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Opportunity and background

Many combinatorial 
optimizations are NP-hard
“…no good algorithms…” 

(Edmonds, 1967)
The larger, the much more 

difficult to solve 

Different metaheuristics 
have been proposed to 
improve searching (h), e.g.,
GA

LS

EDAs

A typical problem solving progress
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An inspiring game

The game of Tower of Hanoi consists of:
Three rods,
A number of disks of different sizes. 

The puzzle starts with the disks in a neat stack in 
ascending order of size on one rod. 

The objective is to move the stack to another rod, 
obeying:
No disk on top of a smaller one
One disk at a time.

To unveil the solving rules,
play with 2 or 3 disks at first.
Learn from a small sample A model of Tower of Hanoi (8 disks, Photo 

brought from Wikipedia)
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Objective and assumptions

The objective is to improve searching through learning-
based revisions of assignments of variables

Basic assumptions
A recognizable problem
Similar decision rules for each variable

Notes
The smaller the problem is, the much easier (NP-hardness )
The 1st assumption makes learning possible
The 2nd assumption further enables learning from a part of the 

problem (variables), it implicitly enables learning from near-
optimal solutions 
Large-scale problems are preferred
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The proposed method

The phases of the proposed method are:
1. Start with a problem “P”
2. Find a small “representative” part “P*”
3. Obtain a good solution “S*” quickly
4. Obtain rules about assignments from “S*” as complete as 

possible
5. Interpret the rules to weights, 
sorting, or interchanges of possible 
assignments of the variables
6. Reform the assignment process 
of heuristic (sometimes exact) 
searching “h” 
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The proposed method

Notes
Size(P*) << size(P)
h* ≠ h (not necessarily same, nor necessarily heuristic)
The indirect way of using the learning results

Rules with confidences from 100% down to 1% are potentially 
useful.

Interpretations for different 
heuristics:

Weights for value assignments
Sorting for tests of local search
Interchanges for tests of binaries
…
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Traveling salesman as an example

The Euclidean traveling salesman problem (TSP): finding 
a shortest tour that visits all given spatial points (cities).
Hamilton circle: two edges for each city
Most of very long edges are not possible to appear in the optimal 

tour(s)
How does the method work?
Indentify a weight for each edge candidate of each city
Reorder and reform the possible

How to indentify the weights?
Learn from a part of the given problem, with a set of attributes for 

the edge candidates
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Traveling salesman: attributes

The attributes of an edge (ci, nj) for a city ci

G1 Global nearest
R1, R2, R3 Length indices comparing to (ci, n1), (ci, n2), (ci, n3)
S1, S2 Whether d(ci, n1)≤d(ci, n2)/2, d(ci, n2)≤d(ci, n3)/2
P1, P2, P3 R1-R3 of nj

Q1, Q2 S1, S2 of nj

Ag, Ah Minimal / maximal 
angular gap around ci

An Number of directions 
around ci

Opt Whether appears in the 
training sample or not
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Traveling salesman: sample data

Learning samples

Sample rules (“Opt=1” only) 

G1 R1 R2 R3 S1 S2 P1 P2 P3 Q1 Q2 Ag Ah An Opt 
... ... ... 

0 3 1 1 1 0 4 3 2 0 0 3 10 7 0 
0 9 3 3 1 0 6 6 2 0 1 3 10 7 1 
0 9 3 3 1 0 10 4 2 1 1 3 10 7 1 

... ... ... 

