# A Learning-based Variables Assignment Weighting Scheme for Heuristic and Exact Searching

September 2010, Shanghai

Fan Xue, CY Chan, WH Ip, CF Cheung Department of Industrial & Systems Engineering Hong Kong Polytechnic University

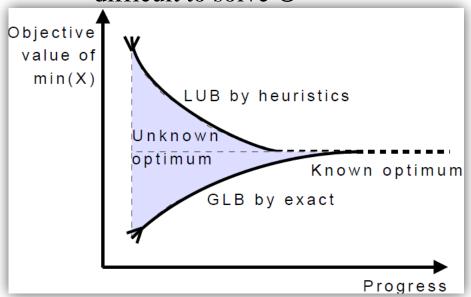




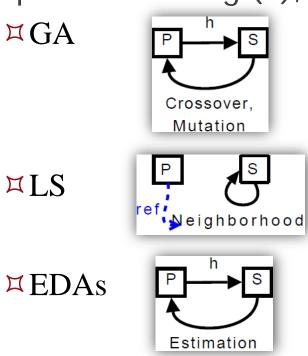


- 1 Introduction
- The presented method
- Traveling salesman: an example
- Staff rostering: another example
- Discussion and conclusion




#### Opportunity and background

Many combinatorial optimizations are NP-hard


"...no good algorithms..."

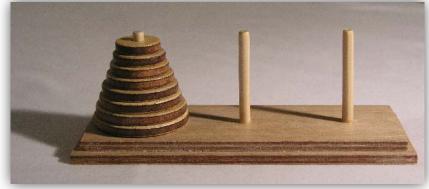
(Edmonds, 1967)

☐ The larger, the much more difficult to solve ③



Different metaheuristics have been proposed to improve searching (h), e.g.,




A typical problem solving progress

XUE et al: A Learning-based Searching Reform Scheme (EURO XXIV, Lisbon, 2010)



#### An inspiring game

- ❖ The game of *Tower of Hanoi* consists of:
  - ☐ Three rods,
  - □ A number of disks of different sizes.
- The puzzle starts with the disks in a neat stack in ascending order of size on one rod.
- The objective is to move the stack to another rod, obeying:
  - No disk on top of a smaller oneNo disk at a time.
- To unveil the solving rules, play with 2 or 3 disks at first.
  - □ Learn from a small sample



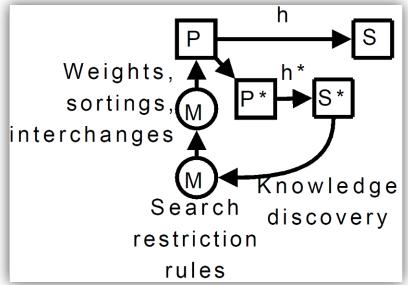
A model of Tower of Hanoi (8 disks, Photo brought from Wikipedia)



## Objective and assumptions

- The objective is to improve searching through learningbased revisions of assignments of variables
- Basic assumptions
  - □ A recognizable problem
  - □ Similar decision rules for each variable

#### Notes


- ☐ The smaller the problem is, the much easier (NP-hardness ②)
- □ The 1st assumption makes learning possible
- ☐ The 2nd assumption further enables learning from a part of the problem (variables), it implicitly enables learning from near-optimal solutions
- □ Large-scale problems are preferred

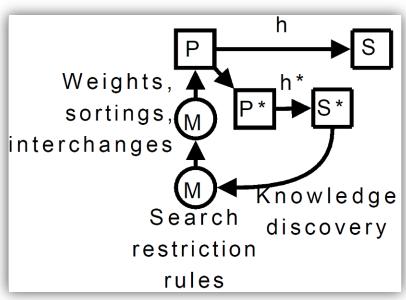


#### The proposed method

- The phases of the proposed method are:
  - □ 1. Start with a problem "P"
  - **■2**. Find a *small* "representative" part "P\*"

  - **∡4**. Obtain rules about assignments from "S\*" <u>as complete as possible</u>
  - □ 5. Interpret the rules to weights, sorting, or interchanges of possible assignments of the variables
  - □ 6. Reform the assignment process of heuristic (sometimes exact) searching "h"






#### The proposed method

#### Notes

- $\coprod$  Size(P\*) << size(P)
- $\blacksquare h^* \neq h$  (not necessarily same, nor necessarily heuristic)
- ☐ The indirect way of using the learning results
  - ×Rules with confidences from 100% down to 1% are potentially useful.
- □ Interpretations for different heuristics:
  - ×Weights for value assignments
  - ×Sorting for tests of local search
  - ×Interchanges for tests of binaries

×...





