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Abstract  

Recent advancement of remote sensing technologies has brought in accurate, dense, and 
inexpensive city-scale Light Detection And Ranging (LiDAR) point clouds, which can be 
utilized to model city objects (e.g., buildings, roads, and automobiles) for creating Digital 
Twin Cities (DTCs). However, processing such unstructured point clouds is very challenging, 
epitomized by high cost, movable objects, limited object classes, and high information 
inadequacy/redundancy. We noticed that many city objects are not in random shapes; rather, 
they have invariant cross-sections following the Gestalt design principles, including 
proximity, connectivity, symmetry, and similarity. In this paper, we present a novel 
unsupervised method, called Clustering Of Symmetric Cross-sections of Objects (COSCO), 
to process urban LiDAR point clouds to a hierarchy of objects based on their characteristic 
cross-sections. First, city objects are segmented as connected patches of proximate 3D points. 
Then, symmetric cross-sections are detected for symmetric city objects. Finally, the 
taxonomy and groups of city objects are recognized from a hierarchical clustering analysis of 
the dissimilarity matrix. Experimental results showed that COSCO detected the correct 
taxonomy and types of 12 cars from 24,126 LiDAR points in 8.28s. Based on the cross-
sections and taxonomy, a digital twin was created by registering online free 3D car models in 
29.58s. The contribution of this paper is twofold. First, it presents an effective unsupervised 
method for understanding and developing DTC objects in LiDAR point clouds by harnessing 
innate Gestalt design principles. Secondly, COSCO can be an efficient LiDAR pre-
processing tool for recognizing symmetric city objects’ cross-sections, positions, heading 
directions, dimensions, and possible types for smart city applications in GIScience, 
Architecture, Engineering, Construction and Operation (AECO), and autonomous vehicles. 
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1 Introduction 
A digital twin, according to UK National Infrastructure Commission (2017), is a “virtual 
representation of a physical object or system across its lifecycle, using real-time data to 
enable understanding, learning, and reasoning.” Digital twinning, as its name implies, is a 
methodology that is implemented in modeling and monitoring complex systems and objects 
such as aircrafts, factory production lines, and offshore drilling rigs without close adjacency 
to the physical systems and objects. Analytical and simulation results from digital twins can 
reveal emergent behaviors and mitigate unpredictable and undesirable consequences to the 
physical systems and objects (Grieves & Vickers 2017; Du et al. 2020; Fan et al. 2020).  
 
Likewise, a Digital Twin City (DTC) is a virtual representation of physical systems and 
assets across their respective lifecycles in a city. The opportunity window for DTC was 
opened by both demand and data. First, there is an increasing demand for real-time 
semantically rich city models to ensure urban resilience and smart city (Kitchin 2014; Fan et 
al. 2020). Furthermore, recent advancements in the Internet of Things (IoT) and remote 
sensing technologies provide large-scale, accurate, and—most importantly—affordable 
measurement data at a city scale. Creating a DTC involves dynamic objects, real-time 
sensors, multimodal reasoners, and heterogeneous application frameworks (Austin et al. 
2020; Du et al. 2020). Examples are a smart meter data-driven DTC for energy management 
(Francisco et al. 2020), a photogrammetric point cloud-based digital twin of trees for urban 
forestry (Chen et al. 2020), a wearable stress sensor-based digital twin for elderly’s mobility 
(Lee et al. 2020), and  Light Detection And Ranging (LiDAR) based digital twin Zurich for 
urban planning (Schrotter & Hürzeler 2020). In general, 3D point clouds offered high-quality 
geometric measurements and limited non-geometric semantics, such as object type and 
topological relationships, while sensor networks like smart meters mainly targeted non-
geometric semantics such as energy consumption in a DTC. The output DTCs thus connected 
many fields including Building Information Modeling (BIM), Geographic Information 
Systems (GIS), transportation, resources and energy, disaster management, and robotics and 
self-driving cars  (Burrough et al. 2015; Xu et al. 2014; NIBS 2015; Sacks et al. 2018).  
 
This paper focuses on the LiDAR data of 4D dynamic city objects such as construction sites, 
airports, street lights, overhead advertisement boards, and vehicles. From a time-stamped 
LiDAR point cloud, a ‘frame’ of DTC can be created as a set of 3D models. However, 
understanding the relatedness between the objects and tracking them in the time-series 
LiDAR data are thus essential but challenging tasks (Andreopoulos & Tsotsos 2013). 
Because of the complicated shapes and dynamic status changes of city objects, together with 
the data amount and high update frequency, it is too tedious, time-consuming, and costly to 



 3 

create and update digital city objects solely by human hands. Thus, automated DTC creation 
is highly desired. From a technical point of view, such DTC creation is equivalent to devising 
algorithms to parse and regress 3D geometry, rank the probability of being a whole, classify 
the type, and predict future changes of each object in a LiDAR point cloud. By definition, the 
automated DTC creation is a machine learning task (Mohri et al. 2018). 
 
Nevertheless, the complexity of city objects made it challenging for automated or semi-
automated DTC creation. Even the up-to-date deep learning models that were proven 
successful in computer vision competitions were found constrained by expensive training 
examples, limited accuracy, and scalability of trained models (Xue et al. 2018; Tian et al. 
2019). In summary, the state-of-the-art automated and semi-automated methods are still 
limited for (i) processing massive point cloud to complex geometries of city objects (Wang & 
Kim 2019), (ii) understanding sophisticated relationships between unknown objects in city 
scenes (Xue et al. 2019a), or (iii) creating volumetric and semantically rich DTC (Lehner & 
Dorffner 2020; Boje et al. 2020). Exploring the effective automated DTC creation for 
dynamic city objects epitomizes one of the most explored research frontiers.  
 
