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Highlights 

 This paper proposes a new ‘semantic registration’ paradigm for reconstructing as-built 

BIMs from 3D point clouds. 

 This paper develops a derivative-free optimization approach as well as a BIM software 

plugin to realize the ‘semantic registration’ paradigm. 

 This paper employs two processes of surface sampling and voxelization for efficient 

estimation of geometric errors between a BIM and a point cloud in the derivative-free 

optimization approach. 

 The effectiveness and the sensitivity of the approach was validated using a noisy indoor 

furniture case (100% precision and recall, RMSE=3.87cm, in 0.8s per BIM component), 

and the scalability was tested in a lecture hall case with 293 chairs (over 80% precision 

and recall, RMSE = 8.1cm, in about 5.0s per BIM component). 

 The proposed ‘semantic registration’ paradigm is proven: (i) free from segmentation, (ii) 

capable of processing complex scenes, and (iii) reusing online open BIM resources.  
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Abstract 

Development of semantically rich as-built building information models (BIMs) presents an 

ongoing challenge for the global BIM and computing engineering communities. A plethora of 

approaches have been developed which, however, possess several common weaknesses: (1) 

heavy reliance on laborious manual or semi-automatic segmentation of raw data (e.g., 2D 

images or 3D point clouds); (2) unsatisfactory results for complex scenes (e.g., furniture or 

non-standard indoor settings); and (3) failure to use existing resources for modelling and 

semantic enrichment. This paper aims to advance a novel, derivative-free optimization (DFO)-

based approach that can automatically generate semantically rich as-built BIMs of complex 

scenes from 3D point clouds. In layman’s terms, the proposed approach recognizes candidate 

BIM components from 3D point clouds, reassembles the components into a BIM, and registers 

them with semantic information from credible sources. The approach was prototyped in 

Autodesk Revit and tested on a noisy point cloud of office furniture scanned via a Google 

Tango smartphone. The results revealed that the semantically rich as-built BIM was 

automatically and correctly generated with a root-mean-square error (RMSE) of 3.87 cm in a 

sheer 6.44 seconds, which outperformed the well-known Iterative Closest Point (ICP) 

algorithm. The approach was then scaled up to a large auditorium scene consisting of 293 chairs 

to generate a satisfactory output BIM with a precision of 81.9% and a recall of 80.5%. The 

‘semantic registration’ approach also proved superior to existing ‘segmentation approaches’ in 

that it is segmentation-free, and capable of processing complex scenes and reusing known 

information. In addition to these methodological contributions, this approach, properly scaled 

up, will open new avenues for creation of building/ city information models from inexpensive 

data sources and support profound value-added applications such as smart building or smart 

city developments. 

 

Keywords: Building information model (BIM); ‘as-built’ BIM; semantic enrichment; 

derivative-free optimization; semantic registration. 

 

Introduction 

A building information model (BIM) is a digital representation of the physical and functional 

characteristics of a facility and serves as a shared knowledge resource for decision-making 

throughout its lifecycle (NIBS, 2015). BIM has evolved from a buzzword into a technological 

hallmark of the architecture, engineering, construction, and operations (AECO) industry 

(Eastman et al., 2011; Xiong et al., 2013; Pătrăucean et al., 2015). Properly integrated with 
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geographic information systems (GIS) or city information models (CIM), it can mature into an 

indispensable component of urban-scale information infrastructure and enable various 

urbanization initiatives (Lu et al., 2018). The development of ‘as-built’ or ‘as-is’ BIMs is at the 

core of these potential applications. 

 

An ‘as-built’ BIM is a representation of a facility as actually constructed or as it currently exists 

(Tang et al., 2010). Semantic information contained in a BIM generally consists of details 

specific to individual construction components (e.g., position, geometric size and shape, non-

geometric type, material specification, and meanings of functions) and their relationships (e.g., 

dependency, topology, and joints) (e.g., Belsky et al., 2016). Some semantic information vital 

to a facility, such as actual building geometries, current functions, and real topology, can only 

embodied in as-built BIMs (Tang et al., 2010; Pătrăucean et al., 2015). In addition, the as-built 

condition of a facility will differ from when it was designed (i.e., an as-designed BIM) due to 

design changes, inadvertent deviations or errors, and renovation work. To better support new 

and complex applications, therefore, the AECO community continues to pursue the generation 

of semantically rich as-built BIMs. 

 

A wealth of technological approaches has been developed to generate as-built BIMs. Volk et 

al. (2014) delineate these approaches as either data-driven or model-driven. A data-driven 

method performs modeling based on the extraction of features, shapes, materials, and statistics 

from the preprocessed measurement data, while a model-driven method generally refers to 

comparing the known components against the datasets (e.g., point clouds or imagery), 

recognizing components, and fitting them in a BIM based on pre-defined rules (Xue et al., 

2018b). Manual creation of as-built BIMs by professional modelers is often adopted but this 

process is extremely tedious, time-consuming, and error-prone (Pătrăucean et al., 2015; Perez-

Perez et al., 2016; Xue et al., 2018a; Tang et al., 2010; Jung et al., 2014), and these limitations 

become insurmountable when modeling at an urban scale (i.e., inputting BIM with CIM). For 

this reason, the prevailing research has focused on semi-automatic or fully automatic methods 

of as-built BIM generation. 

 

Input measurement data for as-built BIM generation range from 2D imagery to point clouds.  

The latter, which can be collected using any type of 3D scanner, have become increasingly 

affordable and thus popular in recent years (Tang et al., 2010; Wang et al., 2017). Considerable 

advances have also been made in point cloud preparation and pre-processing proficiencies (e.g., 
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Song et al., 2014; Zhang et al., 2016) in model generation methods (e.g., Bosché et al., 2015; 

Díaz-Vilariño et al., 2015) and for semantic enrichment (Belsky et al., 2016; Hamledari et al., 

2017; Sacks et al., 2017). For example, by cloaking the geometry of an existing facility as 

meshes, a model can mimic the real-life object and its exterior and interior surfaces with 

millimeter accuracy. However, semantic information, such as functions, materials, volumes, 

and topology, continues to present an immense challenge in as-built BIM generation. 

