

第六届工程管理前沿暑期学校 暨 土木工程全国优秀大学生云端夏令营 华中科技大学 土木工程与力学学院

Blockchain for Smart Construction

23 July 2020 Wuhan, China

Frank Xue Assistant Professor iLab, REC, HKU, HK SAR

Construction: Distributed collaboration

Blockchain: Distributed trustworthy database

0.1 HKU iLab: The urban big data hub

� iLab **实验**室

iLab

- Director: Prof. Wilson Lu
- Urban big data hub at Faculty of Architecture, HKU
- multi-dimensional and multi-disciplinary *urban big data* collection, storage, analysis, and presentation to inform decisionmaking in urban development
- Focusing on information technology (IT)
 - Building Information Modeling (BIM)
 - Geographical Information System (GIS)
 - Global Navigation Satellite System (GNSS)
 - Urban Remote Sensing (URS)
 - Internet of Things (IoT)
 - Blockchain (BC/DLT)

3

il a

2020 New Year dinner

iLabHKU

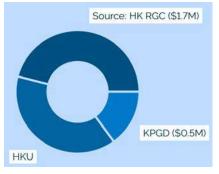
fac.arch.hku.hk/iLab

đЗ

0.2 About myself

♦ A mixed background 背景 iLab BEng in Automation, CAUC MSc in Computer Science, CAUC Advisor: Prof. W Fan PhD in System Engineering, HKPU PDF/RAP/AP in Construction IT ♦ Research interests 方向 Urban sensing and computing Automation/IT in construction • Applied operations research, ML, etc. Homepage: QR code for new updates

0.2 My research projects


- ◆ On-going 在研
 - PI: HK RGC GRF/ECS (17201717, 17200218, 27200520), HKU-Tsinghua SPF (20300083), HKU (102009917, 201811159177, 201910159238)
 - Co-PI: Key R&D Guangdong (2019B010151001), HKU PTF (102009741)
 - Co-I: NSFC (71671156), NSSFC (17ZDA062), HK SPPR (S2018.A8.010.18S), HK ECF (111/2019)

♦ Completed 完成

- PI: HKU (201702159013, 201711159016)
- Co-I: NSFC (60472123), HK PPR (2018.A8.078.18D)
- ♦ Job vacancy (2 openings)
 - PhD, HK\$200,000~350,000/year
 - RA, transferable to PhD (vision, rigor, & performance)

♦ Keywords

- BIM/CIM
- 3D point cloud
- Derivative-free optimization
- Urban semantics

Sponsors of projects as PI/Co-PI 5

Section 1 CONSTRUCTION: DISTRIBUTED COLLABORATION

1.1 Smart construction

Construction is known as a "backward industry"
Low productivity, labor-intensive (*v.s.* aging workers)

Fatality, occupational hazards, management (*e.g.*, cost overrun)

A consensus of global research institutes (e.g., Harty et al., 2007)

 Effective (productive, automatic, age friendly) and efficient (safer, profitable, on-time, sustainable) industry

Construction smartization with new Information Tech.

Computing power

New devices

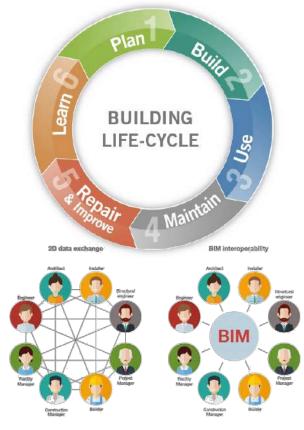
。 RFID, LiDAR, GPS, UAV, smart phones...

New technologies

。 BIM, GIS, CV, VR/AR, blockchain, ...

Xue: BC for construction, HUST 2020 Summer Camp CM

USA's gross value-added by sectors *source: economist.com*


Recent advances in IT

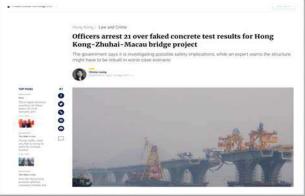
1.1 The distributed collaboration to smartize