Id Rule Support Confidence
1 R1=3, S1=1, Q1=1 => Opt=1 0.013 1.000
2 P1=3, S1=1, Q1=1 => Opt=1 0.013 1.000
3 R1=3, S1=1, Q2=0 => Opt=1 0.012 1.000
… … … …
30 G1=1 => Opt=1 0.022 0.913
… … … …

983 R3=8 => Opt=1 0.048 0.010
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Traveling salesman: revising the 
assignments

Weights of edge candidates
Highest confidence of the rule that implies the edge should be in 

optimal tour (Opt=1)
Range [0, 1]

Possible usage:
Direct value assignments (dispatching rules),
Grouping for a rank-based constructive heuristic,
Sorting for tests of searching, e.g., by Distance(1-weight) (WD) 
Interchanges for tests of binaries. The weights descending 

For those candidate sets not determine by Euclidean 
distance, a pseudo-distance could be defined.
E.g., a pseudo-distance = ln(α-value+1) for the α-nearness
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Traveling salesman: test 1 (local 
search)

Inputs
32 large Euclidean TSPs from industry, geography and random 

generation, grouped, ranging from 3,000 to 1,000,000 cities.
Objective algorithm
5,2-Opt (100 runs) initialized by Greedy, on 5-sized candidate sets

Parameters (Class Association Rules, CARs)
P* = 3,000 cities with a closest density (and same aspect ratio)
Min confidence of learning = 0.01
Min support of learning = 0.001
Learn from 50-sized (if applicable) candidate sets, find the best 5

Optional parameters
Length control of rules: |antecedent| < 6 (learns much faster 

without much loss of rules)
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Traveling salesman: test 1

Groups of instances to test
Category VLSI(BK) E(BK) TSPLIB(Optimum) 

3k lsn3119(9114*) E3k.0(40634081*)E3k.1(40315287*) pr2392(378032) 
lta3140(9517*) E3k.2(40303394*)E3k.3(40589659*) pcb3038(137694) 

fdp3256(10008*) E3k.4(40757209) fnl4461(182566) 
10k dga9698(27724) E10k.0(71865826)E10k.1(72031630) pla7397(23260728) 

xmc10150(28387) E10k.2(71822483) brd14051(469385) 
31k pbh30440(88328) E31k.0(71865826) pla33810(66048945) 

xib32892(96757) E31k.1(72031630) 

100k sra104815(251433) 
E100k.0(225787421)
E100k.1(225659006) pla85900(142382641) 

316k ara238025(578775) E316k.0(401307462) -
lra498378(2168067) 

1M lrb744710(1612132) E1M.0(713189834) -
* Also proved optimal
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Traveling salesman: results of test 1

Average quality (% excess BK) comparison (G+5-Opt)
G+5-Opt @ NN G+5-Opt @ Quadrant G+5-Opt @ α-nearness

Avg Avg/WD Imp(%) Avg Avg/WD Imp(%) Avg Avg/WD Imp(%)

VLSI

3k 3.889 2.663 31.5 0.695 0.649 6.7 0.361 0.327 9.3
10k 4.236 3.300 22.1 0.863 0.693 19.7 0.526 0.503 4.5
31k 4.169 2.913 30.1 0.814 0.642 21.2 0.454 0.437 3.7
100k 6.657 6.467 2.9 0.842 0.752 10.7 0.339 0.328 3.2
316k 9.959 7.950 20.2 1.183 0.917 22.5 - - -
1M 4.682 4.385 6.3 0.857 0.762 11.1 - - -

E

3k 0.703 0.487 30.7 0.346 0.338 2.3 0.156 0.156 0.3
10k 0.862 0.490 43.1 0.375 0.370 1.4 0.179 0.178 0.2
31k 1.262 0.659 47.8 0.527 0.526 0.2 0.343 0.341 0.6
100k 1.851 0.646 65.1 0.438 0.434 0.9 0.252 0.250 0.8
316k 1.660 0.679 59.1 0.430 0.422 1.9 - - -
1M 1.176 0.911 22.5 0.381 0.379 0.5 - - -

TSPLIB

3k 0.456 0.358 21.4 0.340 0.321 5.4 0.143 0.134 6.5
10k 2.878 2.234 22.4 0.427 0.395 7.6 0.253 0.278 -10.1
31k 2.297 1.677 27.0 0.913 0.517 43.4 0.560 0.617 -10.2
100k 2.065 1.476 28.5 0.761 0.445 41.5 0.932 0.978 -4.9
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Traveling salesman: results of test 1