We noticed that most of the man-made objects in urban habitats, such as architectures, 
vehicles, and street furniture, embrace the same general Gestalt design principles regardless 
of the complexity in geometry (Todorovic 2008). Gestalt principles, such as the laws of 
proximity, connectivity, symmetry, and similarity, were introduced as design principles by 
Arnheim (1965) from Gestalt psychology about visual perceptions, where patterns and 
configurations were emphasized over individual components in perception. The Gestalt 
designs and cross section plans that represent the designs in 2D views can be universally 
found in various city objects, as shown in Figure 1, of which many have unique symmetric 
cross-sections in designs. The individual principles were extensively discussed and applied to 
reconstruct 3D shapes in the literature (Li et al. 2004; Du et al. 2016; Xie et al. 2020). 
However, the relatedness among such characteristic cross-sections were not well discussed as 
a key geometric feature in the existing studies. One explanation was the challenging 
complexity of identifying symmetries in LiDAR data. The symmetric cross-section 
generation is computationally inefficient in processing city-scale data unless novel symmetry 
detection algorithms are developed (Xue et al. 2019b). 
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Figure 1. Example cross-sections of symmetric city objects. (a) Typical city road design 
(Source: City of Seattle Government); (b) A car design (Aston Martin DB2/4 Mk1) in 1951 
 
This study aims to explore a novel unsupervised method, called Clustering Of Symmetric 
Cross-sections of Objects (COSCO), to process LiDAR data for recognizing symmetric city 
objects for DTC. Rather than relying on annotated training data for supervised learning, our 
COSCO method exploits the intrinsic characteristics—including proximity, connectivity, 
symmetry, and similarity—of city objects for automating urban point cloud processing. The 
proposed approach first detects 3D city objects from 3D point clouds, extracts the cross-
sections of the unknown city objects, then understands the hierarchical relationships between 
the unknown objects, and finally organizes unknown city objects in a taxonomy. The 
contribution of this paper is twofold. First, COSCO is an effective unsupervised method to 
understand city objects in LiDAR point clouds by exploiting the free innate urban design 
principles rather than expensive training examples. Secondly, COSCO can be an efficient 
LiDAR pre-processing tool for recognizing symmetric city objects’ positions, heading 
directions, cross-sections, and types for DTCs and more smart city applications in GIScience, 
Architecture, Engineering, Construction and Operation (AECO), and autonomous vehicles. 
 
2 Literature review 
Although DTC is a relatively new concept, a wealth of automated and semi-automated DTC 
creation methods have been developed (Huber et al. 2011; Wang & Kim 2019). From a 
machine learning perspective, all the methods of processing LiDAR point clouds to a DTC 
can be classified into four classes, i.e., non-learning, supervised learning, reinforcement 
learning, and unsupervised learning, according to the taxonomy of machine learning methods 
(Mohri et al. 2018). Each class of methods has notable pros, cons, and prerequisites. 
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The first class is non-learning, in which the correlation model is structured universal expert 
knowledge on the built environment, such as rules about geometric primitives and their joints 
on building envelopes. Examples include Valero et al.’s (2012) floor and ceiling 
segmentation from z-slices, Previtali et al.’s (2014) indoor space segmentation from 
incomplete boundaries, Jung et al.’s (2018) opening detection for the automated 3D 
volumetric reconstruction of indoor environments, Xue et al.’s (2018) rooftop element 
rectification based on as-designed parallelity and perpendicularity, and Pan et al.’s (2019) 
rule-based reasoning based on normal values. By utilizing such structured expert knowledge, 
non-learning methods correlate approximate semantic information in a short computational 
time and with perfect interpretability (Hong et al. 2015). However, the applications of this 
class were limited by the extractability of expert knowledge at first (Wang & Kim 2019); the 
methods were also limited in dealing with complicated scenes and noise filtering (Pătrăucean 
et al. 2015). That was why most methods in this class worked together with other methods to 
handle noisy point clouds in the literature. 
 
The second class consists of supervised learning-like methods, in which a supervised model 
fitting (or training) is performed to correlate the given labels in training samples to the 
measurement features (Rosser et al. 2019). A well-known subclass is called semantic 
segmentation which processes point cloud and photo data to building and city models (Xiong 
et al. 2013; Babacan et al. 2017; Czerniawski et al. 2018; Wang et al. 2018). Examples in 
other subclasses include Zou et al.’s (2018) 3D room layout modeling based on a supervised 
deep learning model, He et al.’s (2018) adoption of three cities as training samples to identify 
various combinations of building group features, Rosser et al.’s (2019) research of predicting 
residential building age from map data, and Huang et al.’s (2020) spatial joint embedding of 
deep learning features. Some studies like Li et al. (2019) and Ahmed and Chew (2020) 
employed a basket or series of supervised learning methods for striking a balance between the 
accuracy and time cost, while some research like Yang et al. (2020b) linked 3D points to 2D 
topographic maps. However, the supervised learning task itself is also very challenging in 
sophisticated urban scenes (Babacan et al. 2017). For example, the optimization algorithms 
driving the learning can become complex (Ullah et al. 2020) and accuracy of learning results 
can be problematic (Xiong et al. 2013) once there is a large deviation in a small sample-based 
classification model and recognition of a variety of features in big data (Yu et al. 2020), 
which is difficult to avoid in large-scale urban datasets. Besides, the preparation of the 
training labels also costs a fortune, especially when the sample size goes wild. In practical 
applications, it was essential to do an adequate survey with extensive manual work to assign 
its precision so as to obtain training samples; this was prohibitively expensive (Rosser et al. 
2019). Furthermore, it accomplished the function of memory and knowledge recombination 
without interaction with the real environment (Ma et al. 2020).  
 
The third class is reinforcement learning, in which the correlation gradually converged after 
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trial iterations of possible targets. Hidaka et al. (2018) applied the iterative closest point (ICP) 
algorithm to register previously known bridge pier models to a point cloud; Xue et al. (2018; 
2019a) developed a Semantic Registration approach to reconstruct 3D building models 
automatically from point cloud data and online open 3D component models. Other examples 
in this category include Sarmad et al. (2019), who applied it to point cloud shape completion, 
and BuHamdan et al. (2020) who focused on decision-making during the construction design 
phase. In contrast with supervised learning, reinforced learning depends on a reward function 
rather than training labels, so that the agent (or algorithm) interplays with the environment 
and becomes rewarded for making correct decisions (e.g., 3D model registration) and 
penalized for incorrect ones (BuHamdan et al. 2020). In essence, reinforced learning is a trial-
and-error process; an agent needs to estimate which actions to select to maximize the reward 
in the environment (Ullah et al. 2020). Thus, due to the lack of direct guidance or knowledge, 
it is necessary for an agent to make continuous attempts in order to acquire optimal strategies 
(Yang et al. 2020a). For example, Xue et al. (2019a) took over 15 minutes to automatically 
generate an auditorium seat model with about 90% precision and recall. The slow 
responsiveness may become a problem in fulfilling the timely performance required for 
digital twinning (Son et al. 2015). Furthermore, the methods in the reinforcement learning 
group were limited to the availability of standardized 3D components for matching the input 
point clouds (Xue et al. 2019a), and the reward (or payoff) functions are sometimes 
unfeasible or unethical to design such as when it involves privacy data.  
 