- Multi-stage construction life cycle
 - Architectural design
 - Engineering design
 - Construction

iLab

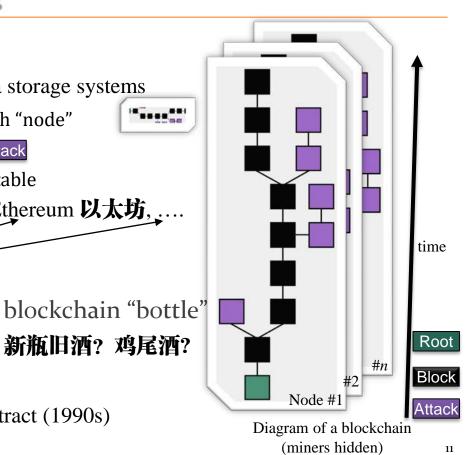
- Operation & maintenance
- Demolition
- Many stakeholders
 - Even more decision makers, professionals
 - $\blacksquare Teaming \rightarrow Coordination \rightarrow Collaboration$
- Distributed collaboration
 - Spatially and Temporally
- Xue: BC for construction, HUST 2020 Summer Camp CM

1.2 What if collaboration fails?


- Undermined project quality
- Overrun project period
- Harmed peers' benefits
- Even scandals
 - 2018: Faked screwing of steel bars into couplers, by cutting them shorter for an illusion
 - 2017: Faked concrete test results for Hong Kong-Zhuhai-Macau bridge project
- $\boldsymbol{\diamondsuit}$ Because, in the project organization
 - Conflicts of interest exist as always
 - Physically distributed, hard to manage
- The culture encourages covering small problems up Xue: BC for construction, HUST 2020 Summer Camp CM

еакеа pnotos snow workers cutting steel bars at scandal-nit IK\$97.1 billion Sha Tin-Central rail link in Hong Kong

ail giant MTR Corp had singled out subcontractor as being behind shoddy work on Hung Hom station latforms – but pictures suggest otherwise


Two recent scandals in Hong Kong (Source: SCMP) 9

Section 2 BLOCKCHAIN: DISTRIBUTED TRUSTWORTHY DATABASE

2.1 What is a blockchain?

- I Blockchain 区块链
 - Linked-list-like incremental Block data storage systems
 - Saved distributed, identically on each "node"
 - Verified by "miners" for rejecting Attack
 - Each "solved" Block becomes immutable
 - Less related to (多) Bitcoin 比特币, ◆Ethereum 以太坊,
 - By generation
 - Blockchain 1.0; 2.0; 3.0; 4.0 (?) ...
 - Three old components "wine" in any blockchain "bottle"
 - Sect. 2.2 Consensus mechanisms (1990s)
 - Sect. 3.1 Distributed storage (1970s)
 - Sect. 3.2 Cryptographic tools (1990s) / smart contract (1990s)

- Email spam, junk email
 - Appeared in early 1990s
 - 90+% world emails were spam by 2014
 - Reason 1: Spamming cost ~ 0;
 - Reason 2: Assuming-people-are-good Email protocols
- Dwork & Naor (1992): 'Proof of computational efforts'
- 计算量证明

- "If I don't know you and you want to send me a message, then you must prove that you spent, say, ten seconds of CPU time, just for me and just for this message." (Dwork et al. 2003)
- Sakobsson & Juels (1999): 'Proof of work'
- 工作量证明
- Where a prover demonstrates to a verifier that he has expended a certain level of computational effort in a specific time interval

2.2 PoW consensus: On hard-to-solve, easy-tocheck math problems

iLab

Sudoku puzzle

Each column, each row, and each of the nine 3×3 grids

- All nine digits (1-9)
- Hard to solve, easy to check

■ Nondeterministic Polynomial time-Complete (NPC) when n > 3

And Max clique, Boolean satisfiability, Subset sum, ...

NPC

And, e.g., hashcash PoW (Back 1997; 2002)
 PUBLIC: H(), k

k: difficulty
 MINT: solving = O(2^k) complexity
 VALUE: checking = O(k) complexity
 Xue: BC for construction, HUST 2020 Summer Camp CM

```
PUBLIC:hash function \mathcal{H}(\cdot) with output size k bits\mathcal{T} \leftarrow \mathsf{MINT}(s, w)find x \in_R \{0, 1\}^* st \mathcal{H}(s || x) \stackrel{\text{left}}{=}_w 0^k<br/>return (s, x)\mathcal{V} \leftarrow \mathsf{VALUE}(\mathcal{T})\mathcal{H}(s || x) \stackrel{\text{left}}{=}_v 0^k<br/>return v
```