Average quality (% excess BK) comparison (G+2-Opt)
G+2-Opt @ NN G+2-Opt @ Quadrant G+2-Opt @ α-nearness

Avg Avg/WD Imp/% Avg Avg/WD Imp(%) Avg Avg/WD Imp(%) 

VLSI

3k 5.196 4.234 18.5 2.177 2.019 7.3 1.376 1.625 -18.1
10k 5.949 4.943 16.9 2.716 2.144 21.1 2.101 1.956 6.9
31k 5.660 4.221 25.4 2.421 2.162 10.7 1.675 2.052 -22.5
100k 8.101 7.945 1.9 2.472 2.344 5.2 1.244 2.006 -61.3
316k 11.503 4.942 57.0 3.004 2.746 8.6 - - -
1M 6.125 5.710 6.8 2.505 2.380 5.0 - - -

E

3k 2.250 1.616 28.2 1.412 1.645 -16.5 0.791 0.996 -25.8
10k 1.849 1.575 14.8 1.439 1.495 -3.8 0.756 1.113 -47.3
31k 2.007 1.648 17.9 1.604 1.678 -4.6 0.881 1.314 -49.1
100k 2.320 1.611 30.6 1.553 1.550 0.2 0.791 1.237 -56.5
316k 2.764 2.370 14.3 2.154 2.179 -1.2 - - -
1M 2.235 1.884 15.7 1.452 1.460 -0.6 - - -

TSPLI
B

3k 1.735 1.470 15.3 1.554 1.433 7.8 0.793 0.751 5.3
10k 3.832 3.371 12.0 1.817 2.040 -12.3 1.177 1.485 -26.1
31k 3.176 2.610 17.8 2.469 2.232 9.6 1.694 1.914 -13.0
100k 3.017 2.591 14.1 2.211 2.022 8.5 1.589 1.978 -24.5
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Traveling salesman: results of test 1

Set up time costs (Normalized, dash = weighted distance)
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Traveling salesman: results of test 1

Average time cost comparison (Normalized, G+5-Opt)
G+5-Opt @ NN G+5-Opt @ Quadrant G+5-Opt @ α-nearness

Avg Avg/WD Imp/% Avg Avg/WD Imp(%) Avg Avg/WD Imp(%)

VLSI

3k 2.20 2.27 -3.1 1.93 1.48 23.0 2.32 2.21 4.6
10k 8.09 7.84 3.2 8.72 6.64 23.9 10.32 9.69 6.1
31k 33.20 31.79 4.3 37.66 29.40 21.9 42.88 46.18 -7.7
100k 88.57 86.00 2.9 147.62 133.05 9.9 158.95 169.70 -6.8
316k 479.84 421.65 12.1 675.39 649.52 3.8 - - -
1M 1123.66 949.97 15.5 1665.11 1500.81 9.9 - - -

E

3k 2.60 2.47 5.1 1.68 1.87 -11.6 1.98 2.08 -5.3
10k 9.86 10.28 -4.2 7.94 7.56 4.8 8.91 8.56 3.9
31k 41.81 45.40 -8.6 37.18 36.69 1.3 47.20 43.73 7.4
100k 140.30 156.68 -11.7 141.62 139.84 1.3 161.85 167.15 -3.3
316k 503.66 568.11 -12.8 601.57 596.53 0.8 - - -
1M 2141.66 2432.96 -13.6 2986.15 3033.61 -1.6 - - -

TSPLIB

3k 2.71 2.68 1.3 2.18 1.84 15.6 1.88 4.07 -116.7
10k 12.88 13.57 -5.3 12.60 11.17 11.3 13.40 13.57 -1.3
31k 97.50 97.02 0.5 81.40 65.16 19.9 84.44 97.27 -15.2
100k 149.99 159.61 -6.4 174.31 166.20 4.7 134.96 150.73 -11.7
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Traveling salesman: results of test 1

Average time cost comparison (Normalized, G+2-Opt)
G+2-Opt @ NN G+2-Opt @ Quadrant G+2-Opt @ α-nearness