Conventional approaches rely on ‘semantic segmentation’, which is a computer vision or 

graphics technology that assigns each 3D point, or 2D pixel, to one of several semantic labels 

(Shamir, 2008; Vezhnevets and Buhmann, 2010) via a priori rules-enabled reasoning models 

(e.g., Valero et al., 2012; Chen et al., 2018b), and training example-enabled machine learning 

models like deep learning (e.g., Babacan et al., 2017; Zou et al., 2017). Although these 

approaches have achieved acceptable results on simple and regularly shaped components such 

as walls, windows, pipelines, and boxes of internal walls (e.g., Valero et al., 2012; Babacan et 

al., 2017; Nguyen and Choi, 2018; Zou et al., 2018), they have yet to satisfactorily deal with 

complex scenes such as furniture, irregularly shaped components, and non-geometric 

information (e.g., Koppula et al., 2011; Wang et al., 2018). 

 

This paper contends that the inadequacies of conventional semantic segmentation approaches 

are rooted in their methodology. The essence of semantic segmentation is to establish a 

correlation model between the input geometries and the output semantic labels, such as 

functions (e.g., OmniClass), materials, and invisible internal details (e.g., steel bars in a joint) 

(see Shamir, 2008; Vezhnevets and Buhmann, 2010; Koppula et al., 2011). The ‘geometry-to-

label’ correlation models (i.e., a priori rules and trained machine learning models) are usually 

sound and clear for simple and regularly shaped components. The labeled points can further 

form 3D geometric primitives for volumetric objects (Martinovic et al., 2015; Zou et al., 2017; 

2018). However, the segmentation of point clouds for uncontrolled real-world scenarios 

featuring heterogeneous components is fundamentally challenging due to too many labels, 

complex geometries, and complicated topologies (Andreopoulos and Tsotsos, 2013). In other 

words, the correlation models (a priori rules, geometric features, or machine learning 

techniques) are fundamentally constrained in labeling complex components.  

 

There is also a missed opportunity from conventional methods, which disregard readily 

available resources that could facilitate semantic enrichment. Existing methods can only 

recognize limited semantics from the measurement data (e.g., 3D point clouds) concerning 
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geometric surfaces. However, information resources for 3D modeling and semantic enrichment 

already exist in the form of numerous public and private BIM databases, such as the National 

BIM Library (nationalbimlibrary.com; over 6,500 components), BIM Object (bimobject.com; 

over 290,000 components), those maintained by producers (e.g., steelcase.com), localized 

libraries (e.g., Lu et al., 2017), and private BIM databases actively maintained by developers 

and contractors (HKHA, 2010; Chen et al., 2017). All these are actually missed resources that 

could serve as credible BIM semantics sources for as-built BIM generation. 

 

This paper reports a novel ‘semantic registration’ approach for automatic generation of 

semantically rich as-built BIMs from 3D point clouds. This approach fundamentally differs 

from existing semantic segmentation approaches in that it is segmentation free, capable of 

processing complex scenes, and able to cleverly reuse existing information. The theoretical 

stance of this approach is an extension of Xue et al. (2018a; 2018b), which formulate the task 

of generating as-built BIMs from a given measurement as a constraint optimization problem to 

reassemble candidate BIM components for the measurement. The remainder of this paper 

comprises five sections. The second section reviews the relevant research on as-built BIM 

generation and derivative-free optimization (DFO) applications in computing engineering. The 

third section presents the proposed approach. The fourth describes the experimental tests of the 

proposed approach in Autodesk Revit. Discussions concerning the advantages and 

shortcomings of the proposed approach appear in the fifth section, and the sixth recapitulates 

and concludes the study. 

 

Literature review 

Generation of as-built BIMs from 3D point clouds 

The process involves first collecting and pre-processing a facility’s actual conditions as point 

clouds. Numerous advanced non-contact sensing technologies are available for such data 

collection. One can capture the measurements of a facility on foot with a handheld augmented 

reality (AR) smartphone. For larger facilities, one can use a vehicle-borne light detection and 

ranging (LiDAR) scanner, a consumer unmanned aerial vehicle (UAV) or drone flown at low 

altitude, fixed-wing aircraft-borne LiDAR at a high altitude, or interferometric synthetic 

aperture radar (InSAR) at low Earth orbit (Tang et al., 2010; Zhu and Shahzad, 2014; Wang 

et al., 2017). If the directly measured data exists as multiple 2D images, structure from motion 

(SfM) or simultaneous localization and mapping (SLAM) can convert the images to 3D point 

clouds by estimating the camera positions and fusing with 3D scenes (Snavely et al., 2008).  
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Equally numerous are the data-driven or model-driven methods researchers have developed to 

generate as-built BIM from 3D point clouds (Shamir, 2008; Vezhnevets and Buhmann, 2010; 

Xiong et al, 2013). Nevertheless, these data-driven and model-driven types of approaches 

(Volk et al., 2014) both rely heavily on semantic segmentation requiring geometry-to-label 

correlation models (e.g., based on rules or machine learning models). Examples of rule-based 

models include random sample consensus (RANSAC) for planar components (Schnabel et al., 

2007; Lagüela et al., 2013; Jung et al., 2014), parametric curved surface components (Dimitrov 

et al., 2016), geometric simplification such as voxelization (Aijazi et al., 2013; Zhu et al., 

2017), and asserted simple geometry (e.g., indoor boundary and rooftop primitives) from 

intersection of planes (Valero et al., 2012; Chen et al., 2018b). Some approaches have 

employed machine learning techniques for more complicated correlation models, like support 

vector machines (SVM) (Adan and Huber, 2011; Koppula et al., 2011; Perez-Perez et al., 2016; 

Wang et al., 2017) or convolutional neural networks (Babacan et al., 2017). Features such as 

color from imagery (Quintana et al., 2018) and geometric metrics (e.g., key points) from 

computer vision (Chen et al., 2018a; Wang et al., 2018) have been applied to enhance the 

correlation models.  

