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Abstract: Emerging technologies like massive point cloud from laser scanning and 3D 
photogrammetry enabled new ways of generating ‘as-built’ building information models (BIM) 
for existing buildings. It is valuable but also challenging to generate semantic models from point 
cloud and images in automated ways. In this paper, we present a novel method called 
Optimization-based Model Generation (OMG) for automated semantic BIM generation. OMG 
starts from a semantic BIM component dataset and a target measurement such as point cloud, 
photographs, or floor plans. A fitness function is defined to measure the matching level between 
an arbitrary BIM model and the target measurement without object recognition. Combinations of 
digital components are then extensively generated as building models regarding semantic 
constraints. The fittest model that matches the target measurement best is the result of OMG. The 
proposed method was demonstrated in reconstructing a 3D model of a demolished building. 
Advantages of OMG include high-level automation, low requirement on measurement, 
relationship discovery for components, reusable component libraries, and scalability to new 
environments. 
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1 Introduction 
Building information modeling (BIM) involves physical as well as functional characteristics of 
constructions and their components. BIM has been developed to facilitate construction 
management along the whole life-cycle[1] through as-required, as-designed, as-planned, as-built 
(or “as-is”), as-altered, and as-demolished BIM models. The as-built BIM model can provide 
critical building information about construction quality assessment, construction automation, 
energy consumption, green gas emissions, facility management, retrofitting planning, and 
renovation recommendation[2-5]. However, BIM was very recently adopted widely in architectural, 
engineering and construction (AEC) industrial practice. For example, the adoption of BIM 
expanded from 17% in 2007 to over 70% in 2012 in North America[6]. As a result, there is a large 
gap between the need and the availability of as-built BIM for many existing constructions. Thanks 
to the new technologies such as laser scanning, 3D photogrammetry and videogrammetry, the 
as-built BIM model now can be generated from point cloud and multiple images[7]. These new 
methods are much easier and more vivid than manual reconstruction. However, most of the 
available techniques that generate 3D models from point cloud and photogrammetry do not offer 
exploitable topological and semantic contents for BIM models[8].  

In this paper, we present an Optimization-based Model Generation (OMG) method with an 
orientation of organizing semantic BIM components to fulfill the task of automated BIM 
generation. The remainder of this paper is organized with the following sections, related works, a 
general framework of the OMG method, a pilot case of a demolished building, and conclusions. 

2 Related Works 

A typical scan-to-BIM process is a semi-automated method which reply on both software (such as 
IMAGINiT “Scan to BIM” and CapturingReality) and BIM professionals to pre-process (register, 
merge/stitch, clean, decimate) data, to recognize (semantic labels), and to create/adjust BIM 
models[7,9]. Researchers also presented automated means in two categories in general to facilitate 
the reconstruction process. One category is “data-driven”. An early example was that Baltsavias et 
al. represented[10] 3D blocks and roofs of buildings of University of Melbourne campus out from 
2D IKONOS® satellite images. Most of automation functions of the available software on the 
market also belong to the “data-driven” category. The other category is “model-driven”, such as a 
series of typical operations of pose adjustment by principle component analysis (PCA), silhouette 
extraction and merger, size adjustment, and position matching[11]. OMG is a model-driven method, 
yet with an optimization-based model generation mechanism. 

Semantic BIM information, such as construction geometry and architectural design, has 
always been, implicitly or explicitly, included in the literature[7,9]. The mainstream methodology of 
existed research on semantic BIM was based on object recognition such as identifying component 
geometry or labeling semantic properties from input images or point cloud first[7-12]. Heuristic 
rules from human experts and automated knowledge discovery tools, such as support vector 
machines[12] and deep machine learning neural networks[13], were generally involved in BIM 
object recognition. However, the supporting technologies of object recognition are still in 
development. The data requirement is usually high and the performance varies case by case. For 
instance, Perez-Perez et al. reported[12] the best precision was between 79% to 92%, along with 
2% to 31% labeled as “unrecognized”, in automated labeling point cloud segmentations on 
average.  

OMG, in contrast, does not involve object recognition process. In the framework of OMG, the 
BIM model is an entirety, and the target measure is another one. The objective of OMG is to 
pursue the best matching level between the two entireties as a systematic way of generating 
models. Off-the-peg BIM components and their semantic information are compiled for attaching, 
modifying, or removing objects during model generation in OMG.  