### Traveling salesman as an example

- The Euclidean traveling salesman problem (TSP): finding a shortest tour that visits all given spatial points (cities).
  - ☐ Hamilton circle: two edges for each city
  - Most of very long edges are not possible to appear in the optimal tour(s)
- How does the method work?
  - ☐ Indentify a weight for each edge candidate of each city
  - Reorder and reform the possible
- How to indentify the weights?
  - Learn from a part of the given problem, with a set of attributes for the edge candidates



## Traveling salesman: attributes

The attributes of an edge (c<sub>i</sub>, n<sub>j</sub>) for a city c<sub>i</sub>

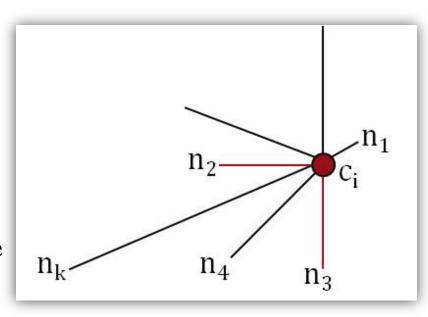
□G1 Global nearest

 $\bowtie$ R1, R2, R3 Length indices comparing to  $(c_i, n_1)$ ,  $(c_i, n_2)$ ,  $(c_i, n_3)$ 

 $\mbox{$^{\mu}$P1, P2, P3}$  R1-R3 of  $\mbox{$n_i$}$ 

muQ1, Q2 S1, S2 of  $n_i$ 

Ag, Ah Minimal / maximal


angular gap around ci

□ An Number of directions

around c<sub>i</sub>

☐ Opt Whether appears in the

training sample or not





## Traveling salesman: sample data

#### Learning samples

| G1 | R1 | R2 | R3  | S1 | S2 | P1 | P2 | Р3 | Q1 | Q2 | Ag | Ah | An | Opt |
|----|----|----|-----|----|----|----|----|----|----|----|----|----|----|-----|
|    |    |    | ••• |    |    |    |    |    |    |    |    |    |    |     |
| 0  | 3  | 1  | 1   | 1  | 0  | 4  | 3  | 2  | 0  | 0  | 3  | 10 | 7  | 0   |
| 0  | 9  | 3  | 3   | 1  | 0  | 6  | 6  | 2  | 0  | 1  | 3  | 10 | 7  | 1   |
| 0  | 9  | 3  | 3   | 1  | 0  | 10 | 4  | 2  | 1  | 1  | 3  | 10 | 7  | 1   |
|    |    |    |     |    |    |    |    |    |    |    |    |    |    |     |

#### ❖ Sample rules ("Opt=1" only)

| Id  | Rule                      | Support | Confidence |
|-----|---------------------------|---------|------------|
| 1   | R1=3, S1=1, Q1=1 => Opt=1 | 0.013   | 1.000      |
| 2   | P1=3, S1=1, Q1=1 => Opt=1 | 0.013   | 1.000      |
| 3   | R1=3, S1=1, Q2=0 => Opt=1 | 0.012   | 1.000      |
|     |                           | •••     | ***        |
| 30  | G1=1 => Opt=1             | 0.022   | 0.913      |
|     |                           | •••     | •••        |
| 983 | R3=8 => Opt=1             | 0.048   | 0.010      |



## Traveling salesman: revising the assignments

- Weights of edge candidates
  - Highest confidence of the rule that implies the edge should be in optimal tour (Opt=1)
  - **¤** Range [0, 1]
- Possible usage:
  - □ Direct value assignments (dispatching rules),
  - ☐ Grouping for a rank-based constructive heuristic,
  - □ Sorting for tests of searching, e.g., by Distance × (1-weight) (WD)
  - □ Interchanges for tests of binaries. The weights descending
- For those candidate sets not determine by Euclidean distance, a pseudo-distance could be defined.
  - $\Xi$ E.g., a pseudo-distance =  $\ln(\alpha\text{-value}+1)$  for the  $\alpha\text{-nearness}$