 

Nevertheless, the semantic segmentation methods are tedious, time-consuming, and in some 

cases inaccurate, especially for complex scenes. For example, Koppula et al.’s (2011) SVM 

model exhibited roughly 80% precision and 70% recall for office point clouds, but only roughly 

50% precision and 50% recall for homes. The deep learning model in Babacan et al. (2017) 

succeeded in segmenting walls and floors with over 90% precision and 90% recall, but showed 

unsatisfactory results for beams (40% precision) and doors (55% recall). Wang et al.’s (2018) 

method was effective in segmenting chairs from dense point clouds (about 90% recall), but less 

effective on sparse and noisy data (about 40% recall). In summary, the semantic segmentation 

methods flounder when faced with the fundamental challenge of segmenting complex 

components. Uncontrolled real-life environments characterized by diversity of labels, irregular 

geometries, and topological relationships all make semantic segmentation even less 

satisfactory (Andreopoulos and Tsotsos, 2013).  

 

Registration of credible, available BIM components is a possible means of responding to this 

difficulty. The concept of parametric 3D component registration emerged decades ago, for 

example in computer-aided design (CAD) surface fitting in reverse engineering (Varady et al., 
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1997), and has been practiced in modeling curved surfaces (e.g., Dimitrov et al., 2016), 

pipelines (e.g., Bosché et al., 2014; Nguyen and Choi, 2018), secondary elements on walls 

(e.g., Adán et al., 2018), and historic BIMs (e.g., Barazzetti, 2016). A well-known registration 

algorithm is the iterated closest point (ICP). Kim et al. (2013) employed it to register an as-

planned model to as-built point clouds. Sharif et al. (2017) used it to isolate the points of a 

complex BIM component and remove clutter points. A notable merit of this approach is its 

reuse of 3D geometry domain knowledge. Commercial software, e.g., IMAGINiT, PointFuse, 

Floored, and many in-house solutions were developed for supporting such generic registration 

approach. Yet, According to Bruno et al. (2018), there are only three technical papers on semi-

automatic methods generating historic BIMs from point clouds and no paper on fully automatic 

methods. The reason was that the automatic registration of BIM components used to be 

confined by ineffective feature extraction and semantic segmentation (see Quattrini et al., 2015; 

Andreopoulos and Tsotsos, 2013). A recent breakthrough is the segmentation-free registration 

method in Xue et al. (2018a; 2018b), where the as-built BIM was generated by maximizing the 

structural similarity (SSIM) index between the input 2D images and the 2D projections of the 

BIM. Based on their problem formulation and semantic resources, complex components (e.g., 

furniture) became as easily recognizable as simple ones (e.g., walls). However, it is unclear 

whether the segmentation-free, ‘semantic registration’ approach (Xue et al., 2018a; 2018b) can 

be applied to 3D point clouds which, compared with 2D images, are generally noisier, bulkier, 

and less supported by scientific software libraries. It is thus the primary aim of this paper to 

advance a method that can automatically generate semantically rich as-built BIMs of complex 

scenes from 3D point clouds. 

 

Derivative-free optimization and its applications 

Registration of BIM components is often formulated as a mathematical function to optimize 

(e.g., Dimitrov et al., 2016; Xue et al., 2018a). The derivatives of a function universally contain 

vital information for finding its best values (i.e., minimum or maximum). However, in the 

problem of generating as-built BIMs from 3D point clouds the derivatives of objective 

functions are impractical to obtain (Rios and Sahinidis, 2013). Derivative-free optimization 

(DFO) is a class of nonlinear optimization that carries out optimization under such 

circumstances (Conn et al., 2009). Examples of DFO applications include general pattern 

search for protein structure prediction (Andreopoulos and Tsotsos, 2013) and surrogate 

management frameworks for optimization of cardiovascular geometries in surgical planning 

and treatment design (Marsden et al., 2008). CMA-ES (covariance matrix adaptation evolution 
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strategy) is another DFO algorithm that employs perturbations with expected values and an 

iteratively updated covariance matrix to guide the search for global optimization (Rios and 

Sahinidis, 2013); CMA-ES and its variants were proven among the most advanced algorithms 

for solving noisy problems (Hansen et al., 2010). In construction and civil engineering, Kaveh 

et al.’s (2011) applied CMA-ES for optimal design of a 26-story-tower space truss exhibited a 

31% improvement in weight over a previous result by genetic algorithm, and Athanasiou et 

al.’s (2011) CMA-ES for structural system identification in earthquake engineering saw a 53% 

improvement from previous studies. 

 

Xue et al. (2018b) applied the CMA-ES to as-built BIM generation and reconstructed an 

outdoor scene of a demolished building and an indoor furniture scene with a root-mean-square-

error (RMSE) of 3.9 cm. However, several hours were spent generating the necessary small 

BIMs, which feature just a few components, the major issue being the thousands of model 

manipulations (e.g., creating, moving, rotating, scaling, and detecting components, while 

projecting 3D BIM to 2D images) on commercial BIM platforms. Thus, there remains room 

for improvement in efficiency of DFO algorithm application to as-built BIM generation. 

Another aim of this paper, therefore, is to make a contribution to this methodology. 

 

The ‘semantic registration’ method for automatic BIM generation  

Problem formulation 

Essentially, the semantic registration method is to recognize candidate BIM components from 

3D point clouds, reassemble the components into a BIM, and register them with semantic 

information from credible sources. In this formulation, the error between the as-built BIM and 

the input 3D point cloud is the objective function to minimize. Mathematical methods like DFO 

algorithms can automate the entire generation process. An overview of the formulation of the 

as-built BIM generation is shown in Figure 1. The two inputs of the proposed approach, as 

shown in Figure 1, are:  

1) an input 3D point cloud Pin of m points (|| Pin || = m) which represents the as-is 

conditions of a facility; and 

2) a library of semantic BIM components (with both geometric and non-geometric 

semantic information) and topologies. 
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Figure 1. A conceptual framework of the proposed semantic registration approach 

 

During the automatic as-built BIM generation process, some information, such as location, 

rotation, and topology, needs to be determined. This paper defines a tuple X of variables for 

each (e.g., i-th) component instance in the as-built BIM: 

Xi = (cl, l, s, r),  (1) 

where cl is the family class of the component (e.g., a meeting table), l is the 3D location, s is 

the 3D scaling, and r is the rotation which is usually around the z-axis (Note: some components 

such as a door handle may use other axes). The solving of X is equivalent to the object 

recognition in conventional segmentation-based methods. Other semantic information 

including surface texture, producer, and market price can be directly registered to the as-built 

BIM. Therefore, the output BIM is fully determined by X = {X1, X2, …, Xn}, which represents 

a combination of all the parameters of n component instances, as shown in Figure 1. The 

candidate components and their topologies can be quickly filtered by scene (e.g., “indoor” and 

“office furniture”) before problem-solving to reduce the computational load. The input 3D 

point cloud is the geometric reference frame for the as-built BIM. 