2 8

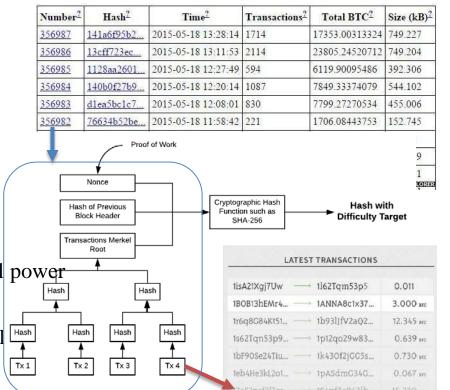
2.2 PoW consensus: How it works

- iLab
 - ♦ Proof of work (PoW) 工作量证明
 - A class of consensus
 - Sender / prover / miner side
 - Hard to solve (e.g., Soduko, hashing, ...)
 - Server / verifier / node side
 - Easy to check
 - **Examples**

2.

- Hashcash PoW (Back 1997; 2002)
 - X-Hashcash: 1:52:380119:calvin@comics.net:::9B760005E92F0DAE
 - \$ echo -n 1:52:380119:calvin@comics.net:::9B760005E92F0DAE | openssl sha1 0 \$ 000000000000756af69e2ffbdb930261873cd71 (\checkmark correct; 13 hex (52 binary) 0s in <1us)
 - Email attaches a key to the Sudoku's initialized by sender + content + Email time

PROOF OF WORK

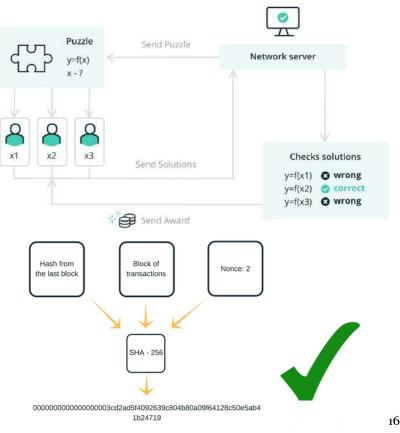


2.3 Nakamoto (2008)'s Bitcoin (Blockchain 1.0)

2	E			
£	١.	ć	4	

åЗ

- Bitcoin is a typical application of BC
 Immutable
 - 1 block = many transactions
 - $\blacksquare 1$ trans = 1 sender + 1 receiver + amount
- ♦ Anonymous
 - Hash "wallets"
- Secure (and expensive)
 - $\blacksquare \sim 125$ EH/s (1.2 ×10²⁰ H/s) computational power
 - ~100TWh/year
 - $\circ 2 \times \text{Google}, 4 \times \text{Ireland}, \text{ or US}10B \text{ bill}$
- Decentralized (pseudo?)
- Xue: BC for construction, HUST 2020 Summer Camp CM > 35% in Xinjiang (Gogo 2020)

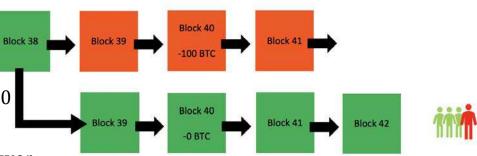


2.3 Bitcoin's consensus: Hashcoin PoW

♦ A "miner" is a prover

iLab

- Solves the hashcash PoW
 - Data content = trans + hash pointer
 - Return 'nonce' to server
- Receives reward as BTC
- Server / validator
 - Collects and packs transactions
 - Opens a puzzle for millions of machines
 - Flexible difficulty: every 10 mins per block
 - Awards the winner with 6.25 BTC (now)
- The ledger (> 200 GB now)
 - Live on millions of devices (Space redundant)

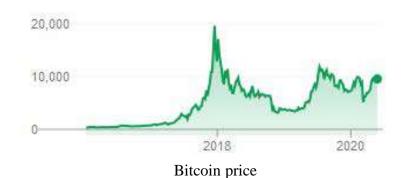


2.3 PoW's cons: 51% attack and more

- ♦ A malicious miner
 - Tries to modify transactions
 - $_{\odot}~$ E.g., change his/her -100 BTC to 0
 - $\circ~$ (by US\$1M goods for free)
 - Can succeed if > 50% computing power
- ♦ Other cons
 - Competitiveness between miners
 - Root cause of 51% attack
 - Too much energy cost
 - 21 million hard cap BTC
 - Easy coins before 2010
 - 97% bitcoins were held by 4% of addresses