#### Traveling salesman: test 1 (local search)

- Inputs
  - □ 32 large Euclidean TSPs from industry, geography and random generation, grouped, ranging from 3,000 to 1,000,000 cities.
- Objective algorithm
- Parameters (Class Association Rules, CARs)
  - $\square P^* = 3,000$  cities with a closest density (and same aspect ratio)
  - $\square$  Min confidence of learning = 0.01
  - $\square$  Min support of learning = 0.001
  - Learn from 50-sized (if applicable) candidate sets, find the best 5
- Optional parameters
  - ☐ Length control of rules: |antecedent| < 6 (learns much faster

without much loss of rules)
XUE et al: A Learning-based Searching Reform Scheme (EURO XXIV, Lisbon, 2010)



## Traveling salesman: test 1

#### Groups of instances to test

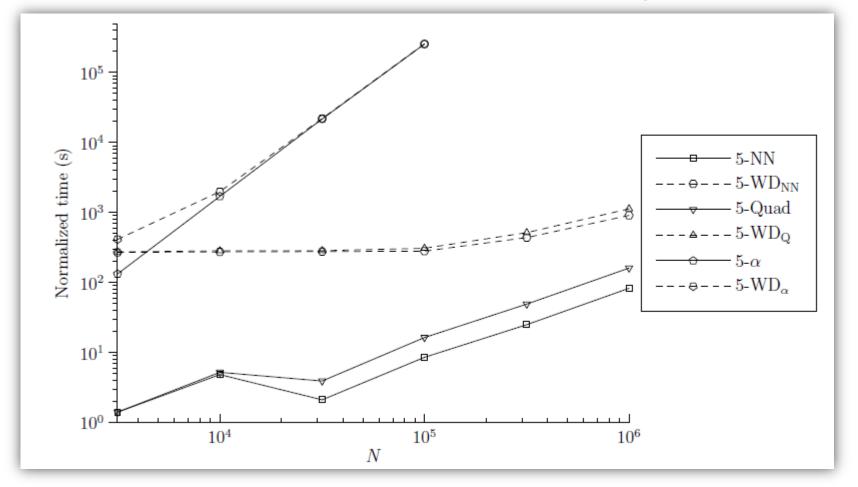
| Category | VLSI(BK)           | E(BK)                            | TSPLIB(Optimum)                                |
|----------|--------------------|----------------------------------|------------------------------------------------|
| 3k       | lsn3119(9114*)     | E3k.0(40634081*)E3k.1(40315287*) | pr2392(378032)                                 |
|          | lta3140(9517*)     | E3k.2(40303394*)E3k.3(40589659*) | pcb3038(137694)                                |
|          | fdp3256(10008*)    | E3k.4(40757209)                  | fnl4461(182566)                                |
| 10k      | dga9698(27724)     | E10k.0(71865826)E10k.1(72031630) | pla7397(23260728)                              |
|          | xmc10150(28387)    | E10k.2(71822483)                 | brd14051(469385)                               |
| 31k      | pbh30440(88328)    | E31k.0(71865826)                 | pla33810(66048945)                             |
|          | xib32892(96757)    | E31k.1(72031630)                 |                                                |
|          |                    | E100k.0(225787421)               |                                                |
| 100k     | sra104815(251433)  | E100k.1(225659006)               | pla85900(142382641)                            |
| 316k     | ara238025(578775)  | E316k.0(401307462)               | -                                              |
|          | lra498378(2168067) |                                  |                                                |
| 1M       | lrb744710(1612132) | E1M.0(713189834)                 | <u>-                                      </u> |
|          |                    |                                  |                                                |