3 OMG: A Semantic-Oriented Model Generation Framework 

3.1 The general framework of OMG 

In general, OMG requires two inputs, i.e. a target measure such as matching a point cloud or 
image set and a set of (usually excessive) semantic BIM component libraries, as shown in Figure 1. 
Typical semantic BIM data include geometric properties, surface pattern, architecture style, 
typical functions, typical supporting structures, material and thermodynamic properties, 
mechanical properties. The final output of OMG is a semantic BIM model. The first phase in 
OMG is the transformation of the target measure to a fitness function. Then a solver or algorithm, 
denoted as the dotted box in Figure 1, will try to optimize the fitness function in the second phase. 
The last phase is output the fittest model with necessary inverse transformation. 

 
Figure 1. A general framework of optimization-based model generation (OMG). 

In OMG, the task of building model generation is equivalent to the determination a set of 
parameters for each component. The parameter set may include a non-negative number of 
instances, geometric information (position, scaling, and rotation) of each instance, and 
connection/joint and topological relations to other component instances. The model generation 
task can hence be rewritten to  
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where x denotes all parameters of all components in this research, n is the number of parameters. 
The fitness function f is defined as the matching level between an arbitrary model and the target 
measure. Hard constraints can also be introduced from semantic requirements and domain 
knowledge, such as the available technologies at the construction time, consistency to the 
architectural style, and instability of the structure. Hence, the task of building model generation 
can be extended to: 
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where C means a function set representing the hard constraints.  

3.2 Typical fitness functions and solvers 

One of the most well-known functions f is the mean square error (MSE) which is defined as 
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where Y is the vector of target values (e.g., coordinates of a laser point) and Ŷ=g(x) is the vector of 
model values (e.g., coordinates of the nearest point on the model surface). For instance, the MSE 
can measure Euclidean distance and difference of color between a model and a point cloud (or 
images). Competitive alternatives can also be found in some domains. For example, in the 
similarity test of 2D images, Wang et al.[14] presented the structural similarity (SSIM) index which 
integrated structure, luminance, and contrast measurements of 2D images. SSIM outperformed 
MSE in a few international image processing competitions.  

The fitness function f is usually very sophisticated (derivative-free) and sometimes “opaque”. 
Therefore, many powerful solvers, such as IBM CPLEXTM and Gurobi OptimizationTM, cannot be 
directly adopted in OMG. In the literature of derivative-free optimization[15] (also known as 
black-box optimization, automatic parameter tuning, and model selection) and several 



international competitions 6 , many well-known computational algorithms such as genetic 
algorithm (GA) were found with acceptable performances. Furthermore, surrogate methods, which 
adjust estimations of variables consistently, could find much more satisfied results, especially for 
the “expensive” functions which cost much effort (time and cost) to calculate. One typical 
surrogate method is the covariance matrix adaptation with evolution strategy (CMA-ES) proposed 
by Hansen and Ostermeier[16]. Solvers with surrogate methods such as CMA-ES are therefore 
recommended, whereas universal algorithms like GA can also be good candidates for “cheap” 
functions. 

4 A Pilot Case 

4.1 The target measure, component libraries and supporting software 

The School of Tropical Medicine and School of Pathology, The University of Hong Kong (HKU) 
used to occupy a baroque-style two-storey architecture, as shown in Figure 2. The building was 
built on the main campus of HKU in 1919, later refurbished with an additional floor, and 
demolished in campus development decades ago. In this pilot test, this building is employed to 
describe the process of OMG.  

 
Figure 2. A demolished building of The School of Tropical Medicine and School of Pathology, The 

University of Hong Kong (640×360 pixels; Source: Exit A of MTR HKU railway station, photographed by 
an Android mobile phone in July 2016) 

The task was set to reconstruct the BIM model of the front side of the building due to limited 
data from the target 2D image. More specifically, apparent components with width and height 
greater than 1 meter, including trees, front facade, the door and the windows should be included in 
the 3D model. Groups of components, as listed in Table 1, were collected from shared models of 
3D Warehouse of SketchUp with a keyword filter “baroque”. Some semantic attributes such as 
type, material, surface glued to, typical size and typical locations were manually added to 
SketchUp dictionaries of components.  

