

THE UNIVERSITY OF HONG KONG 香港大學 faculty of architecture 建築學院

Urban Semantics in BIM & GIS From source to sea

15 October 2018 Xi'an Jiaotong-Liverpool University

> Dr. Frank Xue Research Assistant Professor Dept. of REC, HKU HKURBANlab—iLab, HKU

iLab

'Source': Semantics focused in BIM & GIS

One *'stream'*: Semantic registration

'Sea': For smarter prospects

Section 1 'SOURCE' SEMANTICS FOCUSED IN BIM & GIS

3

iLab

1.1 Background

- Global urbanization
 - By 2050, 65% world's population will live in cities (WHO, 2015)
 - Irreversible; Even faster in China
- Leads to urban vulnerability (a.k.a. 'urban diseases')
 - 'Dead' space/landscape, low familiarity with surroundings,
 - Poor waste treatment, environment (air, water) pollution,
 - Heritage destruction, aging town blocks, inefficient traffic,
 - Disasters (earthquake, climate change), resource crisis, ...
- Demands smarter and more resilient development
 - (a) Smarter decision supports in multiple disciplines
 - (b) On basis of accurate, timely urban semantics

Global urban vulnerability level (Birkmann et al, 2016) *source: nature.com*

₫a

iLab

1.1 Urban semantics

Information is the meaning of data (Rowley & Hartley, 2017)

- Abstracted, inferred from data
- Answering interrogative questions (*what, who, where, when*)
- Semantics is a subset of information (Floridi, 2005)
- Urban semantics
 - Geometric / Non-geometric facts:
 - Size, location / function, materials, history, etc.
 - Instructions (how-to):

Manufacturing, installation, access
 Urban semantics databases

BIM & GIS

Data: Digital pixels (0~255 R, G, B)

Information: Car, building, tree, ...

1.2 BIM

iLab

- BIM (building information model/modeling)
 - A <u>digital representation</u> of physical & functional <u>characteristics</u> of a <u>facility</u>. (NIBS, 2015)
 - A shared ... resource for information about a facility, forming a reliable basis <u>for decisions</u> during its life cycle from inception onward. (NIBS, 2015)
 - Evolved from CAD (computer-aided design) (Penttilä, 2007)
- Essence
 - Urban semantics database
 - Component (unit facility) based
- "Family" and "instance"
 A quiz: Which is not BIM?

An evolution view of CAD/BIM (Penttilä, 2007)

E

1.2 Semantics focused in BIM

- tЗ ◆ BIM LOD (Level of Development) iLab Previously "Level of Detail" ■ LOD 100 : For concept presentation Arch. ■ LOD 200 : For design development Eng. • LOD 300 : For 2D documentation Const. LOD 350 construction 3D documents ■ LOD 400 : For construction stage **O&M** ■ LOD 500 : For facilities management Demo. Focused semantics
 - Temporal development
 - Abstracted family > exact geometry

No LOD : Data only data, needs processing to info., then to BIM

iLab

1.3 GIS

- ♦ GIS (geographic information system)
 - A computer system for capturing, storing, checking, and displaying data related to <u>positions</u> on <u>Earth's surface</u> (NGS, 2012)
 "I" "G"
 - Evolved from DBMS (database management system)
- Essence
 - Urban semantics database
 - Data tables (layers) based
 - Independent objects (rows) in each table
 - A few discussion on component-based GIS, too

B

♦ A quiz: Which is *not GIS*?

GIS interpretation Source: US Government Accountability Office

Е

D

1.3 Semantics focused in GIS

- ♦ GIS LOD (Level of Detailing)
 - Defined in CityGML (by Open GIS Consortium)
 - LOD0 : Region and landscape
 - LOD1 : + Prismatic buildings model (flat roof)
 - LOD2 : + Roof and thematic surfaces
 - LOD3 : + Detailed exterior (wall and roof)
 - LOD4 : + Interior (indoor)
- Focused semantics

₫a

iLab

- Spatial details
- Exact geometry > abstracted concepts
- BIM/GIS integration

F. Xue: Semantics in BIM & GIS

BIM-GIS integration Source: ESRI.com

Section 2 ONE 'STREAM' SEMANTIC REGISTRATION

2.1 The task of semantic registration

🗇 A dilemma of urban semantics in BIM/GIS 🎬 ■ *Inadequacy*: Poor semantics in the models • Overload: Rich online open BIM/GIS resources • With fact-nongeometric & instructional ♦ Semantic registration Registering semantics to low LOD models Input 1: Geometric measurement Actual Input 2: Semantic components Performance metrics Computational time

Semantic registration as a process

Precision = true positive / registered

tЗ

iLab

2.2 A derivative-free optimization (DFO) approach

- Semantic registration is a decision task
 Can be automated through optimization
- Problem formulation (Xue et al., 2018a)
 - Input 1: E.g., 3D point cloud
 - *Variables* (*X*): transformation parameters
 - *Objective function* (*f*): minimum geometric error
 - Constraints (C): Topological regularity
- DFO algorithms (Conn et al., 2009)
 - Solves problems comprising too complex derivatives
 - Succeeded in many science and engineering problems
 - E.g., Protein folding (Nicosia & Stracquadanio, 2008), aircraft wing design (Lee, et al., 2008)