<sup>\*</sup> Also proved optimal



#### ❖ Average quality (% excess BK) comparison (G+5-Opt)

|        |      | G+5-Opt @ NN |        |             | G+5   | -Opt @ Qu | ıadrant | G+5-Opt @ α-nearness |        |        |  |
|--------|------|--------------|--------|-------------|-------|-----------|---------|----------------------|--------|--------|--|
|        |      | Avg          | Avg/WD | Imp(%)      | Avg   | Avg/WD    | Imp(%)  | Avg                  | Avg/WD | Imp(%) |  |
|        | 3k   | 3.889        | 2.663  | 31.5        | 0.695 | 0.649     | 6.7     | 0.361                | 0.327  | 9.3    |  |
|        | 10k  | 4.236        | 3.300  | 22.1        | 0.863 | 0.693     | 19.7    | 0.526                | 0.503  | 4.5    |  |
| VLSI   | 31k  | 4.169        | 2.913  | 30.1        | 0.814 | 0.642     | 21.2    | 0.454                | 0.437  | 3.7    |  |
| V LS1  | 100k | 6.657        | 6.467  | 2.9         | 0.842 | 0.752     | 10.7    | 0.339                | 0.328  | 3.2    |  |
|        | 316k | 9.959        | 7.950  | 20.2        | 1.183 | 0.917     | 22.5    | -                    | -      | -      |  |
|        | 1M   | 4.682        | 4.385  | 6.3         | 0.857 | 0.762     | 11.1    | -                    | -      | -      |  |
|        | 3k   | 0.703        | 0.487  | 30.7        | 0.346 | 0.338     | 2.3     | 0.156                | 0.156  | 0.3    |  |
|        | 10k  | 0.862        | 0.490  | 43.1        | 0.375 | 0.370     | 1.4     | 0.179                | 0.178  | 0.2    |  |
| E      | 31k  | 1.262        | 0.659  | 47.8        | 0.527 | 0.526     | 0.2     | 0.343                | 0.341  | 0.6    |  |
| E      | 100k | 1.851        | 0.646  | 65.1        | 0.438 | 0.434     | 0.9     | 0.252                | 0.250  | 0.8    |  |
|        | 316k | 1.660        | 0.679  | <b>59.1</b> | 0.430 | 0.422     | 1.9     | -                    | -      | -      |  |
|        | 1M   | 1.176        | 0.911  | 22.5        | 0.381 | 0.379     | 0.5     | _                    | -      | -      |  |
|        | 3k   | 0.456        | 0.358  | 21.4        | 0.340 | 0.321     | 5.4     | 0.143                | 0.134  | 6.5    |  |
| TSPLIB | 10k  | 2.878        | 2.234  | 22.4        | 0.427 | 0.395     | 7.6     | 0.253                | 0.278  | -10.1  |  |
| ISELID | 31k  | 2.297        | 1.677  | 27.0        | 0.913 | 0.517     | 43.4    | 0.560                | 0.617  | -10.2  |  |
|        | 100k | 2.065        | 1.476  | 28.5        | 0.761 | 0.445     | 41.5    | 0.932                | 0.978  | -4.9   |  |




#### ❖ Average quality (% excess BK) comparison (G+2-Opt)

|       |      | G+     | +2-0pt @ N | NN          | G+2   | -Opt @ Qu | adrant | G+2-Opt @ α-nearness |        |        |  |
|-------|------|--------|------------|-------------|-------|-----------|--------|----------------------|--------|--------|--|
|       |      | Avg    | Avg/WD     | Imp/%       | Avg   | Avg/WD    | Imp(%) | Avg                  | Avg/WD | Imp(%) |  |
|       | 3k   | 5.196  | 4.234      | 18.5        | 2.177 | 2.019     | 7.3    | 1.376                | 1.625  | -18.1  |  |
|       | 10k  | 5.949  | 4.943      | 16.9        | 2.716 | 2.144     | 21.1   | 2.101                | 1.956  | 6.9    |  |
| VLSI  | 31k  | 5.660  | 4.221      | 25.4        | 2.421 | 2.162     | 10.7   | 1.675                | 2.052  | -22.5  |  |
| V LSI | 100k | 8.101  | 7.945      | 1.9         | 2.472 | 2.344     | 5.2    | 1.244                | 2.006  | -61.3  |  |
|       | 316k | 11.503 | 4.942      | 57.0        | 3.004 | 2.746     | 8.6    | -                    | -      | -      |  |
|       | 1M   | 6.125  | 5.710      | 6.8         | 2.505 | 2.380     | 5.0    | -                    | -      | -      |  |
|       | 3k   | 2.250  | 1.616      | 28.2        | 1.412 | 1.645     | -16.5  | 0.791                | 0.996  | -25.8  |  |
|       | 10k  | 1.849  | 1.575      | 14.8        | 1.439 | 1.495     | -3.8   | 0.756                | 1.113  | -47.3  |  |
| E     | 31k  | 2.007  | 1.648      | 17.9        | 1.604 | 1.678     | -4.6   | 0.881                | 1.314  | -49.1  |  |
| E     | 100k | 2.320  | 1.611      | 30.6        | 1.553 | 1.550     | 0.2    | 0.791                | 1.237  | -56.5  |  |
|       | 316k | 2.764  | 2.370      | 14.3        | 2.154 | 2.179     | -1.2   | -                    | -      | -      |  |
|       | 1M   | 2.235  | 1.884      | 15.7        | 1.452 | 1.460     | -0.6   | -                    | -      | -      |  |
|       | 3k   | 1.735  | 1.470      | 15.3        | 1.554 | 1.433     | 7.8    | 0.793                | 0.751  | 5.3    |  |
| TSPLI | 10k  | 3.832  | 3.371      | 12.0        | 1.817 | 2.040     | -12.3  | 1.177                | 1.485  | -26.1  |  |
| В     | 31k  | 3.176  | 2.610      | <b>17.8</b> | 2.469 | 2.232     | 9.6    | 1.694                | 1.914  | -13.0  |  |
|       | 100k | 3.017  | 2.591      | 14.1        | 2.211 | 2.022     | 8.5    | 1.589                | 1.978  | -24.5  |  |



