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1 Introduction

The CMA-VNS2 (Covariance Matrix Adaptation Variable Neighborhood Search, version
2016) solver is a hyper-heuristic entry for the second Combinatorial Black-Box Optimiza-
tion Competition (CBBOC 20161). A previous entry CMA-VNS [Xue and Shen, 2015]
showed that a combination of the well-known CMA-ES (Covariance Matrix Adaptation
Evolution Strategy) [Hansen et al., 2003] and an iterated VNS (variable neighborhood
search) [Mladenović and Hansen, 1997] resulted in competitive results2 for expensive
combinatorial black-box optimization problems.

The no free lunch (NFL) theorems [Wolpert and Macready, 1997], however, find out
that no algorithm can perform statistically better than any other algorithm on average,
if no problem-specific information is considered (also known as the Black Box Optimiza-
tion). Wolpert and Macready [1997] and Culberson [1998] proved the NFL theorems in
different ways. Hence researchers developed at least two kinds of means to keep algo-
rithms away from the pitfall of NFL theorems:

• To become a well-designed domain-specific (ad-hoc) algorithm [Burke et al., 2003];
and

• To detect and to take advantage of instance-specific, problem data set-specific,
and/or domain-specific features promisingly, from case to case,

where most of the successful algorithms belong to the latter class [Poli and Graff, 2009].
The development of CMA-VNS2 fell in this last one as well.

2 Main Procedure

The searching behavior of CMA-VNS was a typical CMA-ES procedure followed by iter-
ated tests of the VNS local search [Xue and Shen, 2015]. To enrich the library of searching
strategies, CMA-VNS2 employs two new profiles as alternatives:
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P1 The profile P1 is exactly copied from CMA-VNS.

P2 The profile P2 is an intensification (or depth-emphasized) version of CMA-VNS.
Particularly, the adaptive acceptance level [Kheiri et al., 2014] is maximized and
the CMA-ES recommendations are minimized to suppress restarts of VNS; and the
input solutions from backbone (common bits of elite sets) [Zhang and Looks, 2005]
are considerably increased to pursue a promising start of VNS.

P3 The profile P3 is, in the opposite direction, a diversification of P2. P3 introduces
a much larger elite set (and hence a smaller backbone) and extends the range of
possible construction of neighborhood for VNS to skip attractions of local optima.

Three instance-specific features, i.e. the dimension (n), the maximum evaluations (m)
and the best objective value (v), are available in the framework of CBBOC. CMA-VNS2
perceives the features for the selection of a search profile for each CBBOC instance.

A number of training instances were randomly generated from the CBBOC framework.
Experiments were conducted on the instances to compare the average performances, re-
garding the mean best objective values, of the three profiles. Table 1 shows the best
profile selection against different combinations of instance feature from experimental re-
sults. According to the results, P1 (CMA-VNS) was still competitive when dimension
was huge enough. P2 (intensification) became the best profile for most of remaining in-
stances. Whereas P3 (diversification) was helpful to escape from local optima for some
cases, such as those with enough evaluations and small dimensions.

Table 1: Best profile selection of CMA-VNS2 on the training instances

Level of evaluations Dimension (n)
(m/n2) 25.5 26 26.5 27 27.5 28 28.5

High P2† P3‡ P3 P3 P2 P2 P1 P1
Median P2 P2 P2 P2† P3‡ P3 P1 P1
Low P2 P2 P2 P2 P2 P1 P1

†: When v/n was lower than a threshold; ‡: Otherwise.

CMA-VNS2 adapted the profile selection strategy from above training results as the
main procedure for the no-training track of CBBOC 2016. For the training track, an
online comparison was conducted in the training phase at first, the profile selection could
be overridden if the comparison showed a significant improvement over the preset profile.
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