第六届全国BIM学术会议——青年论坛 "后疫情时代的建筑业数字变革" # 后疫情时代的建筑区块链:原理、案例和新机遇 **Blockchain for Construction in the Post-COVID-19 Era** Fan Xue Dept. of Real Estate and Construction, University of Hong Kong 7 November 2020, Taiyuan, China #### **Outline** iLab #### 0.1 港大 iLab 实验室 iLab ♦ HKU iLab 城市大数据实验室: The urban big data hub - Director: Prof. Wilson Lu 主任: 吕伟生教授 - Urban big data hub at Faculty of Architecture, HKU 港大建筑学院 ***. **iLabHKU** • multi-dimensional and multi-disciplinary *urban big data* collection, storage, analysis, and presentation to inform decision-making in urban development - Focusing on information technology (IT) - Building Information Modeling (BIM) - Geographical Information System (GIS) - Global Navigation Satellite System (GNSS) - Urban Remote Sensing (URS) - Internet of Things (IoT) - Blockchain (BC/DLT) 2020 New Year dinner ## 0.2 About myself 自我介绍 iLab ◆ A mixed background 背景 - BEng in Automation, CAUC - MSc in Computer Science, CAUC - PhD in System Engineering, HKPU - PDF/RAP/AP in Construction IT - ◆ Research interests 方向 - Automation/IT in construction 智慧建造 - Urban sensing and computing 城市计算 - Applied operations research, ML, etc. 优化算法 - ◆ Professional 专业协会 - MACM, SMCGS, MIEEE, MHKGISA ◆ Engineering 工程 ## 0.2 My research projects 主持项目(约500万港币) il ab ♦ On-going 在研 ♦ Keywords **关键词** - PI: HK RGC GRF/ECS (17201717, 17200218, 27200520), HKU (102009917, 201910159238) BIM/ CIM/ DTB/ DTC - Co-PI: ITF (ITP/029/20LP), Key R&D Guangdong (2019B010151001), HKU PTF (102009741) - Co-I: NSFC General (71671156), NSSFC Key (17ZDA062), HK SPPR (S2018.A8.010.18S), HK ECF (111/2019) - **♦** Completed 完成 - PI: HKU (201702159013, 201711159016, 201811159177), HKU-Tsinghua SPF (20300083), - Co-I: NSFC General (60472123), HK PPR (2018.A8.078.18D) - ♦ Job vacancy (1 PhD + 10 RAs openings) 职位空缺 - RA/PhD (Web BIM, LoWaWAN/Nb-IoT hardware, Blockchain, software engineering), transferable to PhD (vision, rigor, & performance) - HK\$200,000~400,000/year - 。数字孪生城市 - 3D point cloud 三维点云 - Derivative-free optimization (DFO) - Construction blockchain Sponsors of projects as PI/Co-PI #### 1 What is a blockchain? 定义、三要件 iLab ■ Linked-list-like incremental Block <u>data storage</u> systems - Saved distributed, identically on each "node" - Verified by "miners" for rejecting Bad - Each "solved" Block becomes immutable - Less related to Bitcoin 比特币, ◆Ethereum 以太坊, DApp - Maturity level - 。 Blockchain 1.0; 2.0; 3.0; 4.0 (?) ... 新瓶旧酒? 鸡尾酒? - Three old components "wine" in any blockchain "bottle" Sects. 1.1, 2.1 ■ Distributed storage (1970s) 分布式存储 Sect. 1.2 Consensus mechanisms (1990s) 共识 Sects. 2.2, 2.3 Cryptographic tools (1990s) / smart contract (1990s) 加密/合约 Diagram of a blockchain Xue, F. (2020). Blockchain for Construction in the Post-COVID-19 Era. The 6th China BIM Conference - Youth Forum, 11 November 2020, Taining Shhidden) # 1.1 Distributed storage (1970s) 【1】分布式存储 iLab ♦ In database management system (DBMS) domain, the 1970s contributed - New hardware - o Hard disk computer 机械硬盘 - 。 Solid State Disk (SSD) 1970 固态硬盘 - New software - Relational DBMS - E.g., SQL/DS, SEQUEL, DB2 - 。 