Table 1. A list of components extracted from shared models in SkechUpTM 3D Warehouse for the pilot case 
Library 
name 

Component 
name 

Original model from 3D Warehouse 
(Contributor ID) 

Attached semantic labels 

Door Door portico 
Door (3) Classical Ottoman Osmanli 
Colonial (Mohamed EL Shahed); Blenheim 
Orangery and Function Rooms (Richard) 

Typical size; Glued to: wall 

Tree Oak tree Downy Oak (KangaroOz 3D) Location: ground; Glued to: open space 
Palm tree Royal Palm Tree (Yoshi Productions) Location: ground; Glued to: open space 

Wall With h-sliding  Salm Palace (3dolomouc) Typical size; Location: ground 
Smooth surface Salm Palace (3dolomouc) Location: 1/F and above; Glued to: wall 

Window Three-section French Window (Architect) Typical size; Glued to: wall 
Traditional Mahogany Framed Window (Ben) Typical size; Glued to: wall 

The pilot test was implemented on SketchUp API (application programming interface, version 
2016 PRO Ruby). The components were automatically adjusted with Ruby (version 2.0.0p648) 
scripts in SketchUp and then projected to 2D images (in 640×360 resolution). The similarities 
between projected images and the target image were measured by the SSIM function (Wang 2004). 
Scientific packages of OpenCV (Open source computer vision library, version 2.4.13) and 
                                                        
6 See Ruhr-University Bochum, Germany: Black Box Optimization Competition. http://bbcomp.ini.rub.de/; See 
also Missouri University of Science and Technology, USA: Combinatorial Black-Box Optimization Competition. 
http://web.mst.edu/~tauritzd/CBBOC/ 



ruby-opencv (version 0.0.17) were employed to facilitate the measurement. A C++ 
implementation7 of CMA-ES and its Ruby wrapper were adapted as the solver in OMG. Google 
EarthTM (version 7.1.5.1557) was used to present the resulting model. Stanford Protégé (version 
5.0) was used to represent the semantic links in the resulting model. 

4.2 Transformation and the solving procedure 

Seven components, as shown in Table 1, were gathered for model generation. The numbers of 
component instances were set to 1 door portico, 1 tree, 2 walls, and 9 windows to simplify the 
pilot task. For each component instance, there were six real parameters, i.e., position and scaling 
on the three axes. The rotation parameters were omitted in this case due to the front face of the 
target building. According to estimation about the place where the photo was taken, the camera of 
SketchUp was located to (0, 850, 157.5) heading to (0, 0, 157.5) (unit in inch). The ground was 
defined as the horizontal plane z=0. The semantic relations of location and glued to were required 
as hard constraints. So the fitness function f is the dissimilarity between a projected image and 
Figure 2 to: 

toglued and size ,location of sconstraint Semanticsubject to
                                  1minimize 
-
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The model was generated increasingly by attaching one component each time, where ground 
components preceded facade instances. 200 trials of parameters were allowed for the CMA-ES 
solver in attaching a new component instance concerning f. The incremental generation procedure 
stopped when no new instance could lead to a reduction of f. The component instances were then 
fine-tuned by CMA-ES for an additional 2,000 trials before termination. 

4.3 The pilot run and the result model 

The pilot run was conducted on an Intel® i5-6500 CPU (3.20 GHz) computer. The CMA-ES solver 
spent 1 hour 3 minutes and 42.4 seconds (3,822.4s) to optimize f in 4,800 trials in total, as shown 
in Figure 3. After 400 trials from the beginning, the G/F wall and the door portico were attached to 
the model. Then a palm tree was attached yet was quickly replaced by an oak tree, because the 
attachment of the palm tree contributed an f = 0.8603 but the new oak tree conflicted with it in 
location and had a better f = 0.8392. The incremental generation phase stopped at the 2,800th trial. 
After 2,000 trials of the fine-tuning phase, the final model achieved a fitness f = 0.7772 by slightly 
changes of the door portico and a few windows automatically. The result of OMG was saved as a 
SketchUp file in 2.06MB. 