Xue: BC for construction, BUSRegardless Coff those unregistered

PoW 51% Attack Cost

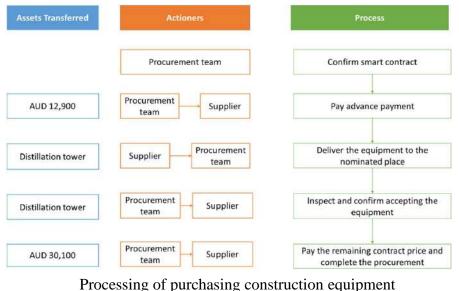

Name	Symbol	Market Cap	Algorithm	Hash Rate	1h Attack Cost	NiceHas
Bitcoin	BTC	\$123.38 B	SHA-256	33,511 PH/s	\$582,622	296
Ethereum	ETH	\$52.58 B	Ethash	216 TH/s	\$364,099	396
Bitcoin Cash	всн	\$15.79 B	SHA-256	4,013 PH/s	\$69,773	13%
Litecoin	LTC	\$6.47 B	Scrypt	309 TH/s	\$65,298	7%
Monero	XMR	\$2.51 B	CryptoNightV7	370 MH/s	\$20,048	1496
Dash	DASH	\$2.39 B	X11	2 PH/s	\$17,106	27%
Ethereum Classic	ETC	\$1.50 B	Ethash	6 TH/s	\$10,344	89%
Bytecoin	BCN	\$986.84 M	CryptoNight	164 MH/s	\$637	219%
Zcash	ZEC	\$933.60 M	Equihash	458 MH/s	\$50,028	24%

2.4 Blockchain as a distributed trustworthy technology

₿

iLab

- Some characteristics meet smart construction requirements
 - Immutability
 - Distributedness
 - Transparency
 - Security
- Solution Blockchain is not equal to "crypto-currency" (not currency)
 - **•** Good medium of exchange \checkmark
 - Poor store of value ×
 - $\,\circ\,$ See the right picture
 - Inappropriate unit of account ×
 - Countless new 'coins' (> 5,000 now)

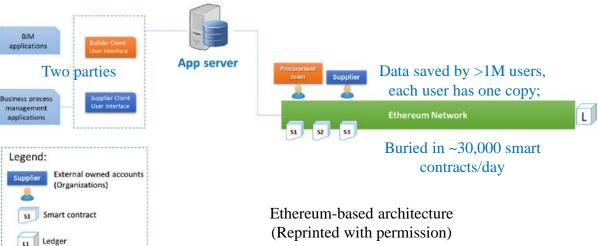


Section 3 TWO CASES

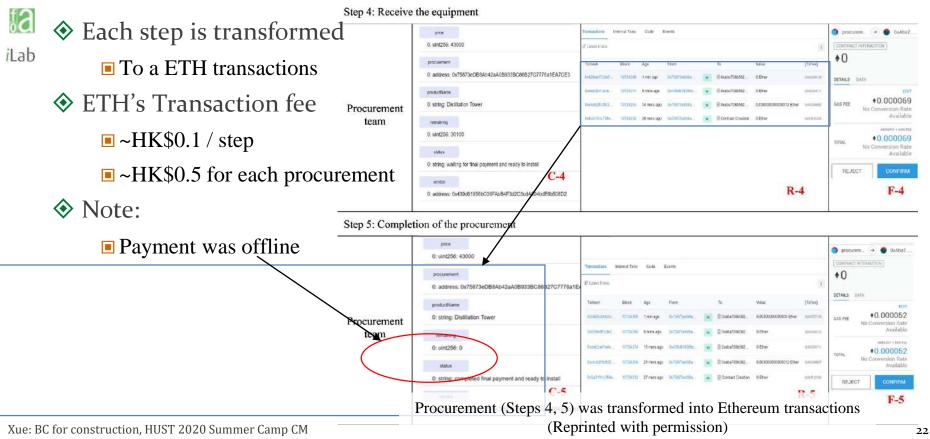
3.1 Case 1: Blockchaining supply chain (Yang et al. 2020)

- Construction supply chain
 - Multi-stakeholder, distributed
 - Having possible trust/compliance problems
 - Involving payment, quality assurance
- ♦ Yang et al.'s (2020) example
 - Purchasing a distillation tower
 - In five steps
- Objective
 - Blockchaining the procurement
 E.g., "pay AU\$ 30,100"
 - On Ethereum (Blockchain 2.0)