Distributed data storage 分布式存储理论 - Rosenkrantz et al. (1978) - Hevner and Yao (1979) - New data system: - Data warehouse IBM System/38 (1978), specified database computer (Source: Wikipedia.org, Author: CarstenSchulz) #### 1.2 PoW consensus 【2】工作量证明共识 iLab ♦ Invented against Email spam (junk email) ■ 90+% world emails were spam by 2014 ■ Reason 1: Spamming cost ~ 0; ■ Reason 2: Assuming-people-are-good Email protocols Dwork & Naor (1992): 'Proof of computational efforts' #### 计算量证明 ■ "If I don't know you and you want to send me a message, then you must <u>prove</u> that you spent, say, <u>ten seconds of CPU time</u>, just for me and just for this message." (Dwork et al. 2003) ♦ Jakobsson & Juels (1999): 'Proof of work' #### 工作量证明 ■ Where a prover demonstrates to a verifier that he has expended a certain level of computational effort in a specific time interval # 1.2 PoW consensus: On hard-to-solve, easy-to-check math problems ——NPC问题 ◆ Sudoku puzzle 数独 - Each column, each row, and each of the nine 3×3 grids - All nine digits (1-9) - Hard to solve, easy to check - Nondeterministic Polynomial time-Complete (NPC) when n > 3 - ♦ And Max clique, Boolean satisfiability, Subset sum, ... - ■NPC (数学/计算复杂度领域:NP完全问题) **■** PUBLIC: *H*(), *k* • k: difficulty ■ MINT: solving = $O(2^k)$ complexity ■ VALUE: checking = O(k) complexity PUBLIC: hash function $\mathcal{H}(\cdot)$ with output size k bits 8 6 8 $$\mathcal{T} \leftarrow \mathsf{MINT}(s, w) \quad \text{find } x \in_R \{0, 1\}^\star \text{ st } \mathcal{H}(s||x) \stackrel{\text{left}}{=}_w 0^k$$ $$\mathbf{return} \ (s, x)$$ $$\mathcal{V} \leftarrow \mathsf{VALUE}(\mathcal{T}) \quad \mathcal{H}(s||x) \stackrel{\mathrm{left}}{=}_v 0^k$$ return Xue, F. (2020). Blockchain for Construction in the Post-COVID-19 Era. The 6th China BIM Conference - Youth Forum, 11 November 2020, Taiyuan, China #### 1.2 PoW consensus: How it works iLab ◆ Proof of work (PoW) 工作量证明 - A class of consensus - Sender / prover / miner side - o Hard to solve (e.g., Soduko, hashing, ...) - Server / verifier / node side - Easy to check - 1. Hashcash PoW (Back 1997; 2002) - X-Hashcash: 1:52:380119:calvin@comics.net:::9B760005E92F0DAE - \$ echo -n 1:52:380119:calvin@comics.net:::9B760005E92F0DAE | openssl sha1 \$ **0000000000000**756af69e2ffbdb930261873cd71 (✓ correct; 13 hex (52 binary) 0s in <1us) 2. Email attaches a key to the Sudoku's initialized by sender + content + Email time ## 1.3 Nakamoto (2008)'s Bitcoin 【3】BTC数据加密 iLab ◆ Bitcoin = BC 1.0 app 比特币=区块链1.0应 ♦ Immutable 不可篡改 ■ 1 block = many transactions \blacksquare 1 trans = 1 sender + 1 receiver + amount ♦ Anonymous 匿名 Hash "wallets" ◆ Secure (and expensive) 可靠(浪费) $\blacksquare \sim 125 \text{EH/s} (1.2 \times 10^{20} \text{ H/s}) \text{ computational power}$ ■ ~100TWh/year ○ 2 × Google, 4 × Ireland, or US\$10B bill ♦ Decentralized (pseudo?) (伪)分布式 | mber ² | Hash ² | Time? | Transactions? | Total BTC ² | Size (kB) | |-------------------|-------------------|---------------------|---------------|------------------------|-----------| | 356987 | 141a6f95b2 | 2015-05-18 13:28:14 | 1714 | 17353.00313324 | 749.227 | | 356986 | 13cff723ec | 2015-05-18 13:11:53 | 2114 | 23805.24520712 | 749.204 | | 356985 | 1128aa2601 | 2015-05-18 