In comparison, unsupervised learning requires no annotated training examples or reward 
functions and components. It is highly automated in grouping objects into clusters in terms of 
learned features (Armesto-González 2010). Objects from the same group are more similar to 
some learned features than those that come from different groups. Examples of conventional 
clustering methods in order to process LiDAR point clouds include region growing to 
approximate point cloud geometry (Pauly et al. 2002), k-means of normal directions to 
simplify point cloud (Shi et al. 2011), and proximity-based query of points (El-Mahgary et al. 
2020). Modern unsupervised methods also employed other three classes of sub-processors for 
novel learned features. For instance, Papon et al. (2013) developed supervoxel clustering, 
which generates connected patches based on the closeness and normal directions of 3D 
points’ supervoxels; Xu et al. (2018a; 2018b) utilized the connectivity rules between the 
supervoxels to merge surfaces greedily. Zeng et al. (2020) utilized a supervised deep network 
for deep point-level feature extraction; then, they computed the feature correlation to 
distinguish precious elements even for complex buildings. Xue et al. (2019c) showed the 
possibility to cluster patches based on the reinforcement learned feature of geometric 
dissimilarity. The novel learned features and the LiDAR data quality led to increased 
accuracies of unsupervised clustering methods in the literature. Besides, independence from 
training examples made the unsupervised methods cost much less than supervised learning. 
Yet, some unsupervised methods like the k-means are sensitive to outliers (Arora et al. 2016), 
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and some methods like the hierarchical agglomerative clustering (HAC) are limited to small 
databases due to the computational time complexity (e.g., O(n3) for HAC). 
 
The advantages of unsupervised learning, as summarized in Table 1, pinpointed a unique 
position of pre-processing LiDAR point clouds to patches, objects, and clusters, for a DTC. 
Laws of proximity, connectivity, symmetry, and similarity—as Gestalt design principles of 
many city objects—have been adopted respectively as intrinsic characteristics in existing 
unsupervised methods (Shi et al. 2011; Poux & Billen 2019). Features that reflect the 
combinations of the laws, such as supervoxels, footprints, and cross-sections, have been 
employed as critical features in processing LiDAR point clouds (Xu et al. 2018a; 2018b). For 
example, the clustering of cross-sections in LiDAR points was vital to the understanding and 
modeling of forest (Wang et al. 2017), ships (Mi 2015), tunnel segments (Sun et al. 2020), 
and 3D printing parts (Samie Tootooni et al. 2017). For many movable city objects like cars 
and airplanes, symmetric cross-sections are also invariant in translations and rotations. 
Therefore, detecting and utilizing the symmetric cross-sections in LiDAR point clouds could 
intuitively accelerate the creation and synchronization of a DTC. However, symmetric cross-
sections were not well discussed for DTC as far as we are concerned.  
 
Table 1: Comparison of machine learning methods for processing LiDAR point clouds to a 

DTC 

 Non-learning Supervised  Reinforcement  Unsupervised  
Pre-
requisites 

Structured expert 
knowledge  

Annotated training 
examples 

A reward or penalty 
function 

Intrinsic characteristics 
or learned features 

Usages for 
city objects 

Filtering, reasoning Labeling, recognition Registration, matching  Grouping, pre-
processing 

Pros Shortest time, and good 
interpretability 

Adaptivity to domains, 
capability of learning 
from big data, and new 
AI methods 

Active interaction, and 
optimized decision-
making 

Low cost, training-free, 
and increasing accuracy 

Cons Limited by knowledge 
extractability, and 
limited applicability 

Unsatisfactory 
accuracy, 
high cost, and 
lack of training data 

Slow speed, time-
delayed feedback, 
availability of reward 
(or penalty) function 

Limited application in 
small database, 
sensitive to outliers 

Examples Z-slicing, rules (Pan et 
al. 2019), planar 
parallelity, and 
perpendicularity 
(Valero et al. 2012) 

PointNet++,  
ShapeNet,  
Semantic 
segmentation， 
(Ma et al. 2020) 

Improved RANSAC, 
ICP, and Semantic 
registration 
(Xue et al. 2019d) 

Supervoxel 
segmentation, and 
connectivity-based 
merging (Xu et al. 
2018a; 2018b) 

 
3 The proposed method 
Figure 2 demonstrates the flow chart of the proposed Clustering Of Symmetric Cross-sections 
of City Objects (COSCO) method. COSCO aims to process large-scale urban LiDAR point 
clouds to derive a hierarchical understanding of city objects. It involves three steps: (i) 
connectivity-based object detection, (ii) symmetric cross-section detection, and (iii) 
dissimilarity matrix-based hierarchical clustering, based on Gestalt design principles. 



 8 

Sections 3.1 and 3.2 describe the three steps, respectively, and Section 3.4 introduces DTC 
creation as an application of COSCO output. 
 

 
Figure 2: Flow chart of the proposed COSCO method 

 
3.1 Connectivity-based object detection 

Step 1 of COSCO consists of two stages, as shown in Figure 2. The first stage is Papon et 
al.’s (2013) point cloud over-segmentation method, which computes the adjacency graph 
(proximity) of all 26-adjacent voxels in the 3×3×3 grids for each voxel. The super voxels are 
clustered from voxels based on the 3D position, color values, and the FastPoint feature (Rusu 
et al. 2009). The results of Papon et al. (2013) can reflect the proximity of small patches such 
as continuous surfaces. However, the patches are very often over-segmented at the object 
level.  
 