(Reprinted with permission)

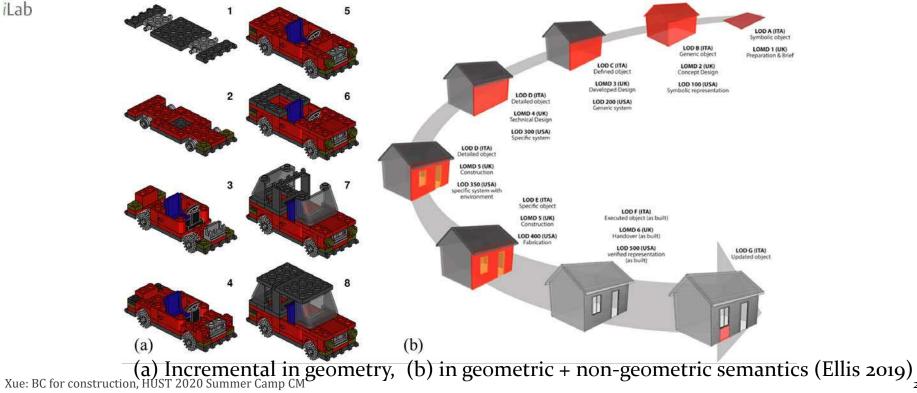

3.1 Data storage: From two parties to >1 million

Smart contact


iLab

- Modeled in "App server"
- A "World state" computer in a Ethereum "virtual machine"
- \diamond Data in the application layer (top left)
 - Two parties
 - 6 world states, 5 steps
- ♦ In Ethereum layer
 - > 1M user (data copies)
 ~ 30,000 similar smart contracts per day

3.1 ETH transactions under the hood



3.2 Case 2: Blockchaining BIM changes (Xue & Lu, 2020)

Rome wasn't built in a day; so wasn't BIM.

₫a

iLab

il ab

3.2 Semantic differential transaction of local BIM

- ♦ IFC (Industry Foundation Classes)
 - The best open BIM standard
 - **STEP** (Standard for the Exchange of Product Data) format
 - Clear, [hardly] readable
 - But massive, involving many random global IDs
- Our in-house program for the semantic difference trai

procedure compute_SDT **input**: ifc_0 , ifc_1 1 $\sigma_0 \leftarrow$ semantic_interoperability (ifc_0); 2 $\sigma_1 \leftarrow$ semantic_interoperability (ifc_1);

3 $\sigma^* \leftarrow \sigma_0 \cap \sigma_1;$

4
$$\sigma_{0c} \leftarrow \sigma_0 - \sigma^*;$$

return Δ_{σ}

5
$$\sigma_{1c} \leftarrow \sigma_1 - \sigma^*;$$

$$6 \qquad \Delta_{\sigma} \leftarrow \text{tree_diff} (\sigma_{0c}, \sigma_{1c});$$

// IFC changed between t₀ and t₁
// To call "semantic interoperability"

// The intersection (unchanged) tree
// To purge the unchanged instances

// Difference between changed objects

Example IFC

```
ISO-10303-21:
HEADER:
FILE_DESCRIPTION(('ViewDefinition [CoordinationView, ...);
FILE NAME('example.ifc','2008-08-01T21:53:56',('Architect...);
FILE SCHEMA(('IFC2X3'));
ENDSEC:
DATA;
#1=IFCOWNERHISTORY(#84,#71,$,.ADDED,.$,$,$,1217620436);
#2=IFCAXIS2PLACEMENT3D(#11,#4,#8);
#5-IFCCARTESIANPOINT((0,0,0,0));
#4=#FCDIRECTION((0.0,0,0,1.0))
#5=IFCGEOMETRICREPRESENTATIONCONTEXT($,'Model',3,1.0E-5,#75,$);
#6=IFCWALLSTANDARDCASE('3yB2YO$MX4xy5uCqZZG05x',#1,'Wall ...);
#7=IFCWINDOW(0LV8Pid0X3IA3jJLVDPidY',#1,'Window xyz','...);
#8=IFCDIRECTION((1.0,0.0,0.0));
#9=IFCOPENINGELEMENT('2LcE70iQb51PEZynawyvuT',#1,'Opening ...);
#10=IECCARTESIANPOINT((0.75,0.0));
# 11 = IFCCARTESIANPOINT((0.0,0.0,0.0));
#12=IFCCARTESIANPOINT((0.0,0.3));
#13=IFCORGANIZATION($, TNO', TNO Building Innovation', $, $);
#14=IFCPROPERTYSINGLEVALUE('AcousticRating','AcousticRating',...);
#15=IFCPROPERTYSINGLEVALUE('Reference', 'Reference', IFCTEXT("),$);
#16=IFCPROPERTYSINOLEVALUE('FireRating', 'FireRating', IFCTEXT("),$);
#17=IFCPROPERTYSINGLEVALUE('IsExternal', 'IsExternal', IFCBOOLEAN(.T.),$);
#18=IFCPROPERTYSINGLEVALUE('ThermalTransmittance',...);
#19=IFCQUANTITYLENGTH('Height','Height',$,1.4);
#20=IFCQUANTITYLENGTH('Width', 'Width', $,0.75);
#21=IFCLOCALPLACEMENT($.#2):
#22=IFCBUILDING('0yf_M5JZv9QQXly4dq_zvI',#1,'Sample Building',...);
#23=IFCBUILDINGSTOREY('0C87kaqBXF$xpGmTZ7zxN$',#1,...);
#24=IFCLOCALPLACEMENT(#21.#2);
```