12:27:49 | 594 | 6119.90095486 | 392.306 | | 356984 | 140b0f27b9 | 2015-05-18 12:20:14 | 1087 | 7849.33374079 | 544.102 | | 356983 | dlea5bclc7 | 2015-05-18 12:08:01 | 830 | 7799.27270534 | 455.006 | | 356982 | 76634b52be | 2015-05-18 11:58:42 | 221 | 1706.08443753 | 152.745 | Xue, F. (2020). Blockchain for Construction in the Post-COVID-19 Era. The oth china and Confedence - Youth Forum, 11 November 2020, Taiyular, China ## 1.3 Bitcoin's consensus: 为啥"挖矿"能挣"钱"? ◆ A "miner" is a prover 矿工: 证明账单纪录 - Solves the hashcash PoW - Data content = trans + hash pointer - Return 'nonce' to server - Receives reward as BTC - ♦ Server / node validator 服务器/客户验证 - **■** Collects and packs transactions - Opens a puzzle for millions of machines - Flexible difficulty: every 10 mins per block - Awards the winner with 6.25 BTC (now) - ♦ The ledger (> 200 GB now) 总账单 - Live on millions of devices (Space redundant) #### 1.3 PoW's cons: 51% attack and more 并非100%安全 iLab ◆ A malicious miner 恶意矿工 ■ Tries to modify transactions - E.g., change his/her -100 BTC to 0 - (by US\$1M goods for free) - Can succeed if > 50% computing power #### ♦ Other cons 其他问题 - Competitiveness between miners - Root cause of 51% attack - Too much energy cost - 21 million hard cap BTC - Easy coins before 2010 - 97% bitcoins were held by 4% of addresses #### PoW 51% Attack Cost | Name | Symbol | Market Cap | Algorithm | Hash Rate | 1h Attack Cost | NiceHasl | |------------------|--------|------------|---------------|-------------|----------------|----------| | Bitcoin | BTC | \$123.38 B | SHA-256 | 33,511 PH/s | \$582,622 | 2% | | Ethereum | ETH | \$52.58 B | Ethash | 216 TH/s | \$364,099 | 396 | | Bitcoin Cash | всн | \$15.79 B | SHA-256 | 4,013 PH/s | \$69,773 | 13% | | Litecoin | LTC | \$6.47 B | Scrypt | 309 TH/s | \$65,298 | 7% | | Monero | XMR | \$2.51 B | CryptoNightV7 | 370 MH/s | \$20,048 | 1496 | | Dash | DASH | \$2.39 B | X11 | 2 PH/s | \$17,106 | 27% | | Ethereum Classic | ETC | \$1.50 B | Ethash | 6 TH/s | \$10,344 | 89% | | Bytecoin | BCN | \$986.84 M | CryptoNight | 164 MH/s | \$637 | 219% | | Zcash | ZEC | \$933.60 M | Equihash | 458 MH/s | \$50,028 | 24% | ## 1.4 Blockchain take-away 小结 iLab - ◆ Blockchain = a (distributed, encrypted, trustworthy) database 区块链 = 数据库 - ♦ Some characteristics meet smart construction requirements - Immutability - Distributedness - Transparency - Security #### 要点: (1) 区块链不是"加密币"(2)"加密币"不是货币 - ♦ Blockchain is not equal to "crypto-currency" (not currency) - Good medium of exchange ✓ 便于交易 - Poor store of value **×** 价值储蓄 - See the right picture - Inappropriate unit of account × 信用的度量单位 - Countless new 'coins' (> 5,000 now) #### 3.1 Case 1 案例1: Procurement 采购 (Yang et al. 2020) il ab ◆ Construction procurement 采购 - Multiple parties, distributed - Having possible trust/compliance problems - Involving payment, quality assurance - ♦ Yang et al.'s (2020) example - Purchasing a distillation tower 买蒸馏塔 - In five steps 五个步骤 - ◆ Objective 目的 - Blockchaining the procurement - E.g., "pay AU\$ 30,100" - On Ethereum (Blockchain 2.0) as a 1.0 way Processing of purchasing construction equipment ## 3.1 【1】 Data storage 存储: From 2 to >1 million iLab - ◆ Model mapping as a smart contact 流程建模 - Modeled in "App server" - A "World state" computer in a Ethereum "virtual machine" - ◆ Data in the application layer (top left) 数据 - Two parties - 6 world states, 5 steps - ◆ On chain 链上 - > 1M user (data copies) - ~ 30,000 similar smart contracts per day Xue, F. (2020). Blockchain for Construction in the Post-COVI. #### 3.1 ETH transactions 以太坊的交易建模 team rocurement iLab ◆ Each step is transformed ■ To a ETH transactions **ETH's Transaction fee** ■ ~HK\$0.1 / step ■ ~HK\$0.5 for each procurement ♦ Note: Payment was offline Procurement (Steps 4, 5) was transformed into Ethereum transactions +0.000052 F-5 #### 3.2 Case 2 案例2: Supply Chain 供应链 (Lu et al. 2020) iLab - ♦ Cross-border construction supply chain 大湾区建筑业供应链 - ♦ Trackability and traceability 可追踪性、可追查性 - IoT 物联网 - GPS/北斗等定位信号 - ◆ Problems 问题 - Unstable communication - Possible false signals - ♦ Lu et al.'s (2020) blockchain solution - smart construction objects (SCOs) enabled blockchain oracles (SCOs-BOs) (物联网驱动的全自动区块链) - ■Smart contracts 四类智能合约 Source: (Lu et al. 2020) #### 3.2 Smart contracts 智能合约组合(主链+分链) iLab - ♦ Two on main chain 主链有2个智能合约 - Service 服务 - Data inquiry - Aggregator 共识整合 - >51% SCOs for consensus - ◆ Two on side chains 分链有2个智能合约 - Oracle 沟通者 - 。 Unbiased randomization 无偏随机化 - Reputation 声望 - o Accumulated reputation over time 时序声望积累 - ♦ Results: Two-chain secure of IoT locations consensus - ♦ Note: (Lu et al. 2020) is under review, citable Source: (Lu et al. 2020) C1024 → C1029 → C1030 ## 3.3 Case 3 案例3: BIM changes BIM变更 (Xue & Lu, 2020) iLab ♦ Rome wasn't built in a day; so wasn't BIM. "BIM不是一天画成的" Xue, F. (2020). Blockchain for Construction in the Post Geometry. (h) in geometric + non-geometric semantics (Ellis 2019), Talyuan, China #### 3.3 Semantic differential transaction 语义差分记录 il ab ♦ IFC (Industry Foundation Classes) - The best open BIM standard - STEP (Standard for the Exchange of Product Data) format - Clear, [hardly] readable - But massive, involving many random global IDs - ♦ Our in-house program for the SDTs. 语义差分记录 主要任务1: 清除随机ID 干扰 主要任务2: 计算最小变化量 ``` procedure compute_SDT input: ifc_0, ifc_1 \sigma_0 \leftarrow \text{semantic} interoperability (ifc_0); \sigma_1 \leftarrow \text{semantic} interoperability (ifc_1); \sigma_0 \leftarrow \text{semantic} interoperability (ifc_1); \sigma_0 \leftarrow \sigma_0 \cap \sigma_1; \sigma_ ``` #### **Example IFC** ``` ISO-10303-21: HEADER: FILE_DESCRIPTION(('ViewDefinition [CoordinationView, ...); FILE NAME('example.ifc', '2008-08-01T21:53:56', ('Architect...); FILE SCHEMA(('IFC2X3')); ENDSEC: #1=IFCOWNERHISTORY(#84,#71,$..ADDED..$,$,$,$.1217620436); #2=IFCAXIS2PLACEMENT3D(#11,#4,#8); #5=IFCCARTESIANPOINT((0,0,0.0)); #4=IFCDIRECTION((0.0,0,0,1.0)); #5=IFCGEOMETRICREP RESENTATIONCONTEXT($,'Model',3,1.0E-5,#75,$); #6=IFCWALLSTANDARDCASE('3vB2YO$MX4xv5uCqZZG05x',#1,'Wall ...); #7=IFCWINDOW(OLV8PidOX3IA3jULVDPidY',#1,'Window xyz','...); #8=IFCDIRECTION((1.0,0.0,0.0)); #9=IFCOPENINGELEMENT('2LcE70iQb51PEZynawyvuT',#1,'Opening ...); #10=IECCARTESIANPOINT((0.75,0.0)); #11=IFCCARTESIANPOINT((0.0,0.0,0.0)); #12=IFCCARTESIANPOINT((0.0,0.3)); #13=IFCORGANIZATION($, TNO', TNO