19

iLab

12

2.3.1 An outdoor case (Xue et al., 2018a)

♦ 2D photo + free BIM objects \rightarrow LOD₃/300 3D models

Automatic, error tolerant, recoverable from wrong objects

Segmentation-free, topological relationships involved

Time: 2.5h
Precision: 0.92
Recall: 0.92

F. Xue: Semantics in BIM & GIS

₫a

iLab

(Language: C++, Ruby; Data formats: SketchUp, Bmp, Google earth)

2.3.2 An indoor case (Xue et al., 2018b) ₫a ♦ Point cloud + BIM objects \rightarrow LOD 4/500 indoor model **Time:** 6.44s iLab Precision: 1.0 • Automatic, saved 98% time from manual modeling **Recall:** 1.0 \blacksquare *RMSE* = 3.87cm, equal to experienced modelers RMSE(P'x,P'm) A round table is attached first $(f_{T} = 2.58)$. while f is large (fy = 3.04)Six comr (f = 92.08)nd of incrementa $f_{x} = RMSE(P'_{xo}P'_{x})$ Eight et (fx - 4.4) Eight con ($f_x = 4.46$ The incremental generation phase The fine-tune phase 3 time (s)

(Language: C++, CLR; Data formats: Autodesk Revit, Stanford polygon)

2.4 Other semantics 'streams' at iLab

₽°

 \bigcirc LOD1 + point cloud = LOD2 (Chen et al., 2018)

(Language: C++; Data formats: COLLADA, Las, esv)

Semantic discovery (Xue et al., 2018c)

BIM localization (Wang et al., 2018)

F. Xue: Semantics in BIM & GIS

Non-geometric semantic learning

Real-time motions, behavior (Niu et al., 2018)

(Language: C++, R; Data formats: GeoJSON, Las, csv)

- Smart facility (Xu et al., 2018)
- Smart walkability (Xue et al., 2018d)

Section 3 *'SEA'* FOR SMARTER PROSPECTS

3.2 Target semantics, e.g., building facts (Chen et al., 2018b)

ųo :	

ťЗ

iLab

Operation	&
maintenan	ce
(O&M)	

	Geometric	Non-geometric
Construction	 Site information (coordinate's data and layout) Building spaces (floor, zones, rooms, openings) Utility lines Dimension of building components 	 Construction materials (status, quality, category, manufacturer) Precast elements (quality, category, manufacturer) Equipment attributes (ID, type, status) Financial data Location of labor, materials, and machine Project performance data Construction schedule Construction activity status Site environment
Operation & maintenance (O&M)	 Building services (location, relationship) Building spaces (floor, zones, rooms, openings) Utility lines Specification of exterior enclosure products Furnishing 	 Building services (identification number, manufacturer) Status of mechanical, electrical, & plumbing equipment Maintenance record Indoor environment Attributes of replaced components Maintenance status Maintenance schedule Operation records

3.2 List of semantics standards (Wang et al., 2018)

₿a	Research/ industry	Application Scenario	Object Parameters
iLab	Pratt (2004)	BIM object contents exchange	Functional type; Geometry; Attributes; Relations between objects; Behavioural rules.
	Belsky et al. (2016)	Semantic enrichment for BIM objects	Function; Geometry; Material; Identity; Aggregation relationships; Composition relationships.
	Chen and Wu (2013)	Parametric BIM object modelling	Basic Object Data (Identification, Classification, Geometry, Quantities, and Phasing); Representation data (Material)
	Open <u>Geo</u> spatial Consortium (OGC, 2007)	Object data description in CityGML for virtual 3D city and landscape	Geometrical, Topological, Semantic, and Appearance properties.
	Autodesk Revit (2017)	Modelling and professional analysis (e.g. thermal)	Identification (number, name, type, description); Classification (OmniClass code and description); Geometry; Material; Quantities; Manufacturer; Cost; Phasing; LEED, Thermal and Structural Properties, etc.
	RI <u>BA</u> , UK (2014)	Object data description defined in NBS BIM Object Standard	Authorship, Identification (name, Uniclass code, and product link), Manufacturer, NBS description, and reference, etc.
	NIBS, USA (2012)	Information Collection via Cobie to improve handover to owner-operator	Authorship, Identification (created by, category, Description, type, code, etc.) Manufacturer, Warranty, Geometry, Material
	CI <u>BSE</u> , UK (2016)	Product description for manufacturer defined in Product Data Templates(PDTs)	Manufacturer, Construction, Application, Dimension, Performance, Electrical, Controls, Sustainability, Operations and Maintenance