Xue: BC for construction, HUST 2020 Summer Camp CM

(Xue & Lu 2020) END-ISO-10303-21;

3.2 SDT tests

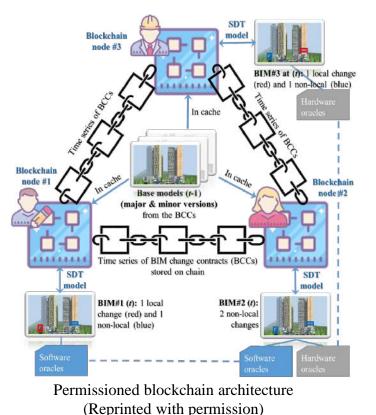
₫a iLab

Changing a window's size

Input	Item	Line-by-line file comparison	The proposed SDT
IFC	Size (KB)	1.00	0.36
(7.4KB	Time (s)	0.041	0.003
each)	SH?*	×	\checkmark
	Output	6 changed lines:	4 changed properties:
			{ header': {file_name': { 'time_stamp': ['2019-11-01T11:53:56', → '2019-11-0 'quantities': {lftEElementQuantity: { 0: {lftEQuantityLength': { 1: {@LengthValue': [0.75', → '1.4']}}, 1: {lftEQuantityLength': { 2: {@LengthValue': [0.75', → '1.4']}}, 'decomposition': {lftEPoilet': {lftESite': { 'lftEBuilding': {lftEBuildingStorey': { 'lftEBuilding': {lftEBuildingStorey': { 'lftEWindow': { '@OverallWidth': ['0.75', → '1.4']}}}}
IFCXML	Size (KB)	0.56	0.89
(32.9KB	Time (s)	0.042	0.012
each)	SH?*	×	\checkmark
	Output	6 changed lines:	6 changed properties:
		5c5 < <ex:time_stamp>2019-11-01T11:53:56</ex:time_stamp>	'ex:time_stamp';[2019-11-01T11:53:56',/2019-11-0 'uos';('ItcWindow';{Representation';('ItcProductDefinitic 'Items';[ItExtrudedAreaSolid';'WeyptArea';('ItcArbitr 2:(Coordinates';[ItcLengthMeasure';{0:{ 'Iters';'I0:75',/1:4300}

3.2 BIM change contract as a smart contract

- BIM change contract (BCC)
 BCC,: All BIM changes at time t
 - $BCC_i = \bigoplus_n \sigma_i$
 - $\circ~$ Note: \oplus is the simplest operation for proof-of-concept
 - A BIM can be created from the model at t 1 and changes at t

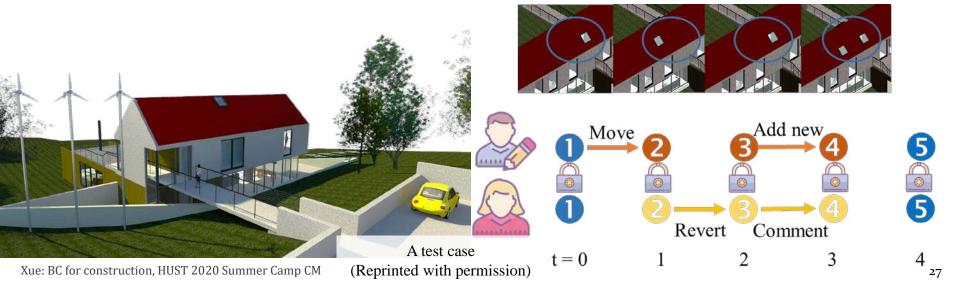

• $ifc_t = ifc_{t-1} + BCC_t$.