Building Innovation', $, $); #14=IFCPROPERTYSINGLEVALUE('AcousticRating', 'AcousticRating',...); #15=IFCPROPERTYSINGLEVALUE('Reference', 'Reference', 'IFCTEXT("),$); #16=IFCPROPERTYSINGLEVALUE('FireRating', 'FireRating', IFCTEXT("),$); #17=IFCPROPERTYSINGLEVALUE('IsExternal', 'IsExternal', 'IFCBOOLEAN(.T.), $): #18=IFCPROPERTYSINGLEVALUE('ThermalTransmittance',...); #19=IFCQUANTITYLENGTH(Height', 'Height', $,1.4); #20=IFCQUANTITYLENGTH('Width', 'Width', $,0.75); #21=IFCLOCALPLACEMENT($.#2): #22=IFCBUILDING('0yf_M5JZv9QQXly4dq_zvI',#1,'Sample Building',...); #23=IFCBUILDINGSTOREY('0C87kaqBXF$xpGmTZ7zxN$',#1,...); #24=IFCLOCALPLACEMENT(#21.#2): ``` Xue, F. (2020). Blockchain for Construction in the Post-COVID-19 Era. The 6th China BIM Conference (Street & 19020) END-ISO-10303-21; #### 3.3 SDT tests 举例 iLab ♦ Changing a window's size 操作: 窗口变宽一点 | Input | Item | Line-by-line file comparison | The proposed SDT | |---------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | IFC | Size (KB) | 1.00 | 0.36 | | (7.4KB | Time (s) | 0.041 | 0.003 | | each) | SH?* | × | ✓ | | | Output | 6 changed lines: | 4 charged properties: | | | | | | | IFCXML | Size (KB) | 0.56 | 0.89 | | (32.9KB | Time (s) | 0.042 | 0.012 1. 墙面改变 | | each) | SH?* | × | ✓ <u>2.</u> 空缺改变 | | | Output | 6 changed lines: | 6 changed properties: 3. 窗斜件改多 | | | | 5c5 2019-11-01T11:53:56 <td>tar 'xiso_10303_28_header';{ 'ex:time_stamp':[2019-11-01T11:53:56','2019-1'-0 'tar 'uo's'[!fcWindow':[Representation':[!fcProductDefinite 'Items':['lfcExtrudedAreaSolid':[SweptArea':['lfcArbitn'] 'e' 2:['Coordinates':['lfcLengthMeasure':[0:['theusthMeasure':[0:1]]</td> | tar 'xiso_10303_28_header';{ 'ex:time_stamp':[2019-11-01T11:53:56','2019-1'-0 'tar 'uo's'[!fcWindow':[Representation':[!fcProductDefinite 'Items':['lfcExtrudedAreaSolid':[SweptArea':['lfcArbitn'] 'e' 2:['Coordinates':['lfcLengthMeasure':[0:['theusthMeasure':[0:1]] | ## 3.2 BIM change contract 变更合约 iLab ♦ BIM change contract (BCC)变更合约 - \blacksquare *BCC*_t: All BIM changes at time t - \circ BCC_i = $\bigoplus_n \sigma_i$ - Note: ⊕ is the simplest operation for proof-ofconcept - A BIM can be created from the model at *t* 1 and changes at *t* o $$ifc_t = ifc_{t-1} + BCC_t$$. ■ BIM at any time can be recovered from base BIM and the chained BCCs o $$ifc_t = ifc_0 + \Sigma_t BCC_i$$. - ♦ Data storage 数据存储 - Permissioned nodes (stakeholders), not public Permissioned blockchain architecture (Reprinted with permission) #### 3.3 Another test case 大一点的例子 (Xue & Lu, 2020) iLab - ♦ Autodesk Revit 2018's sample BIM (a modern villa, 27.4 MB in IFC) - ♦ Sequential / simultaneous roof window changes - By two BIM users, from t = 0 to 4 - \blacksquare t₂ \rightarrow t₃: Simultaneous changes by two users #### 3.3 SDT/BCC results 测试结果 iLab - User A: Added a roof window - $\sigma_A = \text{top left block}$ - User B: Added text comments to another window - o σ_R = bottom left block - ♦ BCC as the conflict-free merge - BCC = right block - ♦ BCC is efficient (<0.02%) - 3.37KB out of 27.4MB IFC - $\blacksquare 0.79s$ - Good for blockchaining (KB) 3.45 time (s)* 6.681 time (s)* 0.463 (s)* 0.789 0.756 (lines) 54,700 53,900 (533.923) $t_2 \rightarrow t_3$ (Arch.) $t_2 \rightarrow t_3$ Xue, F. (2020). Blockchain for Construction in the Post-COVID-19 Era. The 6th China BIM Conference - Youth Forum, 11 November 2020, Taiyuan, China **IFC** each) (27.4MB ## 3.3 SDT/BCC application 1 应用场景1 iLab - ◆ Fraud detection 欺诈检测 - ♦ On a simplest blockchain - Web-based - Easy nonce - Visualized blocks - Green = verified; red = wrong / hacked - ♦ BIM was immutable from - claiming false authorships, - destroying evidence, or - being hacked, etc. #### 3.1 Smart construction 智慧建造 - iLab - **Onstruction** is known as a "backward industry" - Low productivity, labor-intensive (v.s. aging workers) - Fatality, occupational hazards, management (e.g., cost overrun) - ♦ A consensus of global research institutes (e.g., Harty et al., 2007) - Effective (productive, automatic, age friendly) and efficient (safer, profitable, on-time, sustainable) industry - **Solution Construction Smartization with new Information Tech.** - Computing power - New data, e.g., RFID, LiDAR, GPS, UAV, smart phones, ... - New technologies, e.g., BIM, GIS, CV, VR/AR, blockchain, ... - 13部委:《关于推动智能建造与建筑工业化协同发展的指导意见》(建市〔2020〕60号) - ■9部委:《关于加快新型建筑工业化发展的若干意见》(建标规〔2020〕8号) USA's gross value-added by sectors #### 3.1 The COVID-19 outbreak 新冠冲击 iLab ◆ COVID-19 impacted and perhaps will change for ever 新冠影响了,并可能永久改变 - **■** Construction collaboration - Construction procurement - Construction supply chain - BIM-based project collaboration - Etc. - ♦ The silver lining 乐观方面 - Promoting new technologies (Agarwal et al. 2020) - Cloud meeting (face-to-face) - Remote working (office teamwork) - Distributed collaboration (traditional) Rogers's (1962) diffusion of innovations model #### 3.2 A new distributed norm? BC=分布式新范式? iLab ♦ Multi-stage construction life cycle - Architectural design - Engineering design - Construction - Operation & maintenance - Demolition - ♦ Many stakeholders - Even more decision makers, professionals - 挑战 ■ Teaming → Coordination → Collaboration - Challenges ahead of blockchain collaboration? - Spatially and Temporally #### 3.3 Discussion - ♦ Existing blockchain applications for smart construction - Works, e.g., blockchaining SCM and BIM changes - but preliminary and infantile - ♦ The characteristics of blockchain are appropriate for construction - Immutability, transparency, security (e.g., no data loss) - ♦ Challenges ahead - Culture, regulation, governance - Cost and efficiency (e.g., not widely used to fight spams) - Security (e.g., business secrets, privacy) 透明度问题 - o Channel 加密数据频道 - Understanding and acceptance #### 3.4 Recruitment for a new project - ♦ [World first] "BIM Square": Blockchain and i-Core-enabled Multi-stakeholder Building Information Modelling Platform for Construction Logistics and Supply Chain Management in Hong Kong. HKITC ITF (\$10.36 million) - ◆ 基于区块链、建筑信息模型及物联网的面向香港建造业多持份者的物流及供应链管理平台研发(暂译)【1036万港币,全球第一个同类科研】 - ■1 RA/PhD: LoRaWAN / Nb-IoT 硬件、通讯、Oracle分链共识和协议 - ■3 RA/PhD: 3D模块装配式建筑: 1物流、2品控、3工地DT调度 - ■1 RA/PhD: 面向建筑行业的区块链(3.0, 4.0)理论、架构、实现 - ■1 RA/PhD: 联邦主链云服务、Web BIM、手机App、插件等 - ■1 RA/PhD: IFC语义研究、Open BIM理论和算法 - 欢迎传播, 意向请联系: 李骁博士 < 电邮 <u>xli1991@hku.hk</u> > 合饭时间 #### References