The second stage aims to group the over-segmented patches to the object level based on the 
law of connectivity. A filtering restriction on the number of inter-connected super voxels with 
a lower bound and upper bound can filter the target size of objects. It was discovered that a 
background removal operation, as shown in Figure 2, can considerably improve city object 
detection at this stage. For example, removing street and earth surface point clouds can well 
disconnect the city into street blocks and subsequently save the computational load 
substantially without loss of accuracy. Each output patch is stored in the Stanford Polygon 
(.ply) format and labeled as a unique object. Overall, the two-stage connectivity-based object 
detection can cluster point clouds to the object level and remove noise data. 
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3.2 Symmetric cross-section detection 

Step 2 of COSCO in Figure 2 identifies the cross-sections for symmetric objects in two 
stages. The objective in this stage is to detect the reflective symmetrical axis (e.g., as a 2D 
plane for a 3D reflective symmetry). As shown in Figure 3, COSCO first adopts Xue et al.’s 
(2019b) efficient Optimization-based Detection of Architectural Symmetries (ODAS) library 
(https://github.com/ffxue/odas) with default parameters for automated symmetry detection in 
urban LiDAR point clouds. Although ODAS was proposed for buildings, it also works well 
for other urban objects. The results of detection include a point corresponding ratio sm after 
reflective symmetry and the reflective symmetrical axis Am. If there are several symmetries, 
the perfect one with the maximum sm is expected. The characteristics of airborne LiDAR 
data, such as high density on the top and balanced details on the sides, is helpful for detecting 
reflective symmetries of city objects than other 3D point clouds, such as total station or 
ground vehicle-borne LiDAR. The reason is that airborne LiDAR is very good at measuring a 
city’s convex objects (except for the bottom side). It returns much more isotropic surfaces in 
terms of horizontal directions than ground vehicle-borne.  
 

 
Figure 3: Pseudo code of the symmetric cross-section detection 
 
In the second stage, the symmetry is applied to the patch to form the longitudinal and the 
transverse sections of an object. The point clouds near (Euclidean distance d within a 
threshold ε) the axis Am are filters as a slice Pl, then projected on to the plane of axis Am as the 
longitudinal section CSl. Then, a vertical plane At at the centroid of CSl perpendicular to Am is 
computed as the base plane of the transverse section. A similar projection process maps the 
near point clouds to form the transverse section CSt. To minimize the random noises, we 
apply a voxelization at a resolution res for a regularized contour-like cross-sections. As 
shown in Line 9 in Figure 3, the two sections are returned and saved in the Stanford Polygon 
format, and the centroid position and heading direction of the patch are saved in a data 
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spreadsheet. From the contour-like cross-sections, the patch’s 3D size can be extracted apart 
from its position and rotation. The 3D size can be a leading indicator to cluster similar objects 
for the next step. If the object in the patch is asymmetric (not meeting the threshold of 
minimal symmetric corresponding ratio), Step 2 of COSCO returns the input patch P and a 
“not found” message. 
 
3.3 Dissimilarity matrix-based hierarchical clustering 

Step 3 of COSCO also involves two stages based on the law of similarity. The first stage aims 
to measure the dissimilarity (or similarity equivalently) matrix between the objects’ patches. 
Given the two patches Pi and Pj, the most well-known dissimilarity metric is the minimal 
Root-Mean-Square Error (RMSE): 

dissimilarity (Pi, Pj) = minr, t ∈ ℝ³ RMSE (Pi, trans (rot (Pj, r), t)), (1) 
where the RMSE function measures the error between the point clouds in the two patches, r = 
[rx, ry, rz] is the set of 3D rotation parameters defined on ℝ³, and t = [tx, ty, tz] is the set of 3D 
translation parameters. For the patches with cross-sections detected in Step 2, the 6 variables 
in Equation (1) can be dramatically reduced to 2, one continuous tz and one discrete rz: 

rsym = [0, 0, rz], tsym = [0, 0, tz], rz ∈ { 0, π/2, π, 3π/2 }. (2) 
We applied the ODAS as the solver by defining the objective function as Equation (1). Given 
N patches of objects, the pairwise comparison leads to an N × N dissimilarity matrix. In the 
matrix, the diagonal entries are all 0, while the lower triangle is identical to the upper one. 
Therefore, (N − 1) × N /2 pairwise comparisons are needed. Furthermore, the two main 
algorithmic parameters of Step 3 of COSCO are inherited from ODAS, i.e., the depth of 
weighted octree down-sampling (𝛿𝛿) and the number of iterations (k).  
 
The second stage is a hierarchical clustering based on the dissimilarity matrix. A hierarchical 
structure can be created from the matrix by gradually listing the most similar items together. 
The hierarchical clustering (hclustering) function in the scipy package (ver. 0.19, in Python 
3.6) was employed to cluster the dissimilarity matrix to a hierarchy. In the hierarchy, a 
threshold can filter groups of object patches. Those object patches in one group have similar 
or even the same type of city objects. And those in the near subtree are also very close in 
geometry. 
 
3.4 Mapping the unsupervised results to digital twin city 
The result of COSCO can be utilized in many ways for creating a DTC. One approach is the 
semantic registration approach of Xue et al. (2019a). The semantic registration approach, 
initially proposed for a segmentation-free 3D model reconstruction, encountered a 
combinatorial explosion when facing too many models for large-scale point clouds. The 
intrinsic characteristics of city objects, especially the symmetric cross-sections, are vital for 
processing large-scale urban point clouds for the semantic registration approach. First, the 
poses, including translation, rotation, and scaling in the symmetric cross-sections, can 
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directly register 3D models to an object. Furthermore, it is now able to coarsely filter the 
possible models using the 3D size of the target patch. The latter is also true for asymmetric 
city objects. As a result, the COSCO can help the semantic registration reduce the execution 
time significantly based on the hierarchical understanding of the LiDAR data as well as the 
reference objects. 
 
The updated semantic registration approach based on COSCO acts as follows. First, a few 
semantically rich 3D models are given as possible references. The 3D models can be 
extracted from industrial as-designed modes or previous versions of DTCs. Their visible, 
continuous surfaces are down-sampled to point clouds at the point density equivalent to the 
city point clouds. Then, the reference models’ point clouds also go through Steps 2 and 3 of 
COSCO for the symmetric cross-sections and similarity hierarchy. Thirdly, the cross-sections 
of the reference objects are registered to the cross-sections of the detected objects in the point 
cloud of the target urban area, instead of registering the 3D models to the unsegmented point 
cloud as a whole. The optimized pose variables in the cross-section registration can transform 
the 3D reference models to the target objects. The final DTC contains both an abstracted 
concept hierarchy and the rich semantics of the city objects for enabling reasoning and 
simulating smart city development. 
 