Set up time costs (Normalized, dash = weighted distance)





#### Average time cost comparison (Normalized, G+5-Opt)

|        |      | G+5-0pt @ NN |         |       | G+5-0   | pt @ Qua | drant  | G+5-Opt @ α-nearness |        |        |  |
|--------|------|--------------|---------|-------|---------|----------|--------|----------------------|--------|--------|--|
|        |      | Avg          | Avg/WD  | Imp/% | Avg     | Avg/WD   | Imp(%) | Avg                  | Avg/WD | Imp(%) |  |
|        | 3k   | 2.20         | 2.27    | -3.1  | 1.93    | 1.48     | 23.0   | 2.32                 | 2.21   | 4.6    |  |
| VLSI   | 10k  | 8.09         | 7.84    | 3.2   | 8.72    | 6.64     | 23.9   | 10.32                | 9.69   | 6.1    |  |
|        | 31k  | 33.20        | 31.79   | 4.3   | 37.66   | 29.40    | 21.9   | 42.88                | 46.18  | -7.7   |  |
|        | 100k | 88.57        | 86.00   | 2.9   | 147.62  | 133.05   | 9.9    | 158.95               | 169.70 | -6.8   |  |
|        | 316k | 479.84       | 421.65  | 12.1  | 675.39  | 649.52   | 3.8    | -                    | -      | -      |  |
|        | 1M   | 1123.66      | 949.97  | 15.5  | 1665.11 | 1500.81  | 9.9    | -                    | -      | -      |  |
|        | 3k   | 2.60         | 2.47    | 5.1   | 1.68    | 1.87     | -11.6  | 1.98                 | 2.08   | -5.3   |  |
|        | 10k  | 9.86         | 10.28   | -4.2  | 7.94    | 7.56     | 4.8    | 8.91                 | 8.56   | 3.9    |  |
| E      | 31k  | 41.81        | 45.40   | -8.6  | 37.18   | 36.69    | 1.3    | 47.20                | 43.73  | 7.4    |  |
| E      | 100k | 140.30       | 156.68  | -11.7 | 141.62  | 139.84   | 1.3    | 161.85               | 167.15 | -3.3   |  |
|        | 316k | 503.66       | 568.11  | -12.8 | 601.57  | 596.53   | 8.0    | -                    | -      | -      |  |
|        | 1M   | 2141.66      | 2432.96 | -13.6 | 2986.15 | 3033.61  | -1.6   | -                    | -      | -      |  |
|        | 3k   | 2.71         | 2.68    | 1.3   | 2.18    | 1.84     | 15.6   | 1.88                 | 4.07   | -116.7 |  |
| TCDLID | 10k  | 12.88        | 13.57   | -5.3  | 12.60   | 11.17    | 11.3   | 13.40                | 13.57  | -1.3   |  |
| TSPLIB | 31k  | 97.50        | 97.02   | 0.5   | 81.40   | 65.16    | 19.9   | 84.44                | 97.27  | -15.2  |  |
|        | 100k | 149.99       | 159.61  | -6.4  | 174.31  | 166.20   | 4.7    | 134.96               | 150.73 | -11.7  |  |