 

The objective function f to minimize, in this paper, is the RMSE between the as-built BIM 

(determined by X) and the input 3D point cloud. The accurate RMSE can be calculated by 

computing the minimal distance to the as-built BIM for each point in the input cloud. However, 

since there can be a huge number of points in a cloud and another huge number of “faces” in 

an as-built BIM, the calculation of f is far too inefficient. In this paper, we first sample the 

surface of the BIM to a point cloud PX with the same point density as the input cloud; so that 

the RMSE can be approximated by computing the RMSE between PX and Pin, where |PX| ≈ |Pin| 

= m. Furthermore, we sample both point clouds by the voxelization method, which is proven 

effective for processing point clouds (Aijazi et al., 2013; Zhu et al., 2017), so that |P’X| ≈ |P’in| 
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= m’ ≪ m. Advanced spatial data structures, such as oct-trees, can guarantee the RMSE 

computational time between P’X and P’in at O(m’ log m’) (Elseberg et al., 2013). Thus, we have 

the objective function f in Figure 1 defined and approximately simplified as: 

f(X) = RMSE(BIM(X),Pin) 

≈ RMSE(PX,Pin) (2) 

≈ RMSE(PX
′ ,Pin

′ ) = �Σ𝑝𝑝∈Pin
′ nndist2(𝑝𝑝,PX

′ ) m′⁄  

≈ RMSE(Pin
′ ,PX

′ ) = �Σ𝑝𝑝∈PX
′ nndist2(𝑝𝑝,Pin

′ ) ‖PX
′ ‖�   

= fX(X) 

where BIM is the surface of BIM determined by X, nndist is the Euclidean distance between a 

point and its nearest neighbor in another point cloud, and fX is the approximate objective 

function. Eq. (2) implies that fX(X) ≈ f(X), where the P’X (down-sampled BIM surface) can be 

accumulated through model generation, so that it is not necessary to repeatedly calculate the 

whole BIM on commercial BIM platforms. As a result, the result of approximate objective (fX) 

is very close to that of f, but fX is much easier to calculate than f. 

 

The variables X to optimize are constrained by possible domains, topological requirements, 

and conventions. An example of a topological requirement is that of a wheeled office chair 

sitting on a horizontal plane. An example of a convention is that of an office chair location 

likely to be next to a desk or table. Among the components, there exist a small group of 

topological relationships such as adjacency (e.g., above, below, and next-to), separation, 

containment, intersection, and connectivity (Nguyen et al., 2005). Thus, we can formulate the 

constraints C in Figure 1 as:  

C(X) = {CI(Xi)}∪{CR(Xi, Xj), i≠j}, (3) 

where CI indicates the constraints on the parameters Xi of any i-th individual component, and 

CR is the constraints on the topological relationships between any pair of (i-th, j-th) 

components. Examples of the two groups of constraints can be found in Table 1. 
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Table 1. Example of constraints in the proposed formulation  

C Example Example value Notes 

CI scaling_max [2.0, 2.0, 1.5] xyz coordinates 

 scaling_min [0.5 0.5, 0.75] Ibid. 

 z_rotation_max 2π  

 z_rotation_min 0  

CR on_top_of ‘Ground’ Adjacency, connectivity 

 contains_on ‘Wall’ Containment or intersection 

 

 

After the formulation of the variables X, objective function f, and constraints C, we have a 

general form of the overall optimization problem of as-built BIM generation: 

minimize f (X) = RMSE(BIM(X),Pin)
subject to C(X) ≤ 0.                             

 (4) 

Based on the popular optimization mechanisms in existing literature, Xue et al. (2018a) 

proposed a one-by-one, incremental generation process. In such a process, the problem-solving 

focuses on recognizing one component at a time and n incremental runs to complete the as-

built BIM. An overall fine-tuning process of all the components after the incremental phase 

has also proven helpful in improving accuracy of the as-built BIM. 

 

Problem solving 

Based on the COBIMG, which stands for constrained optimization-based BIM generator 

(available at: https://github.com/ffxue/cobimg) software library (Xue et al., 2018b), the authors 

developed the “COBIMG-Revit”, which is an automatic as-built BIM generation plugin for a 

popular BIM platform (i.e., Autodesk Revit). Figure 2 shows the three major modules of 

COBIMG-Revit. The first module, the core algorithm, is CMA-ES integrated in COBIMG. 

The second module is a new module, i.e., the f(X) calculation based on Eq. (2), where the 

functions of voxelization and kd-tree search are employed from PCL (point cloud library). The 

third module is the component assembly (e.g. creation, hiding, movement, rotation, and surface 

sampling of the as-built BIM) extended from COBIMG. The input components were a set of 

annotated Revit component families. The COBIMG-Revit, encapsulated as a plugin, interacts 

with Autodesk Revit via its C++ APIs and generates the as-built BIM in Revit project format. 
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Figure 2. Key modules, software libraries, and execution processes of COBIMG-Revit 

 

Recognizing any i-th component is an automatic, iterative, trial-and-error procedure. As shown 

in Figure 3, the three modules of COBIMG-Revit operate in the same sequence for each trial. 