4 Experimental tests 
4.1 Experimental settings 
The COSCO method was experimented as an in-house developed computer program, based 
on three existing scientific software libraries for the three steps. In the first step, we employed 
the supervoxel over-segmentation function from the open-source software library point cloud 
library (pcl, version 1.8) and developed the connectivity-based object filters. In the second 
step, we adopted the ODAS library with the algorithm and parameters recommended in Xue 
et al. (2019b). In the last step, a minimum dissimilarity computation module is developed 
based on the algorithm and parameters in the ODAS library. The programming language was 
C++ for all the three steps complied under the C++11 standard on a Ubuntu 16.04.  
 
A pilot study was conducted on a case of LiDAR data scanned from a small car park near 
O’Connell Street Upper, Dublin, Ireland (Laefer et al. 2017), as shown in Figure 4. The 
LiDAR point cloud, consisting of 112,999 points (6.78MB compressed on disk), included 12 
city cars of various models, parking locations, and orientation. In terms of height, the cars 
included 8 ‘short’ cars (height < 1.5m), 3 ‘tall’ cars (1.5m ≤ height < 1.9m), 1 full-size SUV 
(sport utility vehicle, height ≥ 1.9m); in terms of types, there are 1 supermini car (length < 
3.7m), 5 hatchbacks with trunks, 5 hatchbacks without trunks, and 1 full-size SUV. A 
preprocess of planar removal removed almost all point clouds of the ground. The cloud after 
the ground removal consisted of only 24,126 points. The experimental study involved four 
tests on (i) the COSCO method, (ii) the effectiveness of symmetric cross-sections, (iii) the 
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parameters sensitivity of the COSCO, and (iv) the application to semantic registration. The 
tests were conducted on a desktop computer with Intel E5-2690 CPU (2.6 GHz), 64GB 
memory, and Ubuntu 16.04 system. The main performance metrics were accuracy and 
computational time in the single-threaded mode. 
 

 
Figure 4: The pilot case of a car park scene. (a) 112,999 airborne LiDAR point clouds (color 

indicates height); (b) 24,126 point clouds after ground removal 
 

4.2 Experimental results 
4.2.1 Results of the COSCO methods 

Figure 5 shows the results of the first step of implementing COSCO. The execution time of 
the supervoxel over-segmentation was 1.30 seconds. It yielded 368 over-segmented 
supervoxels and the connectivity among them, as shown in Figure 5a. The parameter “voxel 
seed size” was 15cm, so that a typical supervoxel represented a surface area of about 0.09m² 
(30cm×30cm). We set the target objects’ surfaces (glass excluded) to be between 1 m² and 20 
m², equivalent to supervoxel connectivity between 10 and 220. Based on the connectivity 
range, 12 patches of objects were filtered instantly from the connected subgraphs. The object 
patches were named based on their centroids along the x-axis, as obj1, obj2, … to obj12, as 
shown in Figure 5b. 
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Figure 5: Twelve objects detected based on connectivity. (a) 368 small patches (by color) and 

the connectivity (lines) in 1.30s, (b) 12 object patches by connectivity filtering 
 
The second step is the symmetric cross-section detection. Table 2 lists the results of the first 
stage, i.e., the automated symmetry detection for the 12 objects. The first column is the object 
ID, while the second to fourth columns are the results, i.e., the point correspondence ratio 
(PCR) of the symmetry, the symmetric centroid of the object, and the rotation of the 
symmetry axis, of the automated symmetry detection using the ODAS method with default 
parameter values. It can be seen that all the PCR values were no less than 0.93, which stood 
for good symmetries for all the objects. It should be noted that an object’s symmetric centroid 
is slightly different from its geometric centroid.  
 
Table 2: Results of 3D poses and symmetric cross-sections of the 12 objects 

Obj. Sym. PCR Sym. centroid (tx, ty) Rotation (rz) Cross-sections 3D size (w×d×h) Time (s) 
1 0.967 -9.39,   6.02 0.617π 4.1×1.8×1.6 0.52 
2 0.944 -7.10, 18.36 1.580π 3.6×1.6×1.4 0.49 
3 0.965 -6.56,   7.22 1.583π 4.3×1.8×1.5 0.48 
4 0.936 -3.72,   7.88 0.592π 3.8×1.7×1.5 0.55 
5 0.962 -1.06,   9.40 0.636π 4.3×1.8×1.8 0.47 
6 0.975 0.71, 19.97 0.581π 4.6×1.8×1.3 0.48 
7 0.979 2.56,   9.94 0.575π 4.9×1.9×1.4 0.49 
8 0.966 3.83, 20.67 0.603π 4.3×1.8×1.3 0.40 
9 0.968 5.69, 10.75 0.578π 4.5×1.8×1.5 0.45 

10 0.972 6.41, 21.44 0.611π 4.6×1.8×1.3 0.37 
11 0.977 8.82, 12.00 0.596π 4.6×1.8×1.4 0.39 
12 0.959 11.56, 12.72 0.606π 4.0×1.7×1.4 0.39 
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Figure 6 exhibits the second stage of symmetric cross-section modeling. The projected point 
clouds of the 12 objects, as shown in Figure 6a, correctly reflected the cross-sections. Figure 
6b demonstrates the voxel modeling of cross-sections, wherein noises are mitigated, and 
contours became rectified. Then, the width and height of an object can be easily read from the 
longitudinal section, similar to the depth from the transverse section. Table 2 lists 3D sizes, in 
terms of width × depth × height, of all the objects. The twelve objects were very close when it 
comes to sizes. The computational time of Step 2, as listed in Table 2, was short, around 0.4 
to 0.5 seconds for each object. 
 