#### ❖ Average time cost comparison (Normalized, G+2-Opt)

|        |      | G+2-0pt @ NN |                  |       | G+2-0   | pt @ Qua          | drant | G+2-Opt @ α-nearness |       |       |  |
|--------|------|--------------|------------------|-------|---------|-------------------|-------|----------------------|-------|-------|--|
|        |      | Avg          | Avg Avg/WD Imp/% |       | Avg     | Avg Avg/WD Imp(%) |       | Avg Avg/WD Imp(%)    |       |       |  |
|        | 3k   | 0.30         | 0.30             | 0.0   | 0.28    | 0.30              | -7.1  | 0.24                 | 0.30  | -25.0 |  |
| VLSI   | 10k  | 1.42         | 1.36             | 4.1   | 1.16    | 1.33              | -15.0 | 1.10                 | 1.27  | -15.8 |  |
|        | 31k  | 9.21         | 7.33             | 20.4  | 6.97    | 7.37              | -5.7  | 6.21                 | 4.27  | 31.3  |  |
| V L'31 | 100k | 32.23        | 31.02            | 3.8   | 26.58   | 26.58             | 0.0   | 22.74                | 28.06 | -23.4 |  |
|        | 316k | 170.32       | 156.59           | 8.1   | 137.81  | 148.35            | -7.6  | -                    | -     | -     |  |
|        | 1M   | 460.39       | 341.91           | 25.7  | 275.10  | 297.95            | -8.3  | -                    | -     | -     |  |
|        | 3k   | 0.48         | 0.57             | -20.0 | 0.53    | 0.72              | -36.4 | 0.31                 | 0.35  | -11.5 |  |
|        | 10k  | 2.53         | 2.72             | -7.6  | 2.70    | 2.91              | -7.9  | 1.72                 | 2.08  | -21.3 |  |
| E      | 31k  | 12.20        | 12.38            | -1.5  | 11.73   | 13.90             | -18.5 | 8.34                 | 10.25 | -22.9 |  |
| E      | 100k | 48.62        | 54.44            | -12.0 | 50.53   | 51.11             | -1.1  | 33.61                | 48.62 | -44.6 |  |
|        | 316k | 205.92       | 212.52           | -3.2  | 222.06  | 232.22            | -4.6  | -                    | -     | -     |  |
|        | 1M   | 914.88       | 932.81           | -2.0  | 1175.30 | 1141.33           | 2.9   | -                    | -     | -     |  |
|        | 3k   | 0.36         | 0.40             | -11.1 | 0.36    | 0.40              | -11.1 | 0.24                 | 0.30  | -25.0 |  |
| тсы ір | 10k  | 1.56         | 1.76             | -13.0 | 1.62    | 1.94              | -19.6 | 1.22                 | 1.59  | -31.0 |  |
| TSPLIB | 31k  | 7.00         | 5.85             | 16.5  | 4.91    | 5.20              | -5.9  | 4.41                 | 5.34  | -21.3 |  |
|        | 100k | 15.27        | 15.01            | 1.8   | 13.39   | 16.15             | -20.6 | 13.79                | 16.55 | -20.0 |  |



## Traveling salesman: test 2 (branch-and-bound)

#### Inputs

□ 10 problems (30 cities), 5 are Euclidean random and 5 are subproblems of the first 5 instances of the VLSI data set:

| Category | Problem (source)                                                           |
|----------|----------------------------------------------------------------------------|
| Random   | E30.0 E30.1 E30.2 E30.3 E30.4 (generator)                                  |
| VLSI     | xqf30 (xqf131) xqg30 (xqg237) pma30 (pma343) pka30 (pka379) bcl30 (bcl380) |