The trial starts from a feasible Xi that meets all the constraints. The component assembly 

module decodes the values of Xi to Revit family class (cl), location (l), scaling (s), and rotation 

(r). Then, the i-th component is modified (or created for the first trial) through Revit APIs 

based on the decoded parameters. The surface of the updated as-built BIM with the modified 

i-th component is sampled by the component assembly module to a point cloud PX. The next 

module samples Pin and PX down with voxelization and returns the RMSE (i.e., f(Xi)), back to 

the first module of core algorithms. Finally, the core algorithm CMA-ES updates its covariance 

matrix and evolves its search strategy for succeeding trials.  
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Figure 3. Message sequence chart of the operations and interactions between the modules of 

COBIMG-Revit in an individual trial 

 

The incremental generation phase can be explained as follows. At the very beginning, the first 

component is always an invisible Ground component, or a similar fundamental component, 

which can be directly computed from the boundary of the input 3D point cloud. Therefore, 

during the whole incremental generation phase, there are (i − 1) components already assembled 

before the i-th component. A “parent” component, either Ground or one of the assembled 

components, is sequentially selected to regulate a physical target area (e.g., a planar surface, a 

linear joint, or a room space) and a topological relationship (see Table 1) for the i-th component 

candidates to reside on. COBIMG-Revit then runs a few trials for each component candidate 

for the least RMSE. After trial-and-error tests on all the possible candidates, the component 

with the least RMSE is recognized as the i-th component in the as-built BIM. Meanwhile, the 

topological relationship between the i-th component and its parent is also confirmed. In such 

an incremental fashion, the whole BIM and its topology can be gradually built from the library 

of Revit families. 

 

The nature of the incremental generation implies an asymmetric precedence of recognition of 

the n components in the as-built BIM. That is, the i-th component may influence the assembling 

of the j-th component only if i < j; but not vice versa. The asymmetric precedence thus may 

lead to a loss in accuracy of the as-built BIM. To complement the possible loss of accuracy, a 

fine-tuning phase runs after the incremental generation. In this phase, the parameters of each 

component, except for Ground, are re-optimized. If the re-optimization brings a better (i.e., 
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less) RMSE, the BIM is changed based on the new parameters. The step-by-step fine-tuning 

continues until a terminate condition (e.g., a time limit) is met. The output as-built BIM is a 

project model (.rvt) in Revit. 

 

Experiments 

Experiment setting 

An experiment was set to validate the proposed approach. The test case featured a noisy 

laboratory scene filled with furniture (see Figure 4), for which recognition proved challenging 

for traditional semantic segmentation approaches. The test scene consisted of two discussion 

tables, a round table, two footstools and three wheeled chairs, one with high armrests and two 

with low armrests. The 3D point cloud in Figure 4, with 194,813 points, was scanned by a 

Google Tango smartphone (Model: Lenovo PB2-690Y). The smartphone manipulated an 

infrared distance sensor and two cameras to estimate the indoor point cloud, which proved 

noisy, as shown in Figure 4. The scanning took about 20 minutes and the pre-processing (i.e., 

registration and stitching) roughly 15 minutes. There is no semantic segmentation in the 

experiments. The Revit families of the furniture, as listed in Table 2, were downloaded from 

the producer’s website: steelcase.com. The research team spent about four minutes annotating 

the Revit family (.rfa) with the CI and CR listed in Table 1. Figure 5 shows the graphic user 

interface (GUI) of COBIMG-Revit encapsulated as a plugin of Autodesk Revit 2015 

Educational 64-bit. The GUI of COBIMG-Revit consists of three parts: 1) an input point cloud, 

2) a list of the Revit families (i.e. component candidates), 3) the as-built BIM generation panel.  

 

Figure 4. An indoor furniture scene with 194,813 noisy points scanned by a smartphone 
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Table 2. A list of the annotated semantic BIM components  

Model of 

component 

FlipTop Twin 

Table 

Groupwork 

Coffee Table 

Think V2 

chair (high 

armrest) 

Think V2 

chair (low 

armrest) 

B-Free 

footstool 

3D view of 

component 

(screenshot 

in Revit) 
    

 

CI smin, smax, rmin, and rmax 

CR on_top_of = Ground  

Semantics 

from family  

OmniClass number, manufacturer, model, materials, style number, product, website, 

product line, release date, cost, assembly code, assembly description, etc. 

 

 

Figure 5. The user interface of COBIMG-Revit (on Revit 2015 Educational 64-bit) 
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The experiments were conducted at a workstation with two Intel XEON E5-2690 v4 CPUs 

(2.6GHz, 28 cores, 56 logical processors), 64 GB memory, and Windows 10 Enterprise 64-bit 

operating system. The invisible Ground was set to match the boundary of x and y of the input 

point cloud in Figure 4, with z = 0. The two major parameters of the proposed approach, as 

formulated in Sections 3.2 and 3.3, are the size of the voxel grid and the number of trials by 

CMA-ES per component (see the GUI in Figure 5). The size of the voxel grid was set in ten 

values from 1 cm to 10 cm in a linear order; while the number of trials was set in 10 values 

from 10 to 10,000 (104) in exponential order. COBIMG-Revit was also tested in a different 

number of threads to evaluate the acceleration by parallel computing. The team also tested the 

most popular point cloud registration algorithm ICP (see Kim et al. 2013; Sharif et al. 2017) 

for a comparison. We tested a number of variants of ICP, and selected one variant starting from 

random locations in parallel for a correct output. The number of the iterations of ICP was set 

to be equal to the number of trials of COBIMG-Revit.  

 

Experimental results 

The results of the experimental tests under different parameter settings, as shown in Figure 6, 

confirmed that the COBIMG-Revit was sensitive to the two parameters. Figure 6 shows three 

sets of experimental results (i.e., the number of correct components, the objective function, and 

the time cost in 56 threads) and a trade-off analysis from the tests under 100 configurations of 

the two parameters. Figure 6 (a) demonstrates that more trials generally led to more correct as-

built BIMs when the grid size (i.e., resolution) was not too large (e.g., ≤ 8 cm); while in Figure 

6 (b), f (RMSE) which was closely associated with correctness of components, showed a 

similar pattern. The trend on time cost in Figure 6 (c) shows that more trials and smaller grid 

size led to more computation time. The trade-off analysis in Figure 6 (d) shows that there exists 

an intersection of effectiveness (e.g., f < 5 cm, above the dashed polyline) and efficiency (e.g., 

< 10.5 s, below the curve of 10.5 s) for configuring the parameters. For instance, the research 

team selected a grid size of 5 cm and 500 trials for the test case. 
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(a) The number of correct components (Note: 

higher is better) 

(b) The objective function (Note: lower is 

better) 

  
(c) The time cost (Note: in log10, i.e., lower is 

better) 