 
Figure 6: Symmetric cross-sections detected using COSCO. (a) Associated point clouds 

(color indicates height), (b) Cross-section modeling of obj1 in 10cm voxels 
 
Figure 7 manifests the results of Step 3 after the implementation of COSCO. First, the 
dissimilarity matrix was calculated between the objects’ cross-sections, as shown in Figure 
7a. It consumed 4.96s to complete the upper triangle, which was copied to the lower triangle 
immediately. The parameter 𝛿𝛿 was set to 4 and k to 50. In the visualized matrix in Figure 7a, 
the most dissimilar pair was 19.3cm between obj2 (the supermini) and obj7 (a hatchback with 
trunk), while the most similar was 4.9cm between two hatchbacks (obj9 and obj11). Besides, 
there were a few warm and cold color zones, which indicated inter-similar objects. Such 
objects were hierarchically clustered based on the matrix, as shown in Figure 7b. We set the 
color threshold to 6.5cm and got two groups of objects and two isolated instances. The group 
in green consisted of five objects, i.e., obj6, obj7, obj9, obj10, and obj11, which were the five 
hatchbacks with trunks. The other group in red included obj1, obj3, obj4, obj8, and obj12, 
which were the five hatchbacks without trunks. The supermini and the SUV were isolated. 
Moreover, the two groups were detected to be more similar (as 10 hatchbacks) than the 
supermini and the SUV. The SUV was identified as the most dissimilar one in all the 12 
objects. The taxonomy was correct and meaningful. 
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Figure 7: Results of Step 3. (a) Dissimilarity matrix (unit: cm, cold color indicates similar) in 

4.96s, (b) Dendrogram of hierarchical clustering (color stands for group) in 0.05s 
 
Overall, the COSCO spent 8.28s to process the 24,126 LiDAR points in three steps. The 
results of COSCO included (i) 12 objects as shown in Figure 5, (ii) the centroid, rotation, 3D 
size, and cross-sections of each symmetric object as shown in Table 2 and Figure 6, and (iii) 
a hierarchical understanding of the objects as shown in Figure 7. The experimental results 
showed that COSCO was efficient (short in time) and effective (accurate in recognition and 
understanding) in processing unstructured urban LiDAR point clouds. The understanding of 
the city objects, such as the cross-sections and hierarchical cluster, was in line with how they 
are designed and manufactured, thus, providing a useful guiding framework in creating a 
DTC.  
 
4.2.2 Comparison to previous work  
We compared the COSCO method to the patch clustering method in Xue et al. (2019c), 
which bypassed COSCO’s Step 2 by assuming asymmetry equivalently. Figure 8 shows the 
results of the two methods. Both methods detected 12 objects. However, the dissimilarity 
matrices were different. First, the maximum dissimilarity in Xue et al. (2019c) was 36.0cm 
between the SUV and the supermini, where the value was much higher than that of COSCO, 
and the entry was different. Some parts of hot/cold color zones, as highlighted in Figure 8, 
were also different. One key reason for the difference was that the car roofs produced much 
more point clouds in aerial LiDAR scanning so that the pairwise comparison in Figure 8a 
overweighed the car roofs.  
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Figure 8: Comparison on the matrix, accuracy, meanings, and time of unsupervised 

hierarchical clustering. (a) patch-based in Xue et al. (2019c), (b) the COSCO. 
 
Consequently, the hierarchical clusters in Figure 8 were different. The cluster in Figure 8a 
emphasized the dissimilarity on the height, where the 8 ‘short’ cars were in the green group, 
and the 3 ‘tall’ cars were in the red group. In contrast, the COSCO’s results in Figure 8b 
emphasized the contours of cross-sections. Nevertheless, the SUV (obj5) was the most 
dissimilar object in both. Moreover, the overall computation of COSCO saved 92.6% time 
from Xue et al. (2019c), which proved the efficacy of symmetric cross-sections. 
 
4.2.3 Parameter sensitivity analysis 
In order to gauge the parameter sensitivity of COSCO, we tested a group of combinations of 
the two major parameters 𝛿𝛿 and k. Stage 1 of Step 3 was the most time-consuming process in 
COSCO, due to the (N − 1) × N /2 pairwise comparisons for dissimilarity matrix 
computation. In the tests, 𝛿𝛿 increased from 2 to 5, and k changed independently from 10 to 
1,000 in an exponential order. Figure 9 shows the results on the average dissimilarity (in cm) 
and computational time (in logarithmic scale). It can be seen from Figure 9a that the 
dissimilarity computation is more sensitive to k, i.e., the number of iterations. The 
dissimilarity values came to an optimum plateau of 10.628cm, as shown in the dark blue area 
in Figure 9a, when k ≥ 50. Meanwhile, Figure 9b shows that the computational time increased 
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with either 𝛿𝛿 or k. Therefore, we set k to 50. After examining the minor excess of average 
dissimilarity over the optimum plateau and the time cost, we chose 𝛿𝛿 as 4 for the best 
accuracy-time trade-off. In comparison with the setting k = 1,000 and 𝛿𝛿 = 5, the selected 
parameters can save 96.2% of computational time, i.e., 0.03s for each comparison on average, 
at a cost of ignorable 0.02cm average excess (about 0.2% error) over the optimum 
dissimilarity matrix. 
 

 
Figure 9: Results of the dissimilarity matrix computation under different COSCO parameter 
settings. (a) Average dissimilarity in the matrix, (b) Average computational time 
 
4.3 Application to semantic registration for creating DTC  
The tests in this section applied the hierarchical understanding of COSCO for creating a DTC 
from reference 3D CAD (Computer-Aided Design) models. The approach was Xue et al. 
(2019a)‘s semantic registration for fitting known semantically rich 3D models to a point 
cloud. We randomly downloaded 24 CAD models of city car models freely available from 
the manufacturers’ and fans’ websites. Table 3 lists the brands and models of cars. The 
models included popular brands such as Alfa, Audi, Honda, Toyota, Mercedes-Benz, and 
Volvo. The COSCO method was applied to the surface (glass excluded) point clouds of the 
3D CAD models and obtained their cross-sections and 3D sizes. As listed in Table 3, COSCO 
returned the approximate sizes for the car models. After a comparison with the car 
dimensions queried from manufacturer websites, Wikipedia, or automobiledimension.com, 
we validated the correctness of the models. By setting a dimensional tolerance at 0.2m, we 
can preliminarily match the car models to potential objects detected in Section 4.1. For 
example, an Audi TT, a hatchback model without a trunk, has a 3D size 4.0×1.7×1.4 and thus 
matched to three candidate objects obj1, obj4, and obj12. In this way, the number of model-
object semantic registration trials was reduced drastically from 24 × 12 = 288 to 87, or 69.8% 
trials saved.  
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Table 3: List of 24 reference car CAD models 

ID Brand Model Cross-sections 3D size (w×d×h) Candidate objects (dim. 
tolerance = 0.2m) Web query*  by COSCO 