#### Objective algorithm

- A branch-and-bound, LB by minimum spanning 1 tree.
- Parameters (Class Association Rules, CARs)
  - $\square P^* = \text{half}$  (15) problems with a closest density
  - $\square$  Min confidence of learning = 0.01
  - $\square$  Min support of learning = 0.05
  - □ Learn from all candidate sets



|        | Problem | Ontimum - | Exp  | anded brand | ches   | Δtime  |
|--------|---------|-----------|------|-------------|--------|--------|
|        | Problem | Optimum - | BnB  | BnB-WD      | Δ (%)  | (%)    |
|        | E30.0   | 4620393   | 957  | 287         | -70.01 | -61.46 |
|        | E30.1   | 4539405   | 1370 | 1135        | -17.15 | -31.84 |
| Random | E30.2   | 4778537   | 327  | 141         | -56.88 | -37.50 |
|        | E30.3   | 4779040   | 835  | 1189*       | 42.40* | 80.92  |
|        | E30.4   | 4739803   | 610  | 976         | 60.00  | 84.87  |
|        | xqf30   | 128       | 258  | 214         | -17.05 | -5.19  |
|        | xqg30   | 158       | 379  | 143         | -62.27 | -36.90 |
| VLSI   | pma30   | 195       | 866  | 645         | -25.52 | -15.33 |
|        | pka30   | 184       | 563  | 547         | -2.84  | -8.35  |
|        | bcl30   | 149       | 46   | 45          | -2.17  | -4.23  |

<sup>\*:</sup> when support threshold = 0.2; it was 61201 (!) when 0.05.



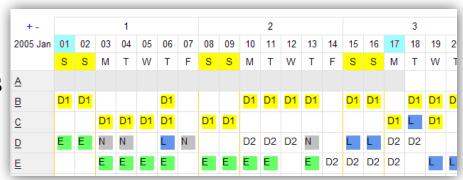
## Traveling salesman: results interpretation



- Depending on the search depth, local search **can** be significantly benefited on different candidate sets (NN, Quadrant, α-nearness) over different families (especially industrial) of problems
- It seems that BnB can be significantly benefited, but risks might be there especially when problem is small.

  □
- ☐ The additional time cost is pretty low in very large problems




- □ Less effective in random than industrial ETSP
- Less effective for the α-nearness than the NN and the Quadrant candidate sets



#### Staff rostering as another example

#### Staff rostering

- ☐ Determine shifts for demands
- ☐ Construct work timetables\*



#### Attributes

□ ID, CN Employee ID, Contract ID (group)

S1, S2 Shift on yesterday, on the day before yesterday

□ SQ Length of current consecutive working days

□DW Day of week

 $\square$  St, Ed Level (log<sub>2</sub>) of days from the beginning, to the end

Absolute difference of the current employee's workload against the average workload (till yesterday, rounded to integer).

□ JB Shift to determine



### **Staff rostering: tests**

- Inputs
  - ☐ Problems (>10 staff, >20 days, fixed number of shifts) from <a href="http://www.cs.nott.ac.uk/~tec/NRP/">http://www.cs.nott.ac.uk/~tec/NRP/</a>
  - ☐ A set of enlarged problems (no day/shift on/off constraints, enlarged to same employees, 3 months)
- Objective algorithm
  - 4-Hybrid VDS (10 runs) initialized by Greedy
- Parameters (CARs)
  - $\square P^* = \text{half scheduling period, or those before}$
  - $\square$  Min confidence of learning = 0.01
  - $\square$  Min support of learning = 0.05\*
  - \*: Less training examples (~1,000) than in TSP (~100,000)