(d) A trade-off analysis 

Figure 6. Experimental results of different parameter settings and a trade-off analysis on 

accuracy versus time cost of as-built BIM generation by COBIMG-Revit 

 

Details of the problem-solving procedure by COBIMG-Revit are shown in Figure 7, with the 

selected grid size as 5 cm and 500 trials per component. The objective function f descended 

steadily from about 100 cm in the beginning when the as-built BIM was almost empty. When 

more and more components were incrementally added to the BIM, the two curves of f and fX 

in Eq. (2), gradually approached one another; the convergence of the curves confirmed that the 

approximation in Eq. (2) is sound and effective. The incremental generation phase ended in 

3.09 seconds after searching for the 9-th component in vain (no component had sufficient 

support of points). The result of the incremental generation phase was a BIM with 8 
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components on the Ground (f = 4.26 cm). The fine-tuning phase further improved the objective 

function down to f = 3.87 cm in 3.36 seconds by slightly changing the positions and rotations 

of the components, while the overall topology and the big picture of the as-built BIM remained 

the same. The overall time amounted to a sheer 6.44 seconds, and the output as-built BIM was 

saved as a Revit project (see Figure 8 (a)). A visual comparison in Figure 8 (b) shows that the 

output as-built BIM well matched the input 3D point cloud. In addition, the ground truth 3D 

presentations offered by the producer overcame to a considerable extent the noise present in 

the input, as shown in Figure 8 (b). In contrast, Figure 8 (c) shows the BIM generated by the 

ICP algorithm in 30.1s. There were five correct components and four wrong furniture as 

highlighted in Figure 8 (c). It can be seen that one FlipTop Twin table was mistakenly modeled 

as two Groupwork Coffee tables; the other fault was the two chairs with low armrests were 

registered as those with high armrests. Figure 8 (d) shows a top view of the point cloud and the 

BIM by ICP. The RMSE in Figure 8 (d) was 4.76 cm. In summary, the proposed COBIMG-

Revit outperformed the well-known ICP algorithm in terms of correctness, geometric accuracy, 

and time cost. 

 

 
Figure 7. A typical problem-solving process of COBIMG-Revit (Parameters: grid size = 5 

cm, 500 trials per component) 
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(a) A screenshot of the 3D view of the output as-

built BIM 

(b) A visual comparison between the 

input (grey points) and the output BIM 

 
 

(c) A screenshot of the BIM generated by ICP 

(time = 30.1s, consisting of 4 wrong furniture) 

(d) A visual comparison between the 

input (grey points) and the BIM 

generated by ICP (RMSE = 4.76 cm) 

Figure 8. Comparison of the generated as-built BIMs by COBIMG-Revit and ICP (Note: grid 

size = 5 cm, 500 trials per component, the wrong components are highlighted in blue) 

 

 

The COBIMG-Revit then registered semantic information into the as-built BIM shown in 

Figure 8 (a). Figure 9 illustrates the properties of a B-Free footstool in the as-built BIM. The 

left window in Figure 9 shows the footstool’s properties, including “COBIMG_translation”, 

“COBIMG_rotation”, and topological relationships (e.g., “COBIMG_parent”). The right 

window in Figure 9 shows the ‘type’ properties that contain the semantic information registered 

from the producer’s online library (e.g., manufacturer, model, materials, style number, product 
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line, release date, assembly code, and assembly description). In fact, most of the registered 

properties were almost impossible to segment using the conventional approaches relying on 

rule-based and machine learning-based correlation models. 

 

 
Figure 9. A screenshot of the semantic information in the as-built BIM 

 

Parameters analysis 

The team applied Pearson’s bivariate correlation tests to evaluate the sensitivity of the two 

parameters of COBIMG-Revit (see Figure 6). Table 3 lists the results on the number of correct 

components, f, and time cost computed by IBM SPSS (version 24.0). It shows that the voxel 

grid size prompts a strong negative correlation to computation time (i.e., the greater the grid 

size, the less computation time), and no significant correlation to the number of correct 

components or f. In comparison, the number of trials has significant correlations with all three 

indicators (i.e., a very strong positive correlation with the correct components, a very strong 

negative correlation with f, and a strong positive correlation with the time cost). The analytical 

results suggest: 1) the voxelization can efficiently reduce the time cost without significant loss 

of accuracy in f (and a decrease in the number of correct components); 2) the number of trials 

per component should be large enough (e.g., 500 or above) for accurate as-built BIM 

generation. 
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Table 3. Pearson’s correlations between the two parameters and the three algorithmic 

performance indicators (N = 100) 

  No. of correct 

components 

f (cm) Time cost (s, in 

log10) 

Grid size (cm) Pearson cor. -0.111 0.109 -0.656** 

 Sig. (2-tailed) 0.270 0.282 0.000 

No. of trials per 

component (in log10) 

Pearson cor. 0.904** -0.823** 0.690** 

Sig. (2-tailed) 0.000 0.000 0.000 

**: Correlation is significant at 0.001 level (2-tailed). 

 

The number of threads were also tested to evaluate the acceleration from multi-threading 

parallel computing. As shown in Figure 10, the overall time cost decreased, almost log-linearly, 

from about 70 seconds to 8 seconds while the number of threads increased from 1 to 14 (i.e., 

the number of the physical cores in one test CPU). There was a slight increase in time when 

the number of threads went beyond a single CPU due to the operational system (e.g., the load 

balancing of multiple CPUs). On two CPUs (i.e., with more than 14 threads), the time cost 

decreased log-linearly again. The curve in Figure 10 confirmed that COBIMG-Revit can make 

good use of the parallel computing hardware acceleration from everyday computers to high-

end enterprise workstations.  

 

 

Figure 10. The computation time of COBIMG-Revit by multi-threading parallel computing 
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A comparison with manual modeling 

The rationale of the semantic registration approach resembles closely the ‘logo-stacking’ style 

of a manual as-built modeling process. To compare accuracy and efficiency of the two 

approaches, the team invited three volunteer modelers with divergent levels of experience in 

Autodesk Revit to undertake manual modeling tests. The input 3D point cloud and the Revit 

family types were preloaded in the BIM software, and each modeler was required to select and 

adjust the furniture components to their correct locations (x and y) and rotations (around z), 

while the furniture components were placed on the default floor (z = 0) automatically in Revit. 