1 Alfa Brera 4.41×1.83×1.34 4.4×1.8×1.4 3, 6, 8, 9, 10, 11 
2 Alfa Romeo 8C 4.38×1.89×1.34 4.4×1.8×1.4 3, 6, 8, 9, 10, 11 
3 Audi A4 4.73×1.84×1.43 4.8×1.8×1.5 6, 7, 10, 11 
4 Audi A5 4.63×1.85×1.37 4.6×1.8×1.4 6, 9, 10, 11 
5 Audi TT 4.04×1.76×1.34 4.0×1.7×1.4 1, 4, 12 
6 Chevy Silverado 3500 HD 5.98×2.08×2.05 6.0×1.8×2.0 (No candidates) 
7 Fiat Grande Punto 3.99×1.69×1.49 4.0×1.7×1.5 1, 4, 12 
8 Honda Civic 4.52×1.80×1.43 4.5×1.7×1.5 3, 6, 8, 9, 10, 11 
9 Honda Jazz 3.95×1.69×1.54 3.9×1.7×1.5 1, 4, 12 

10 Jeep Cherokee Sport 4.40×1.82×1.64 4.4×1.7×1.7  3, 5, 9 
11 Jeep Wrangler 3.84×1.70×1.78 3.7×1.6×1.8 (No candidates) 
12 Mercedes Benz C63 AMG W204 4.73×1.77×1.45 4.8×1.8×1.5 6, 7, 10, 11 
13 Mercedes Benz Class C W204 4.58×1.77×1.47 4.5×1.7×1.5 3, 6, 8, 9, 10, 11 
14 Mercedes Benz Class C W204 Wagon 4.60×1.77×1.46 4.6×1.7×1.5 6, 9, 10, 11 
15 Mercedes Benz GL Class 5.12×1.93×1.85 5.1×1.9×1.9 (No candidates) 
16 Mini Coopper R50 3.63×1.69×1.42 3.6×1.7×1.5 2, 4 
17 Opel Astra Sport 4.37×1.81×1.49 4.7×1.8×1.5 6, 7, 9, 10, 11 
18 Renault Kangoo Express 4.04×2.03×1.80 4.0×1.8×1.8 1 
19 Renault Megane 4.35×1.88×1.44 4.3×1.8×1.5 1, 3, 8, 9 
20 SEAT IBIZA 4.06×1.78×1.44 4.3×1.8×1.5 1, 3, 8, 9 
21 Toyota Avensis 4.75×1.81×1.48 4.7×1.8×1.5 6, 7, 9, 10, 11 
22 Toyota Prius 4.54×1.76×1.49 4.5×1.7×1.5 3, 6, 8, 9, 10, 11 
23 Volkswagen  Up! 3.60×1.65×1.50 3.6×1.6×1.5 2, 4 
24 Volvo S40 4.52×1.72×1.43 4.5×1.8×1.5 3, 6, 8, 9, 10, 11 

*: From manufacturer websites, Wikipedia, or automobiledimension.com. 
 
Figure 10 shows the results of the 87 semantic registration trials. The best-fit car model for 
each object is circled. For example, the most similar model of obj1, out of the 24 cars, was 
Honda Jazz, a hatchback without a trunk. We also tested the pairwise registrations for non-
candidate objects, the results of which are shown in the background heatmap. It can be found 
that filtering the registrations using cross-sections was significant so that the optimal 
registrations were found when the computational load was reduced dramatically. The average 
computational time for each pairwise registration was 0.340s, which saved 76.0% 
computational time from bypassing Step 2 (1.415s; (Xue et al. 2019c).  
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Figure 10: Results of COSCO-assisted model-to-object semantic registration (the best in 

circles). 
 

A digital twin was then created as a 12.45MB Stanford Polygon (.ply) model from the 
optimal registrations, as shown in Figure 11. The location and heading direction of each car 
were referenced to the symmetric centroid and rotation (see Table 2) and the optimal shifts 
for the registration. Figure 11a shows that 12 car models were registered to the object 
patches. There were 5 hatchbacks with trunks, 5 hatchbacks without trunks, 1 supermini, and 
1 SUV in Figure 11a. In the registration, the meaningful semantics, such as class, brand, 
model, production, and performance, can also be enriched to the objects. Due to the reference 
CAD models, the digital twin was with high-quality geometry—much higher than the input 
LiDAR. The digital twin can be rendered in many ways, as shown in Figure 11b. Then, the 
digital twin was geo-referenced to the location of the car park, i.e., latitude = 53.351160°, 
longitude = −6.261601° (WGS1984 system) in Dublin and displayed in the digital twin city 
view in 3D GIS, such as Google Earth (Figure 11c) or Cesium. It should be noted that some 
properties of the digital twin, including small geometric details and colors, can be lost during 
the multi-step format conversion (e.g., to a small .kmz file for Google Earth).  
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Figure 11: Digital twin results. (a) Registered 10 hatchbacks, 1 super mini, and 1 SUV 
models, (b) Rendered 3D view, (c) DTC view on Google Earth, (d) Ground truth. 
 

Figure 11d shows the ground truth of the car park from an aerial view after the LiDAR data 
was collected. By comparing the digital twin with the actual scene, it can be found that:  

(i) The location, direction, types, and sizes of the cars were correct;  
(ii) Most of the car paint colors were incorrectly inherited from CAD models; and 
(iii) Some models with more than 4cm registration errors in Figure 10, such as the 

Mini Cooper (to obj2), were wrongly registered. 



 21 

The first finding validated the COSCO approach. The reason for the second finding was that 
the input LiDAR was colorless. Otherwise, it is possible to change the paint colors 
automatically using parametric material parameters in the CAD models. The primary reason 
for the third finding was the limited number of CAD models, e.g., only two (i.e., Mini Cooper 
and Volkswagen Up!) in the 24 models were in the supermini class. A full library of city 
CAD objects can solve the issues as identified in observation (iii). 
 
5 Discussion 
The proposed COSCO approach can resolve a critical issue of the taxonomy of unknown city 
objects through exploiting the Gestalt design principles. The use of symmetric cross-sections 
for grouping city objects and creating DTC is an interpretable ‘white-box’ method that can be 
understood and verified by human. Furthermore, the efficiency and low-level pre-requisites 
of COSCO make it possible to pre-process city-scale point clouds to cross-sections for 
facilitating other DTC methods such as semantic registration. When a time-series LiDAR 
point cloud, or a 4D LiDAR point cloud video, is available, the output of each frame includes 
as-designed cross-sections as succinct geometric data, excluding the static background 
environment. A new frame of DTC can refer to the previous one from a cross-frame 
clustering of the cross-sections. Therefore, the motion trails of movable objects like cars and 
airplanes can be tracked with constant cross-section shapes and changing positions and 
heading directions, while the regular updates on construction sites and overhead 
advertisements are reflected as permanent positions with minor changes in cross-section 
shapes. 
 