## Staff rostering: results

Comparisons on two groups of problems

|                                  |         |          | 4-HVDS | 001011  | 4-HVDS /Weighted |          |         | Δ time |
|----------------------------------|---------|----------|--------|---------|------------------|----------|---------|--------|
| Problem                          | BK      | avg      | stddev | time(s) | avg              | stddev 1 | time(s) | (%)    |
| BCV-2.46.1(46x28)                | 1572*   | 1576     | 8.7    | 631.8   | 1582             | 10.8     | 616.2   | -2.47  |
| BCV-3.46.1(46x26)                | 3280^   | 3314     | 7.4    | 1590    | 3307             | 11.7     | 1808    | 13.7   |
| BCV-3.46.2(46x26)                | 894*^   | 896.1    | 1.8    | 1148    | 898              | 1.6      | 1014    | -11.7  |
| BCV-6.13.1(13x30)                | 768     | 884.9    | 101.9  | 211.1   | 833.5            | 82.1     | 204.6   | -3.07  |
| BCV-A.12.1(12x31)                | 1294^   | 2217     | 493.5  | 1678    | 1983             | 403.2    | 2003    | 19.4   |
| BCV-A.12.2(12x31)                | 1953^   | 2440     | 188.8  | 2819    | 2486             | 298.5    | 2160    | -23.4  |
| ORTEC01(16x31)                   | 270*^   | 2254     | 915.5  | 29.4    | 2128             | 1731     | 26.2    | -10.9  |
| QMC-1(19x28)                     | 13*     | 31.3     | 3      | 61.6    | 34.7             | 2.9      | 50.1    | -18.7  |
| SINTEF(24x21)                    | 0*      | 9        | 1.9    | 12.6    | 8.8              | 2.3      | 13.5    | 6.92   |
| Valouxis-1(16x28)                | 20*     | 422      | 7.9    | 6.2     | 476              | 98.3     | 4.6     | -26    |
| * Also proved optimal; ^ found b | y the H | ybrid VD | S      |         |                  |          |         |        |
| EBCV-4.13.1 (13x3m)              | -       | 155.8    | 28.6   | 352.3   | 153.9            | 98.8     | 413.6   | 17.4   |
| EBCV-5.4.1 (4x3m)                | -       | 525.9    | 132.3  | 0.8     | 462.7            | 0.5      | 1.5     | 89.6   |
| EGPost-B (8x3m)                  | -       | 3223     | 1939   | 68      | 2599             | 1411     | 63.2    | -7.1   |
| EMillar-2Shift-DATA1(8x3m)       | -       | 3650     | 97.2   | 8.5     | 3640             | 51.6     | 6.9     | -18.2  |
| EMillar-2Shift-DATA1.1(8x3m)     | -       | 3640     | 51.6   | 1.6     | 3620             | 42.2     | 2.7     | 68.3   |
| EValouxis-1 (16x3m)              | -       | 1656     | 252.8  | 109.3   | 1632             | 161.2    | 143.8   | 31.5   |

XUE et al: A Learning-based Searching Reform Scheme (EURO XXIV, Lisbon, 2010)



### Staff rostering: results interpretation



- ☐ Fits large-scale problems better
- According to *limited* evidences, the Hybrid VDS can be benefited in quality, if certain criteria (such as "large-enough") are met



- □ Although the additional time costs by machine learning are low, the iteration time increases by some percent
- ☐ Preliminary tests only. There might be some other reasons for the quality change (i.e., possibly no improvements by the learning in fact)...



#### Some characteristics:

- ☐ The parameters of learning (including non-CARs) are easy to determine: set to (feasibly) minimal values
- ☐ The design of decision attributes is the key to a successful application: decentralized, able to borrow the attributes from human heuristics
- Beyond the cases, more challenges await
  - ☐ Heuristics/ CO problems incompatible (not homogeneous)?
  - ☐ Problems with many arbitrary global constraints (e.g., SAT)
  - ☐ Constraint satisfaction methods (e.g., revising backtracks like those in BnB?)
  - ☐ An encapsulated general purpose (or a list of purposes) optimization program module



#### Conclusion and future works

- We present an efficient metaheuristic-like approach

  - □ Enhance problem solving with the rules learnt
  - Transparent to the embedded heuristic
- We find the results of tests encouraging.
- We hope it unveils a direction to take the power of machine learning in large-scale optimization.
- Possible future works
  - □ An general guide of designing the attributes
  - □ Special plan guide for special industrial practice
  - ☐ Challenges listed on last page



- Edmonds, J. (1967). Optimum branchings, Journal of Research of the National Bureau of Standards, 71B: 233-240.
- TSP benchmark data and program

  - http://www.research.att.com/~dsj/chtsp/
  - http://www.tsp.gatech.edu/vlsi/
  - http://www.akira.ruc.dk/~keld/research/LKH/DIMACS\_results.html
  - http://www.ruc.dk/~keld/Research/LKH/
- Rostering benchmark data and program
  - □ http://www.cs.nott.ac.uk/~tec/NRP/

#### Thank you for your attention!

E-mail addr.: Dewolf.xue@polyu.edu.hk Dewolf\_matri\_x@msn.com