Avg Avg/WD Imp/% Avg Avg/WD Imp(%) Avg Avg/WD Imp(%)

VLSI

3k 0.30 0.30 0.0 0.28 0.30 -7.1 0.24 0.30 -25.0
10k 1.42 1.36 4.1 1.16 1.33 -15.0 1.10 1.27 -15.8
31k 9.21 7.33 20.4 6.97 7.37 -5.7 6.21 4.27 31.3
100k 32.23 31.02 3.8 26.58 26.58 0.0 22.74 28.06 -23.4
316k 170.32 156.59 8.1 137.81 148.35 -7.6 - - -
1M 460.39 341.91 25.7 275.10 297.95 -8.3 - - -

E

3k 0.48 0.57 -20.0 0.53 0.72 -36.4 0.31 0.35 -11.5
10k 2.53 2.72 -7.6 2.70 2.91 -7.9 1.72 2.08 -21.3
31k 12.20 12.38 -1.5 11.73 13.90 -18.5 8.34 10.25 -22.9
100k 48.62 54.44 -12.0 50.53 51.11 -1.1 33.61 48.62 -44.6
316k 205.92 212.52 -3.2 222.06 232.22 -4.6 - - -
1M 914.88 932.81 -2.0 1175.30 1141.33 2.9 - - -

TSPLIB

3k 0.36 0.40 -11.1 0.36 0.40 -11.1 0.24 0.30 -25.0
10k 1.56 1.76 -13.0 1.62 1.94 -19.6 1.22 1.59 -31.0
31k 7.00 5.85 16.5 4.91 5.20 -5.9 4.41 5.34 -21.3
100k 15.27 15.01 1.8 13.39 16.15 -20.6 13.79 16.55 -20.0
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Traveling salesman: test 2 (branch-
and-bound)

Inputs
10 problems (30 cities), 5 are Euclidean random and 5 are 

subproblems of the first 5 instances of the VLSI data set:

Objective algorithm
A branch-and-bound, LB by minimum spanning 1 tree.

Parameters (Class Association Rules, CARs)
P* = half (15) problems with a closest density
Min confidence of learning = 0.01
Min support of learning = 0.05
Learn from all candidate sets

Category Problem (source)
Random E30.0     E30.1     E30.2     E30.3     E30.4 (generator)

VLSI xqf30 (xqf131) xqg30 (xqg237)  pma30 (pma343) pka30 (pka379) bcl30 (bcl380)
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Traveling salesman: results of test 2

Problem Optimum Expanded branches Δ time
(%)BnB BnB-WD Δ  (%)

Random

E30.0 4620393 957 287 -70.01 -61.46
E30.1 4539405 1370 1135 -17.15 -31.84
E30.2 4778537 327 141 -56.88 -37.50
E30.3 4779040 835 1189* 42.40* 80.92
E30.4 4739803 610 976 60.00 84.87

VLSI

xqf30 128 258 214 -17.05 -5.19
xqg30 158 379 143 -62.27 -36.90
pma30 195 866 645 -25.52 -15.33
pka30 184 563 547 -2.84 -8.35
bcl30 149 46 45 -2.17 -4.23

*: when support threshold = 0.2; it was 61201 (!) when 0.05.
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Traveling salesman: results 
interpretation


Depending on the search depth, local search can be significantly 

benefited on different candidate sets (NN, Quadrant, α-nearness) 
over different families (especially industrial) of problems
It seems that BnB can be significantly benefited, but risks might 

be there especially when problem is small.
The additional time cost is pretty low in very large problems


Less effective in random than industrial ETSP
Less effective for the α-nearness than the NN and the Quadrant 

candidate sets
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Staff rostering as another example

Staff rostering 
Determine shifts for demands
Construct work timetables*

Attributes
ID, CN Employee ID, Contract ID (group)
S1, S2 Shift on yesterday, on the day before yesterday
SQ Length of current consecutive working days
DW Day of week
St, Ed Level (log2) of days from the beginning, to the end
LD Absolute difference of the current employee's workload 

against the average workload (till yesterday, rounded to integer).
JB Shift to determine
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Staff rostering: tests