- BIM at any time can be recovered from base BIM and the chained BCCs
 - $\circ ifc_t = ifc_0 + \Sigma_t BCC_i$
- ♦ Data storage

1a

iLab

Permissioned nodes, not public

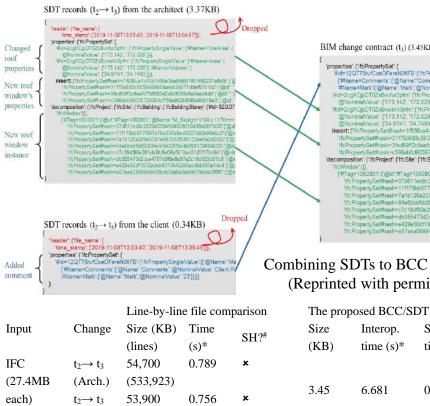

₫a

iLab

3.2 Another test case

Autodesk Revit 2018's sample BIM (a modern villa, 27.4 MB in IFC)

- Sequential / simultaneous roof window changes
 - **•** By two BIM users, from t = 0 to 4
 - \blacksquare t₂ \rightarrow t₃: Simultaneous changes by two users



il ab

3.2 SDT/BCC tests

 $\langle t_2 \rightarrow t_2 \rangle$ User A: Added a roof window • σ_A = top left block • User B: Added text comments to another window $\circ \sigma_{R}$ = bottom left block ♦ BCC as the conflict-free merge \blacksquare BCC = right block \otimes BCC is efficient (<0.02%) **3.37KB** out of 27.4MB IFC Good for blockchaining

(Client)

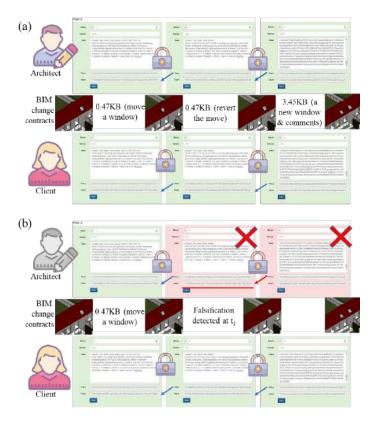
(514.192)

BIM change contract (t3) (3.45KB)

- #d=12QTT5rufCoeOFereN06FB'{/fcPropertySingleValue'{{@Name''M (#Name=Comments:)(@Name':'Comments', @NominalValue': Client Pl #Name=Mark':['@Name':'Mark'.'@NominalValue':'23'])]})
- #id=2coXCipDT0ZxBvvfur3pfm' ('IfcPropertySingleValue' (#Name=Tota @NominalValue': [173.142, '172.029]}))
- #id=2cgXCjpDT0ZxBvwsKr3ptm: ("IfcPropertySingleValue" (#Name=Are @NominalValue': ['173.142'. '172.029']). "#Name=Volume': ((@NominalValue): ['34.9741', '34.7493'])))
- Insert: {//cPropertySet#hash=1/636ca4c40b1c66e3ba9/d667/61480231 IfcPropertySet#hash=31/75b683c59394856d8aa4d34577cbfe/97c1b2 IfcPropertySetthash=3fed69ff2c6eafc79896342cb3f038b5e0aeb8dd IfcPropertySet#hash=c386ab0d6035728055cf759a952b8f90e92b18a 'decomposition': {'IfcProject': ('IfcSite': ('IfcBuilding': ('IfcBuildingStorey': ('#id
- ("#Tag=1092801:(\@id:'#Tag=1092801','@Name':'M_Skylight:1180 x IfcPropertySet#hash=07d611ed8c2533d0394fbf4938019438e08f74
 - 'Ifc Property Set#hash=11f176bb077f951b78e337e8ed3637b8 Ifc PropertySet#hash=7a1b126a209a5391e987b50f586132ae6a2d IfcPropertySet#hash=84e6bbdfdd6580fecb9430f7bc4b0931798948 TfcPropertySet#hash=c7c18df80e291cb3fc5e08af510ue31d0f17b48 IfcPropertySet#hash=db555473d2cce4707c5f6e8a37a2c18d023d9 Ifc Property Set#hash=e429e50df1672adeb9373945268ac8bb590e1-Trc Property Sot#hash=e57aea0b994b6408bcb58a6e9adb679e3dc3f