iLab - [1] Agarwal, S., Punn, N. S., Sonbhadra, S. K., Nagabhushan, P., Pandian, K. K. & Saxena, P. (2020). Unleashing the power of disruptive and emerging technologies amid COVID 2019: A detailed review. arXiv Preprint, 2005.11507. - ♦ [2] Back A. (1997). Hashcash. http://www.cypherspace.org/hashcash/ - [3] Back A. (2002). Hashcash—A Denial of Service Counter-Measure. http://www.hashcash.org/hashcash.pdf - (2016). Using blockchain for peer-to-peer proof-of-location. arXiv preprint arXiv:1607.00174. - (pp. 139-147). Springer, Berlin, Heidelberg. - (2003). On memory-bound functions for fighting spam. In *Annual International Cryptology Conference* (pp. 426-444). Springer, Berlin, Heidelberg. - \$\rightarrow\$ [7] Ellis, M. (2019, July 12). Level of Detail or Development: LOD in BIM. Retrieved November 6, 2019, from REBIM: https://rebim.io/level-of-detail-or-development-lod-in-bim/ - * [8] Harty, C., Goodier, C. I., Soetanto, R., Austin, S., Dainty, A. R., & Price, A. D. (2007). The futures of construction: a critical review of construction future studies. Construction Management and Economics, 25(5), 477-493 - \$ [9] Hevner, A. R., & Yao, S. B. (1979). Query processing in distributed database system. IEEE Transactions on Software Engineering, (3), 177-187. - [10] Gogo, J. (2020). 65% of Global Bitcoin Hashrate Concentrated in China, Blockchain News, https://news.bitcoin.com/65-of-global-bitcoin-hashrate-concentrated-in-china/ - \$ [11] Jakobsson, M., & Juels, A. (1999). Proofs of work and bread pudding protocols. In Secure information networks (pp. 258-272). Springer, Boston, MA. - \$ [12] Lu, W., Li, X., Xue, F., Zhao, R., & Wu, L. (2020). Smart construction objects empowered blockchain oracles. Automation in Construction, under review. - ♦ [13] Rogers, E. M. (1962). Diffusion of Innovations. The Free Press. - ♦ [14] Rosenkrantz, D. J., Stearns, R. E., & Lewis, P. M. (1978). System level concurrency control for distributed database systems. *ACM Transactions on Database Systems* (TODS), 3(2), 178-198. - 💠 [15] Xu, J., Chen, K., Zetkulic, A. E., Xue, F., Lu, W., & Niu, Y. (2019). Pervasive sensing technologies for facility management: A critical review. Facilities. - \$ [16] Xue, F., & Lu, W. (2020). A semantic differential transaction approach to minimizing information redundancy for BIM and blockchain integration. Automation in Construction, 118, 103270. - \$ [17] Xue, F., Guo, H., & Lu, W. (2020). Digital twinning construction objects: Lessons learned from pose estimation methods. In *The Joint Conference ICCCBE and CIB W78* 2020. - \$ [18] Xue, J., Shen, G.Q., Yang, R.J., Wu, H., Li, X., Lin, X., & Xue, F. (2020). Mapping the knowledge domain of stakeholder perspective studies in construction projects: A bibliometric approach. *International Journal of Project Management* 38 (6), 313-326. - [19] Yang, R., Wakefield, R., Lyu, S., Jayasuriya, S., Han, F., Yi, X., ... & Chen, S. (2020). Public and private blockchain in construction business process and information integration. Automation in Construction, 118, 103276. If you want to go fast, go alone. If you want to go far, go together. — African proverb非洲谚语 # 感谢! 欢迎提问