layfactor=1/6, Syncycle=5), EDD* (EDD in run-and-schedule), ERT* (earliest
ready time first in run-and-schedule) and MMAS were tested with real-world
AGSS test data with 252 transfer flights. We choose BT related operations (1,008
activities in total) to test performances of these algorithms. A comparison in BT
consumption and 4-hour BT jobs arrangement is shown in Table[Il Additionally
we put time cost and average CPU rate in the table. The best value in each
group is bolded.

Table 1. Optimization algorithm comparison

Algorithm  Time CPU Resources 4-hour jobs
MIN MAX AVG MIN MAX AVG

DSAFO ~144 sec <1% 47 56 49.9 123 130 126.3

MMAS =~ 12 hours ~100% 47 — — 141 — —
EDD* ~43 sec <1% 53 53 53 129 129 129
ERT* ~43 sec <1% 52 52 52 130 130 130

From Table[] it can be concluded that DSAFO and MMAS both do well in
resource consumption for MRJSSPs, and DSAFO do better in BT jobs arrange-
ment. Furthermore, DSAFO cost not too much time (several minutes) and very
low CPU rate, in fact most time is used to maintain effective message transmis-
sion. On the contrary, MMAS costs very much time and near 100% CPU rate.

6 Conclusion and Future Works

In this paper, we present a practical general model of the job shop schedul-
ing problem, i.e. multi-resource job shop scheduling problem, and demonstrates
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a design and optimization process on this problem with a novel multi-agent
algorithm DSAFO. We have shown that this design and optimization process
is comprehensive for extra scheduling constraints and the experimental results
shows its effectiveness and efficiency.

One of the future works is to put forward an easy-to-use schedule software
to simplify the design process. A preliminary development environment AGSAP
has been developed to apply DSAFO to aid common AGSS optimization in [IT].
In future, more easy-to-use development environments should be put forward for
general MRJSSPs.
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