Combining SDTs to BCC at $t_2 \rightarrow t_3$ (Reprinted with permission)

Interop. time (s)*	SDT time (s)*	SH?#
6.681	0.463	✓
		28



åа

iLab

3.2 Blockchained BIM changes

- On a simplest blockchain
 - Web-based
 - Easy nonce
 - Visualized blocks
 - Green = verified; red = wrong / hacked
- BIM was immutable from
 - claiming false authorships,
 - destroying evidence, or
 - being hacked, etc.

3.3 Discussion

Existing blockchain applications for smart construction

- Works, e.g., blockchaining SCM and BIM changes
- but preliminary and infantile
- The characteristics of blockchain are appropriate for construction

Immutability, transparency, security (e.g., data loss)

- Challenges ahead
 - Culture, regulation, governance
 - Cost and efficiency (e.g., not widely used to fight spams)
 - Security (e.g., business secrets, privacy)
 - Understanding and acceptance

References

- Back A. (1997). Hashcash. <u>http://www.cypherspace.org/hashcash/</u>
- Back A. (2002). Hashcash—A Denial of Service Counter-Measure. http://www.hashcash.org/hashcash.pdf
- Brambilla, G., Amoretti, M., & Zanichelli, F. (2016). Using blockchain for peer-to-peer proof-of-location. *arXiv preprint arXiv:1607.00174*.
- Dwork, C., & Naor, M. (1992). Pricing via processing or combatting junk mail. In Annual International Cryptology Conference (pp. 139-147).
 Springer, Berlin, Heidelberg.
- Dwork, C., Goldberg, A., & Naor, M. (2003). On memory-bound functions for fighting spam. In Annual International Cryptology Conference (pp. 426-444). Springer, Berlin, Heidelberg.
- Ellis, M. (2019, July 12). Level of Detail or Development: LOD in BIM. Retrieved November 6, 2019, from REBIM: <u>https://rebim.io/level-of-detail-or-development-lod-in-bim/</u>
- Harty, C., Goodier, C. I., Soetanto, R., Austin, S., Dainty, A. R., & Price, A. D. (2007). The futures of construction: a critical review of construction future studies. Construction Management and Economics, 25(5), 477-493
- Gogo, J. (2020). 65% of Global Bitcoin Hashrate Concentrated in China, Blockchain News, <u>https://news.bitcoin.com/65-of-global-bitcoin-hashrate-concentrated-in-china/</u>
- Jakobsson, M., & Juels, A. (1999). Proofs of work and bread pudding protocols. In Secure information networks (pp. 258-272). Springer, Boston, MA.
- Xu, J., Chen, K., Zetkulic, A. E., Xue, F., Lu, W., & Niu, Y. (2019). Pervasive sensing technologies for facility management: A critical review. *Facilities*.
- Xue, F., & Lu, W. (2020). A semantic differential transaction approach to minimizing information redundancy for BIM and blockchain integration. *Automation in Construction*, *118*, 103270.
- Xue, F., Guo, H., & Lu, W. (2020). Digital twinning construction objects: Lessons learned from pose estimation methods. In *The Joint Conference ICCCBE and CIB W78* 2020.
- Xue, J., Shen, G.Q., Yang, R.J., Wu, H., Li, X., Lin, X., & Xue, F. (2020). Mapping the knowledge domain of stakeholder perspective studies in construction projects: A bibliometric approach. *International Journal of Project Management* 38 (6), 313-326.
- Yang, R., Wakefield, R., Lyu, S., Jayasuriya, S., Han, F., Yi, X., ... & Chen, S. (2020). Public and private blockchain in construction business process and information integration. *Automation in Construction*, 118, 103276.

Xue: BC for construction, HUST 2020 Summer Camp CM

THE UNIVERSITY OF HONG KONG 香港大學 faculty of architecture 建築學院

If you want to go fast, go alone. If you want to go far, go together. — *African proverb*

Q&A

32