The proposed COSCO method has advantages in several aspects. 
 First, the COSCO method applies a combination of Gestalt design principles to 

process LiDAR point clouds for DTC creation. The digital twinning process benefits 
from the LiDAR’s observer perspective and the producer and designer perspective. 
Some types of noises, such as small Gaussian noises from sensors, can be corrected in 
part using the symmetry (see Figure 4b). 

 Secondly, the results of COSCO include symmetric objects and their cross-sections 
from large-scale urban LiDAR data. The cross-sections can reveal their positions, 
poses, and coarse 3D geometric information with the minified volume of 2D data. 
These symmetric objects are more interesting than the asymmetric patches to many 
studies in AECO. For example, symmetries can guide the detection of buildings, 
archeological sites, and culture heritages (Schofield 2009; Xue et al. 2019b), facilitate 
urban design and planning (Park 2011; Salat et al. 2014), and correct data 
imperfections, such as random noises, small clutters, and wrong segmentations (Xue 
et al. 2019d). The associated properties, including positions, poses, and insights, are 
essential knowledge to a DTC and its applications. 

 Thirdly, COSCO utilizes the symmetric cross-sections in innate designs of city 
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objects and the latest algorithmic development to achieve automated and fast 
processing. Experiments showed that symmetric cross-sections make COSCO about 
ten times faster.  

 Finally, the unsupervised nature of COSCO makes it inexpensive and with an 
evolvable performance over time. The low requirements for the input data make it 
easy to adapt to new environments and integrate with other digital twinning methods. 
For example, the results of COSCO were applied to a semantic registration approach 
in Sect. 4.3. 

 
There are also several drawbacks in this paper: 
 First, COSCO requires symmetry of city objects in LiDAR point clouds and utilizes 

the symmetry within the host object’s geometry. However, the possible higher order 
of symmetry and regularities among multiple city objects, such as regular rows of 
street trees and matrix of building blocks, is not yet covered. 

 Furthermore, COSCO is limited to process symmetric city objects with incomplete or 
auxiliary geometries scanned in LiDAR point clouds. For example, half of a car is 
occluded by tree canopies from an aerial LiDAR scanner; a truck was scanned with 
asymmetric goods loaded on the trailer.  

 The hierarchical clustering in this paper is ‘cross-sectional’ between city objects; 
while the longitudinal clustering, which can relate a city object to its forms in 
previous versions of DTCs, is not mentioned. 

 The experiments were in a small scale for the proof of the concept. Thus, the 
parameters analyzed in the experiments may subject to change in other experimental 
settings.  

 The detected cross-sections and semantics of objects may be slightly inconsistent 
between multiple and distributed observers or stakeholders of the city objects. The 
inconsistency can lead to collisions in distributed DTC updates and possible disputes 
like authorships over co-created objects. Blockchain is an emerging distributed ledger 
technology that can safeguard the semantics. Xue and Lu (2020) proved a semantic 
difference approach could blockchain large-scale BIM through the lifecycle by 
extracting the full semantic changes between BIM versions. Likely, a semantic 
difference study between ‘frames’ of a DTC can contribute to blockchaining the DTC. 

 
6. Conclusion 
Developing the digital twins of cities from LiDAR point clouds is one of the most heated 
research fields in the era of smart city. On the one hand, thriving remote sensing technologies 
have enabled rich, accurate, and inexpensive measurement data (e.g., 3D LiDAR point 
clouds) of cities. On the other hand, the scale of the problem, unknown taxonomy, and 
dynamic features of city objects (e.g., construction sites, roads, street light, and vehicles) all 
challenge the task of Digital Twin City (DTC) creation and near-real-time updates. Our 
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research offered an unsupervised Clustering Of Symmetric Cross-sections of Objects 
(COSCO) to recognize symmetric city objects by harnessing the power of Gestalt design 
principles. It is positioned in the stream of research on LiDAR data processing. It follows the 
notion of using city objects’ intrinsic and conventional features (e.g., symmetries) to optimize 
the task. Nonetheless, the research goes beyond the individual city features by harnessing the 
wider Gestalt design principles, such as the laws of proximity, connectivity, symmetry, and 
similarity. 
 
In a nutshell, COSCO incorporates the Gestalt design principles in three key steps: (i) 
connectivity-based object detection, (ii) symmetric cross-section detection, and (iii) 
dissimilarity matrix-based hierarchical clustering. The outputs include the taxonomy, as well 
as the poses of the city objects. By applying the taxonomy, the unknown city objects can be 
grouped into types with relatedness between them identified. Furthermore, a group of objects 
can be mapped to the same parametric 3D reference model with some parameters, such as 
color specialization. A DTC can be effectively created by engaging other methods, such as 
semantic registration, with the output taxonomy and poses. Experimental results showed that 
COSCO detected the correct taxonomy and types of 12 cars in 24,126 LiDAR points in 8.28s. 
Based on the cross-sections and taxonomy, a digital twin was created by registering online 
free 3D car models in 29.58s. The COSCO method has several advantages, including 
harnessing the power of Gestalt design principles, recognizing symmetric cross-sections, 
taxonomy and grouping of unknown objects, efficiency in terms of computational time, and 
low requirement and easy adaption to new tasks. Yet, the research also has its limitations in 
levels of symmetries, LiDAR data quality, time-series LiDAR processing, and scale of 
experiments. 
 
The contribution of this paper is twofold. First, COSCO is an effective unsupervised method 
to understand city objects in LiDAR point clouds by exploiting the free innate urban design 
principles rather than expensive training examples. Secondly, COSCO can be an efficient 
pre-processor for recognizing symmetric city objects’ positions, heading directions, cross-
sections, and types in LiDAR data for DTCs and smart city applications. Future work of this 
study includes (i) expanding the symmetry cross-sections to higher-order urban regularities in 
the systems of city objects, (ii) handling incomplete and auxiliary LiDAR data, (iii) 
processing time series LiDAR data to 4D DTCs, (iv) automatically selecting and adapting 
algorithms and parameters for various scenes, (v) integrating into existing data standards and 
software related to DTC, and (vi) blockchaining DTCs by ledgering the high-level semantics 
rather than big data of city objects . 
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