 
Figure 3. The automated optimization process of OMG with annotated SketchUpTM models in the pilot run 

(Incremental generation phase: 1~2,800; fine-tuning phase: 2,801~4,800)  
                                                        
7 CMA-ESpp, see: https://github.com/AlexanderFabisch/CMA-ESpp 



Some components in the resulting model, such as a three-section window glued to the G/F 
wall shown in Figure 4 (a), did not satisfy axial rules of baroque architecture. So the authors made 
a few manual amendments to the auto-generated front face of the building. The model of the 
whole building, as shown in Figure 4 (b), was estimated based on a survey map of HKU 
(1969~1976) and manually completed with the replicas of the auto-generated facade. An 
illustration of the building model, as shown in Figure 4 (c), described its historical location near 
today’s Exit A2 of the HKU station and the Kadoorie Biological Science Building, HKU. 

 
(a) Auto-generated front face in 

SketchUp 

 
(b) Manually completed building 

model 

 
(c) Illustrated on Google Earth 

Figure 4. The resulting model of OMG 

The semantic relations between the components were inherited during the model generation. 
The relations could also be exported as queryable ontology format such as the Web Ontology 
Language (OWL). The Ontology software like Protégé can then provide search and reasoning 
functions for the components and their relations in the generated model illustrated in Figure 4 (a). 
Figure 5 shows an example of the search result of term “Traditional”. The “Traditional” window 
component and all the three instances are shown with “is-a” connections in Figure 5. The relations 
of “location” and “glued to” are presented as dashed links between component classes. 

 
Figure 5. The semantic links in the auto-generated model illustrated in Stanford Protégé (Circle denotes a 

component class and a diamond stands for an instance/object) 

4.4 Discussions 

This case was a preliminary test of the feasibility of OMG. So some minor details such as 
decorative cornice and front door plants were excluded in this pilot test. The whole process of 
OMG used a couple of hours more than the approximate 1 hour spent by CMA-ES solver in this 
pilot. It was because the preparation of component libraries and post-optimization procedures 
brought extra time cost into the OMG process. Object recognition of the target image was not 
involved. However, the components were placed in the correct locations mostly and hence 
implicitly identified the objects with semantic labels and relations. For example, a window which 
was difficult to recognize visually was placed accurately behind the tree in the model. One 
limitation of this pilot was that the numbers of component instances were set to constants to 
simplify the task, although they can be a part of parameters to be determined according to the 



general OMG framework.  

In comparison to typical scan-to-BIM process, OMG has several advantages. First, the 
automation level is elevated to a higher level. A saving of cost could also be expected from 
equipment, data gathering, and manpower. In OMG, BIM professionals need to be involved only 
in the early stages such as pre-process, component selection and definition, and definitions of 
fitness functions and constraints. Furthermore, the data requirement of OMG is also much more 
relaxed than that of scan-to-BIM (usually tens of millions of pixels). It is because many details can 
be inherited from components if defined. Other features of OMG include semantic data to meet 
BIM requirements, low requirement on measurement, relationship discovery for components, 
reusable component libraries, and scalability to new environments.  

    Disadvantages of OMG, nevertheless, can also be found. The first was the accuracy and 
availability of component libraries. Thanks to the antique building modelers over the world, most 
of the major components in this pilot case were extracted from shared models directly. Yet those 
components, such as the trees, did not perfectly match the target measure in fact. Another one was 
the quality of the model. The finite trials of computer program certainly cannot compare with BIM 
professionals’ knowledge, experience, and insights in model generation.  

5 Conclusion 

This study presented a new semantic-oriented as-built BIM generation method named 
optimization-based model generation (OMG). In OMG, building model generation is regarded as 
an assembly of components from semantic BIM component libraries. The assembly of 
components is considered as a derivative-free function to fit target point cloud or images with 
respect to semantic constraints. Some computerized optimization algorithms can automatically 
find the best arrangements of component parameters and hence the corresponding 3D models. The 
result of OMG is a BIM model with geometric, topological and semantic data. A pilot case of a 
demolished building at HKU campus validated the main process of OMG.  

This study is expected to enrich the research of automated BIM generation with an 
alternative framework to object recognition in point cloud and images. The findings of the pilot 
case were preliminary. Further research is needed to validate the transformation of the fitness 
function for other targets like point cloud, other advanced mathematical programming algorithms, 
and the effects of using semantic data as soft constraints. 
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