The modelers received a three-minute training course before they began. Table 4 lists the 

correctness, RMSE, and time cost of the three manually made as-built BIMs. In accuracy, 

COBIMG-Revit’s output model ranked second after the model developed by the most 

experienced modeler. The modeling speed of COBIMG-Revit, however, was about 50 times 

that of the modelers. Although ICP was also faster than manual modelers, it failed to generate 

an accurate and correct BIM. COBIMG-Revit, as an automate approach, thus successfully 

addresses the challenges of manual modelling (e.g. tedium, slowness, and inaccuracy). 

 

Table 4. The results of three manual as-built BIM generations, where the best value in each 

column is in bold 

Modeler No. Experience  Correctness (out of 8) RMSE (cm) Time cost (s) 

1 Expert (3 years) 8 3.79 363.9 

2 Average (1 year) 8 3.90 335.4 

3 Beginner 8 4.22 691.1 

COBIMG-Revit  8 3.87 6.44 

ICP 5 4.76 30.1 

 

 

Scalability tests 

To test the scalability of the proposed approach, a cloud (about 1.9 million points) of 293 

auditorium chairs, as shown in Figure 11 (a), from the Stanford 2D-3D-S dataset (Armeni et 

al., 2017) was selected according to the segmentation predefined in the dataset. Unlike the 

completeness in the office scene, there existed a low level of occlusion and clutters in the 

auditorium scene. There is no semantic segmentation in the experiments, either. As shown in 

Figure 11 (b), the ground at the rear area was about 1.0m higher than that in the front. Two 
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BIM components, ‘Theater Chair’ and ‘Fixed Chair’, were downloaded from 

3DWarehouse.com, and then annotated. Apart from the topological relationship settings in 

Table 1, the translation over z-axis (lz) was allowed from 0m to 1.0m in the annotation. The 

grid size of COBIMG-Revit was 5 cm; the number of trials was set to 5,000 due to an extra 

freedom on the z-axis; the multi-threading parallel computing was enabled. Each component 

was tested in an independent experiment because all the chairs were known identical. 

 

 

 

(a) A cloud of 1,879,282 points of chairs in the 

“Area_2 Auditorium_2” instance in the Stanford 

2D-3D-S dataset  (the zoomed area shows the 

occlusion and clutters) 

(b) The height ramp of the point cloud 

(i.e., rear chairs are about 1.0m higher) 

  
(c) ‘Theater Chair’ (author: AJ) (d) ‘Fixed Chair’ (author: Veronica S.) 

Figure 11. An auditorium scene of 293 identical theater chairs and two chair components 

 

The COBIMG-Revit generated an output BIM as shown in Figures 12 (a) and (b) using the 

‘Theater Chair’ component. As listed in Table 5, the output BIM consisted of 288 chairs, with 

an RMSE = 8.10 cm, and was saved as a 1.83 MB Revit project file. The other BIM, as shown 

in Figures 12 (c) and (d), were generated using the ‘Fixed Chair’ component with an RMSE = 

9.15 cm. Figures 12 (b) and (d) show the comparisons with the input point cloud from the top 

view, where the major part of the input was correctly registered to chairs in both BIMs, the 
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false positive (with wrong location or rotation) chairs are highlighted, and the false negative 

(undetected) chairs are in circles. It can be found from Table 5 that the output BIM resembled 

the furniture setup of the auditorium scene using different components. The latter BIM had 

better precision and recall, but the first BIM had smaller RMSE, geometric error, and angular 

error. According to the objective function, e.g., Eq. (2), the BIM in Figure 12 (a) was selected 

as the output BIM from the noisy input.  

 

  
(a) Screenshot of the BIM consisting of 288 

‘Theater Chairs’ (RMSE = 8.10cm, time 

=1,434.2s) 

(b) Top view of (a) (false positive 

highlighted, false negative in circles) 

  
(c) Screenshot of the second BIM consisting of 

312 ‘Fixed Chairs’ (RMSE = 9.15cm, time = 

1,538.3s) 

(d) Top view of (c) (false positive 

highlighted, false negative in circles) 

Figure 12. Comparison of the BIMs using the ‘Theater Chair’ and another BIM using ‘Fixed 

Chair’ 
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Table 5. Comparison of the auditorium BIM generation using different component (better value 

in each row in bold) 

Evaluation ‘Theater Chair’ ‘Fixed Chair’ 

Time (s) 1,434.2 1,538.3 

RMSE (cm) 8.10 9.15 

Number of chairs  288 312 

Output file size (MB) 1.83 2.19 

Centroid distance error (cm) Mean  15.2 15.8 

 Std. dev. 7.7 8.6 

Angular error (°) Mean 17.6 19.7 

 Std. dev. 28.8 34.6 

Precision (%) 81.9 84.3 

Recall (%) 80.5 89.8 

F1 (%) 81.2 87.0 

 

Table 6 lists the detailed confusion matrix of the chairs in the two output BIMs in Figure 12. 

The metrics of the first output BIM can be calculated by:   

Precision = True positive / Number of chairs in BIM = 236 / 288 = 81.9% 

Recall = True positive / Ground truth number of chairs = 236 / 293 = 80.5% (5) 

F1 = 2 × Precision × Recall / (precision + Recall) = 81.2% 

In Figure 12 and Table 6, there were 36 chairs generated in wrong positions, 16 chairs in correct 

positions but wrong directions. One reason of the incorrect positive is the exclusion of using 

repeated patterns of the chairs (e.g., Wang et al. 2018), while another is the noise in the input 

point cloud leading to the errors, as shown in the zoomed box in Figure 11 (a). The average 

time for generating a chair was about 5.0 seconds, considerably increased from the less than 1 

second in the indoor office scene due to the increased number of trials. Overall, the satisfactory 

results of the test and the inexpensive computational time validate that the proposed ‘semantic 

registration’ approach is scalable to large-scale point clouds. Thanks to the embedded 

knowledge in the BIM components and the advanced DFO algorithms, the output BIM also 

outperformed many conventional semantic segmentation methods, e.g., Armeni et al. (2017), 

to achieve a 16.5% precision in the point-level – rather than the component level in this paper 