3.3 Urban semantics technologies for smarter city

♦ BIM, GIS, CIM, Robotics/CV Complementary and overlapping • On the same urban objects With focused semantics Integrated urban semantics is then Digital twin of the built environment Recognizable by machines • For smarter city applications ■ 4D, *n*D, temporal (building): BIM ■ 4D, *n*D, temporal (area): CIM Spatial analysis (area): GIS Real-time control: Robotics/CV

iLab

References

- Auger, A., Finck, S., Hansen, N., and Ros, R. (2010). BBOB 2009: Comparison tables of all algorithms on all noisy functions, INRIA.
- Birkmann, J., Welle, T., Solecki, W., Lwasa, S., & Garschagen, M. (2016). Boost resilience of small and mid-sized cities. Nature News, 537(7622), 605.
- Chen, K., Lu, W., Xue, F., Tang, P., & Li, L. H. (2018a). Automatic building information model reconstruction in high-density urban areas: Augmenting multi-source data with architectural knowledge. Automation in Construction, 93, 22-34.
- Chen, K., Lu, W. S., Xue, F, Zheng, L. Z., & Liu, D. D. (2018b). Smart Gateway for Bridging BIM and Building. In Proceedings of the 21st International Symposium on Advancement of Construction Management and Real Estate (pp. 1307-1316). Springer, Singapore.
- Conn, A. R., Scheinberg, K., & Vicente, L. N. (2009). Introduction to derivative-free optimization. SIAM.
- Harty, C., Goodier, C. I., Soetanto, R., Austin, S., Dainty, A. R., & Price, A. D. (2007). The futures of construction: a critical review of construction future studies. Construction Management and Economics, 25(5), 477-493.
- Gröger, G., Kolbe, T., & Czerwinski, A. (2007). Candidate OpenGIS CityGML Implementation Specification (City Geography Markup Language). Open Geospatial Consortium Inc, OGC.
- Lee, D. S., Gonzalez, L. F., Periaux, J. & Srinivas, K. (2008), Robust design optimisation using multi-objective evolutionary algorithms. Computers & Fluids, 37(5), 565-583.
- National Institute of Building Sciences. (2015). National Building Information Modeling Standard. Version 3, Retrieved from https://www.nationalbimstandard.org/
- National Geographic Society. (2012). GIS (geographic information system). http://www.nationalgeographic.org/encyclopedia/geographic-information-system-gis/
- Nicosia, G. & Stracquadanio, G. (2008), Generalized pattern search algorithm for peptide structure prediction. Biophysical Journal, 95(10), 4988-4999.
- Niu, Y., Lu, W., Xue, F., Liu D., Chen, K., Fang, D., & Anumba, C. (2018). Towards the "Third Wave": An SCO-enabled occupational health and safety management system for construction. Safety Science. 111, 213-223.
- Penttilä, H. (2007). Early architectural design and BIM. Computer-Aided Architectural Design Futures (CAADFutures 2007), 291-302.
- Rowley, J. (2007). The wisdom hierarchy: representations of the DIKW hierarchy. Journal of information science, 33(2), 163-180.
- Rowley, J., & Hartley, R. (2017). Organizing knowledge: an introduction to managing access to information. Routledge.
- Wang, J., Lu, W., Liu, D., & Xue, F. (2018). The Heterogeneity of BIM Objects in Different Construction Contexts. In Construction Research Congress 2018 (pp. 210-220).
- World Health Organization. (2015). Global Report on Urban Health—Executive Summary. http://www.who.int/kobe_centre/measuring/urban-global-report/on/
- Xu, J., Chen, K., Xue, F., & Lu, W. (2018). 3D point clouds for architecture, engineering, construction, and operation: A SWOT analysis. Working paper
- Xue, F., Lu, W., Chen, K. (2018a). Automatic generation of semantically rich as-built building information models using 2D images: A derivative-free optimization approach. Computer-Aided Civil and Infrastructure Engineering, in press. doi: 10.1111/mice.12378
- Xue, F., Lu, W., Chen, K. & Zetkulic, A. (2018b). From 'semantic segmentation' to 'semantic registration': A derivative-free optimization-based approach for automatic generation of semantically rich as-built building information models (BIMs) from 3D point clouds. Journal of Computing in Civil Engineering. Under review
- 🗉 Xue, F., Chen, K., Lu, W. (2018c). Architectural Symmetry Detection from 3D Urban Point Clouds: A Derivative-Free Optimization (DFO) Approach. CIB W78 2018, accepted.
- Xue, F., Chiaradia, A., Webster, C., Liu, D., Xu, J., Lu, W. (2018d). Personalized walkability assessment for pedestrian paths: An as-built BIM approach using ubiquitous augmented reality (AR) smartphone and deep transfer learning. Proceedings of the 23rd International Symposium on the Advancement of Construction Management and Real Estate. In press
- Zins, C. (2007). Conceptual approaches for defining data, information, and knowledge. Journal of the Association for Information Science and Technology, 58(4), 479-493.

THANK YOU!