Inputs
Problems (>10 staff, >20 days, fixed number of shifts) from 

http://www.cs.nott.ac.uk/~tec/NRP/

A set of enlarged problems (no day/shift on/off constraints, 
enlarged to same employees, 3 months)

Objective algorithm
4-Hybrid VDS (10 runs) initialized by Greedy

Parameters (CARs)
P* = half scheduling period, or those before
Min confidence of learning = 0.01
Min support of learning = 0.05*
*: Less training examples (~1,000) than in TSP (~100,000)
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Staff rostering: results

Comparisons on two groups of problems

Problem BK
4-HVDS 4-HVDS /Weighted Δ time

avg stddev time(s) avg stddev time(s) (%)
BCV-2.46.1(46x28) 1572* 1576 8.7 631.8 1582 10.8 616.2 -2.47
BCV-3.46.1(46x26) 3280^ 3314 7.4 1590 3307 11.7 1808 13.7
BCV-3.46.2(46x26) 894*^ 896.1 1.8 1148 898 1.6 1014 -11.7
BCV-6.13.1(13x30) 768 884.9 101.9 211.1 833.5 82.1 204.6 -3.07
BCV-A.12.1(12x31) 1294^ 2217 493.5 1678 1983 403.2 2003 19.4
BCV-A.12.2(12x31) 1953^ 2440 188.8 2819 2486 298.5 2160 -23.4
ORTEC01(16x31) 270*^ 2254 915.5 29.4 2128 1731 26.2 -10.9
QMC-1(19x28) 13* 31.3 3 61.6 34.7 2.9 50.1 -18.7
SINTEF(24x21) 0* 9 1.9 12.6 8.8 2.3 13.5 6.92
Valouxis-1(16x28) 20* 422 7.9 6.2 476 98.3 4.6 -26
* Also proved optimal; ^ found by the Hybrid VDS
EBCV-4.13.1 (13x3m) - 155.8 28.6 352.3 153.9 98.8 413.6 17.4
EBCV-5.4.1 (4x3m) - 525.9 132.3 0.8 462.7 0.5 1.5 89.6
EGPost-B (8x3m) - 3223 1939 68 2599 1411 63.2 -7.1
EMillar-2Shift-DATA1(8x3m) - 3650 97.2 8.5 3640 51.6 6.9 -18.2
EMillar-2Shift-DATA1.1(8x3m) - 3640 51.6 1.6 3620 42.2 2.7 68.3
EValouxis-1 (16x3m) - 1656 252.8 109.3 1632 161.2 143.8 31.5
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Staff rostering: results interpretation


Fits large-scale problems better
According to limited evidences, the Hybrid VDS can be benefited 

in quality, if certain criteria (such as “large-enough”) are met

Although the additional time costs by machine learning are low, 

the iteration time increases by some percent
Preliminary tests only. There might be some other reasons for the 

quality change (i.e., possibly no improvements by the learning in 
fact)…
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Discussion

Some characteristics: 
The parameters of learning (including non-CARs) are easy to 

determine: set to (feasibly) minimal values
The design of decision attributes is the key to a successful 

application: decentralized, able to borrow the attributes from 
human heuristics

Beyond the cases, more challenges await
Heuristics/ CO problems incompatible (not homogeneous)?
Problems with many arbitrary global constraints (e.g., SAT)
Constraint satisfaction methods (e.g., revising backtracks like 

those in BnB?)
An encapsulated general purpose (or a list of purposes) 

optimization program module
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Conclusion and future works

We present an efficient metaheuristic-like approach
Small-problem-oriented learning (thus fast)
Enhance problem solving with the rules learnt
Transparent to the embedded heuristic

We find the results of tests encouraging. 
We hope it unveils a direction to take the power of 

machine learning in large-scale optimization.
Possible future works
An general guide of designing the attributes
Special plan guide for special industrial practice
Challenges listed on last page
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