– classification of chairs.  
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Table 6. A confusion matrix of the generated chairs in the generated BIM by COBIMG-Revit  

Evaluation 
 ‘Theater Chair’    ‘Fixed Chair’ 

Chairs Not a chair  Chairs Not a chair 

Positive position and rotation 236 10  263 12 

Positive position but negative rotation 

(error > 45°) 

16 -  13 - 

Negative position (error > 25cm*) 36 -  36 - 

Subtotal 288 10  312 12 

*: 25cm is a quarter of the diagonal of the target chair  

 

Discussion 

In contrast to conventional approaches dependent on semantic segmentation, the presented 

approach offers several advantages: 

  1) Complex building components can be accurately modeled via 3D point clouds, even atop 

noisy point clouds. In addition, the noise in the input point cloud considerably improves with 

the ground truth 3D presentations, as a part of the geometric semantics, from credible sources 

like the producer’s library. Accuracy of the model generated using the proposed approach was 

close to that of manual models. 

 2) The proposed approach can be applied to simple and regularly shaped components. 

Although the efficiency may not be comparable with conventional segmentation approaches, 

it can include any pre-defined BIM components in Eq. (2). 

 3) The whole as-built BIM generation process is fully automatic. In conventional 

approaches, human modelers are still required to post-process the segmentation results (e.g., 

Jung et al., 2014).  

 4) Rich semantic information can be registered from credible semantic resources to produce 

a semantically rich as-built BIM. Computer programs can reuse semantic information from 

existing BIM resources for value-added applications.  

 5) Preparation of geometry-to-label correlation models, such as retrieval of rules from 

experts and collection of training examples for machine learning techniques, is not needed. 

Instead, credible and available BIM resources represent the domain knowledge for as-built 

BIM generation in the proposed approach. 
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 6) The proposed approach boasts a high level of efficiency. By harnessing the power of 

parallel computing, such an efficient approach could promote wider use of as-built BIM within 

the AECO industry and inspire assorted smart city applications.  

 

Despite its many merits, the proposed approach also has its shortcomings:  

 1) The proposed approach relies on structured BIM knowledge such as external sources, the 

geometric details, and the embedded semantics of BIM components and annotated topological 

requirements. For example, oversimplified BIM components (e.g., a box model of wheeled 

chair) that considerably changes the 5-cm sampled surface points may lead to inaccuracy in 

geometry and incorrect BIMs. 

 2) If the two mechanisms (i.e., surface sampling and voxel-based down-sampling) are not 

configured correctly, the fidelity of the output as-built BIM can be undermined, as shown in 

Figures 6 (a) and (b). A trade-off exists between speed and accuracy in as-built BIM generation, 

as shown in Figure 6 (d). 

 3) Although similar BIM components can come close to an approximated BIM (see Figures 

11 and 12), the approach may not work on unique and tailor-made components due to its 

reliance on availability of BIM components. The approach may not work on scenes under 

heavy occlusion and distortion due to the unavailable geometric data. 

 4) The approach is yet to make good use of the ‘instance parameters’ in prevailing BIM 

software (e.g., Revit) to determine more accurate semantics such as the exact height of the 

armrest and its family class, location, and rotation. 

 5) The approach is yet to utilize 3D point color and texture information to determine more 

accurate semantics. It should also be noted that the infrared and laser scanned 3D point clouds 

usually do not represent reflective surfaces such as glass and waterbody; thus the surfaces with 

materials of glass and water in the components should be separated in the sampling process of 

the approach.  

 6) The overall computational time of the presented approach, as formulated in Section 3.2, 

grows at least in a linear relation to the number n of components. 

 7) The experiments in this paper are for a relatively complex scene but it needs to be scaled 

up in future studies, e.g., including all the building elements such as walls, floors, and columns 

as well as the possible patterns of their formations. 
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Conclusion 

This paper presents a DFO-based ‘semantic registration’ approach for automatic generation of 

semantically rich as-built BIMs from 3D point clouds. This approach builds upon previous 

DFO-based approaches by exploiting 3D point clouds in prevailing BIM platform Revit, and 

by polishing the algorithms behind the application. The task of generating as-built BIMs is 

formulated to a constrained optimization problem by minimizing the error between the output 

BIM and the input 3D point clouds. The formulated problem is simplified by sampling the BIM 

surface and voxelization of the point clouds, and a well-known DFO algorithm, CMA-ES, is 

applied to solve the formulated and simplified problem. The BIM resulting from experiments 

on a noisy point cloud of an indoor furniture scene was accurate (RMSE = 3.87 cm), efficient 

(time = 6.44 s), and consisted of rich semantic information (e.g., materials, product line, and 

assembly code) registered from the manufacturer’s library. The approach was also proved 

scalable for modeling large-scale point clouds. 

 

This paper offers a trifold contribution to the BIM and computing engineering communities. It 

presents the first semantic registration approach for as-built BIM generation from 3D point 

clouds. Unlike the a priori rules or machine learning methods of predominant semantic 

segmentation schemes, the presented approach exploits available, credible semantic BIM 

resources to handle simple to complex scenes. Secondly, the presented DFO-based semantic 

registration approach is highly accurate and efficient in processing noisy complex point clouds 

and reusing public and private BIM resources. This paper also improves upon Xue et al.’s 

(2018a; 2018b) methodology (e.g., the time length of the experiment dramatically dropped 

from a few hours to a few seconds). In summary, the semantic registration approach presented 

here is superior to existing segmentation approaches in several ways: it is segmentation free, 

capable of processing complex scenes, and able to cleverly apply existing information for 3D 

modeling and semantic enrichment. 

 

The innovative approach reported in this paper opens new avenues for professionals in the built 

environment and development field. Architects and designers, construction crews and 

engineers, facilities managers and conservationists can contribute to the realization of truly 

smart cities. It offers global business leaders and developers a more expedient and quality tool 

for creating semantically rich BIMs/CIMs. The proposed approach suggests that inexpensive 

data sources can be effectively and efficiently exploited to produce models of complex scenes 

and is a potential game-changer in the competitive landscape of BIM/CIM. The research team 
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recommends further studies follow to examine the applicability of the approach to other scenes, 

and its applicability on a wider, possible urban scale. 
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